
Expr Language Reference
Expr language defines expressions, which are evaluated in the context of an item in some structure. This article describes the syntax of the language and
the rules that govern the evaluation.

Conventions
Values

Undefined
Text
Numbers
Text to number conversion
Falsy and truthy values

Variables and functions
Identifiers
Variables
Function calls

Single-argument operators
NOT
+ -

Logical and arithmetic operators
Logical operators
Comparison operators

Equality: = (==).
Inequality: <> (!=)
Ordering

Arithmetic operators
Precedence of operators
Railroad diagrams

expression
arithmetic-expression
simple-expression

Conventions

Similarity to Excel formula language was a design goal, so if you're unsure how Expr behaves, think Excel.
The language is case-insensitive.
Whitespace is not meaningful. It is only required to separate word operators and identifiers, in all other cases there can be arbitrary number of
whitespace symbols.
Currently language constructs support only English letters and a few punctuation symbols. However, values can contain any Unicode symbols.

Values

All expressions, when evaluated, produce either a value or an error. All values in Expr are either numbers, text, or a special value called . The undefined
simplest expression thus is the literal representation of some fixed value. The forms of these literal representations are described below.

Undefined

Undefined value is represented by the word undefined.

Undefined value is used when the variable value is not specified. For example, variable has value undefined if the issue is unassigned. Assignee

Functions can return this value when the result of function is not specified. For example, function returns its second argument if the first argument IF
evaluates to a truthy value (see below on that). Otherwise, it returns third argument, but if it wasn't specified, it returns .undefined

Text

A text value consists of 0 or more Unicode symbols. Its literal representation consists of the value enclosed in single quotes (') or double quotes (").
Example: represents text value . Similarly, represents the same text value."Major" Major 'Major'

If the text value itself contains quotes, you'll need to insert a backslash (\) before them. Example: represents text value "Charlie \"Bird\" Parker"
. Alternatively, you can use another kind of quotes to enclose the literal representation: Charlie "Bird" Parker 'Charlie "Bird" Parker'.

If you need to use the backslash at the end of text value, you'll need to insert another backslash before it. Example: represents text "C:\Users\John\\"
value C:\Users\John\.

Numbers

Aside from representing some quantity, a number value can also represent points in time and duration of time. Then you can use Format settings in the For
 to properly display them as dates or durations.mula Column

There are two forms of literal representations of numbers:

a whole number: 42
a fractional number: 0.239

Note that only dot (.) can be used as a decimal separator. Comma (,) is used to delimit function arguments. Thus, will be understood as MAX(X, 0,618)
the maximum of three quantities: , 0, and 618.X

Group separators are not supported, so is not a literal representation of number 100000100 000 .

Text to number conversion

Some functions expect their arguments to be number values. In case an argument is a text value, we try to interpret it as a number. This can be useful if
the value comes from a variable that represents a text custom field, which contains numbers — e.g., imported from some external system.

If conversion is successful, that number is used as the value for that argument. If conversion is not successful, functions can either produce an error,
ignore that argument, or substitute some default — it depends on the function; see Expr Function Reference for details.

The first step is to accommodate for variations in number formatting. Conversion supports these formatting symbols:

decimal fraction separators:

comma ,

dot .

digit group separators:

comma ,

dot .

apostrophe '

space

Conversion expects that the text contains 0 or 1 decimal mark, and 0 or more group separators of the same kind. If text contains any other formatting
symbols, conversion fails. Decimal mark must come after all group separators, otherwise conversion fails.

If text contains only one formatting symbol, and it's a dot (), it is always treated as decimal mark. If text contains only one formatting symbol, and it's a .
comma (), then it is treated as decimal mark if comma is decimal separator mark in ; otherwise, it is treated as group separator., JIRA default language

After determining decimal mark and group separator symbols, conversion removes all group separator symbols and replaces decimal mark with dot. Note
that if text contains several whole numbers separated by spaces, conversion will think that its' one number, for example, " will become 101112. 10 11 12"
Similarly, will become 101112. "10,11,12"

Technical note: internally, numbers are represented as decimal floating-point numbers with 16 digits of precision and half-even rounding. Most
of the operations are carried out in this form, however, some of the more sophisticated functions, such as , might first convert the numbers SQRT
into binary floating-point, calculate the result, and then convert it back into decimal floating-point.

https://wiki.almworks.com/display/structure040/Formula+Column
https://wiki.almworks.com/display/structure040/Formula+Column
https://wiki.almworks.com/display/structure040/Expr+Function+Reference
https://confluence.atlassian.com/adminjiraserver071/choosing-a-default-language-802592304.html

The final step of conversion is to recognize the resulting text as either Expr's literal number representation or scientific or engineering notation. Examples:
0.239
-1.32e5
12e-3

Falsy and truthy values

A value is if it is:falsy

undefined,
number 0,
empty text value (or), or a text value that contains only space characters."" ''

All other values are By convention, when predefined functions or logical operators need to construct a truthy value, they use number .truthy. 1

Variables and functions

Other kind of expressions are variables and function calls.

Identifiers

An identifier consists of letters (English only: a-z, A-Z), digits (0-9), dot () or underscore () characters. The first character must be a letter or an . _
underscore.

Variables

Variables are represented by identifiers. Each variable is resolved to a value once during expression evaluation. If the variable cannot be resolved, its
value is .undefined

Conceptually, you can think of variable as the cell of some column for the item, in the context of which the expression is evaluated. As such, it might or
might not have a value, and that value can be either textual or numeric. Variables are defined in the settings.Formula Column

Function calls

A function consumes zero or more values, and can produce a value. A function call consists of a function name (an identifier), followed by its arguments
enclosed in parentheses. An argument can be any expression. Different arguments are separated by commas () or semicolons () — for one function , ;
call, all separators must be the same.

Function call can evaluate only some or even none of the arguments, depending on the function. This is useful for functions that perform choices, such as IF
: the argument that wasn't chosen is not evaluated, so the whole expression doesn't produce an error when it produces an error.

Single-argument operators

Expression with single-argument (or) operator has the following syntax: . unary <op> <expression>

<expression> can be any Expr language expression in parentheses. If it is a literal value representation, a variable, or a function call, parentheses are
optional.

If evaluation produces error, the operator also produces error.<expression>

NOT

Instead of , exclamation mark () can also be used.NOT !

The operator produces if evaluates to a truthy value, and otherwise.0 <expression> 1

+ -

The operator first attempts to convert the value of to number. If conversion succeeds, produces this number, and produces the <expression> + -
negated number. If conversion fails, and the value of is falsy, produces . Otherwise, produces error.<expression> undefined

Logical and arithmetic operators

Two or more expressions can be combined using operators: . If any subexpression produces error, the <expression1> <operator> <expression2>
operator produces the same error.

Logical operators

OR (||, |)

https://wiki.almworks.com/display/structure040/Formula+Column

AND (&&, &)

OR examines each expression from left to right, and produces the value of the first expression that evaluates to a truthy value. If no expression evaluates to
a truthy value, returns . All expressions that come after the first that evaluates to a truthy value are not evaluated. This prevents from undefined
unnecessary computations, and protects from producing error if any of the subsequent expression produces an error.

AND works in the same way. The only difference is that it looking for the first value.falsy

Examples (assuming the default variable assignment):

assignee || "UNASSIGNED" will produce either issue's assignee user key or text value " if the issue is unassigned.UNDEFINED"
!assignee && status = "OPEN" will produce if the issue is unassigned and in status , and otherwise.1 OPEN 0

Comparison operators

All of these operators produce or . These operators can work only on two arguments. They start with evaluating both expressions. All comparison 0 1
operators have the same precedence.

Equality: .= (==)

If both values are numbers, returns if they are equal.1

If both values are text, returns if they are equal, ignoring differences in letter forms and leading and trailing whitespace (thus 1 " cote " = "côte"
).

If both values are undefined, returns .1

In all other cases returns .0

Inequality: () <> !=

Works in the same way as equality operator, but returns where it returns and vice versa.0 1

Ordering

< (less than)

> (greater than)

<= (less than or equal)

>= (greater than or equal)

All operators work on numbers, producing the result of their comparison.

If either of the values is text, attempts to convert it to number. If conversion fails, operators behave as if the corresponding value was undefined.

If any value is undefined, strict operators (,) produce Non-strict (,) produce , unless values are undefined (because they are equal).< > 0. <= >= 0 both

Arithmetic operators

Arithmetic operators are: addition (), subtraction (-), multiplication () and division (/). + *

These operators convert their arguments to numbers. A non-empty non-number argument would produce an error. Falsy non-number values are treated
as zero.

Examples:

"" + 1 1
"foo" + 1 error
"" * 1 0
"foo" * 1 error
"" - 1 -1

If one value is a number and the other value can be converted to a number, both values are treated as numbers. However, if both values are
text, they will be treated as text, even if both can be converted to a number. You can use function to force a value to be numeric.NUMBER

3.4 = 3.40 1
3.4 = "3.40" 1
"3.4" = "3.40" 0
NUMBER("3.4") = "3.40" 1

https://wiki.almworks.com/display/structure040/Expr+Function+Reference#ExprFunctionReference-NUMBER

1/0 error

Precedence of operators

Precedence defines which operators evaluate first: if operator A has lesser precedence than B, then in expression <expression1> A <expression2>
 first B is evaluated, then A. B <expression3>

Single-argument operators are always evaluated first. Other operators in Expr language have the following precedence:

1 (lowest) OR

2 AND

3 = <> < > <= >=

4 + -

5 (highest) * /

Railroad diagrams

expression

arithmetic-expression

simple-expression

	Expr Language Reference

