
Structure Plugin for JIRA

Page of 1 370

Documentation

URL:

Date:

Author: Igor Sereda

Jan 31, 2017 1:57 AM

https://wiki.almworks.com/display/structure/Documentation

Structure Plugin for JIRA

Page of 2 370

Table of Contents

1 Structure User's Guide ___ 9

1.1 Basic Concepts __ 9

1.1.1 Default Structure __ 10

1.1.2 Favorite Structures __ 10

1.2 Structure Menu __ 11

1.3 JIRA Pages with Structure ___ 12

1.3.1 Structure Board ___ 12

1.3.2 Structure on the Issue Page ___ 14

1.3.3 Structure Gadget __ 19

1.3.4 Structure on the Project Page __ 26

1.3.5 Structure on Agile Boards ___ 27

1.3.6 Structure on the Issue Navigator Page _______________________________________ 28

1.4 Working with the Structure Widget ___ 30

1.4.1 Structure Widget Overview __ 30

1.4.2 Navigating Structure ___ 32

1.4.3 Main Structure Toolbar ___ 37

1.4.4 Structure Toolbar ___ 38

1.4.5 Configuring View __ 40

1.4.6 Widget Columns __ 48

1.4.7 Searching and Filtering ___ 63

1.4.8 Transformations __ 73

1.4.9 Two-Panel Mode __ 78

1.4.10 Changing Structure ___ 81

1.4.11 Secondary Issue Panels ___ 94

1.4.12 Working with Issues __ 96

1.4.13 Viewing History of a Structure __ 109

1.4.14 Printing Structure ___ 111

1.4.15 Exporting Structure to XLS (Excel) __ 112

1.4.16 Real-Time Collaboration __ 114

1.5 Automation __ 115

1.5.1 Types of Generators __ 115

1.5.2 How to Add a Generator ___ 115

1.5.3 How to Edit a Generator ___ 116

1.5.4 How to Remove a Generator ___ 117

1.5.5 Generators ___ 117

1.5.6 Generators Options ___ 125

1.6 Managing Structures __ 127

1.6.1 Locating a Structure __ 128

1.6.2 Structure Details ___ 129

1.6.3 Creating New Structures ___ 130

1.6.4 Structure Permissions ___ 130

1.6.5 Customizing View Settings ___ 132

Structure Plugin for JIRA

Page of 3 370

1.6.6 Copying a Structure __ 134

1.6.7 Archiving a Structure __ 141

1.6.8 Deleting a Structure __ 142

1.7 Managing Views __ 143

1.7.1 Locating a View __ 143

1.7.2 Changing View Settings ___ 144

1.7.3 View Sharing and Permissions __ 145

1.7.4 Associating Views with Structures ___ 147

1.7.5 Copying a View __ 147

1.7.6 Deleting a View __ 148

1.8 Template Structures and Projects __ 148

1.8.1 Configuring Template Structures __ 148

1.8.2 Creating Issues and a Structure from Template _______________________________ 149

1.8.3 Template Projects __ 149

1.9 Sharing a Perspective ___ 149

1.10 Synchronization ___ 151

1.10.1 Importing Structure __ 152

1.10.2 Exporting Structure __ 153

1.10.3 Installing Synchronizer ___ 154

1.10.4 Modifying Synchronizer ___ 155

1.10.5 Removing Synchronizer __ 156

1.10.6 Turning Synchronizer On and Off ___ 156

1.10.7 Running Resync __ 157

1.10.8 Synchronization and Permissions ___ 158

1.10.9 Protection from Synchronizer Cycles ______________________________________ 159

1.10.10 Bundled Synchronizers __ 160

1.11 Structure Activity Stream __ 175

1.11.1 Available Filters ___ 175

1.11.2 Reading Activity Stream __ 176

1.11.3 Activity Streams Performance __ 177

1.12 Structured JQL __ 178

1.12.1 S-JQL Cookbook __ 178

1.12.2 S-JQL Reference ___ 183

1.12.3 structure() JQL function ___ 204

1.13 Keyboard Shortcuts __ 206

1.13.1 Keyboard Shortcuts (PC) ___ 206

1.13.2 Keyboard Shortcuts (Mac) __ 210

1.13.3 Quick Action Lookup ___ 213

1.14 Getting Help __ 213

2 Structure Administrator's Guide ___ 215

2.1 Installing Structure __ 215

2.1.1 Migrating Data from Structure 2 to Structure 3 ________________________________ 216

2.1.2 Memory Guidelines ___ 217

2.1.3 Uninstalling and Reinstalling Structure ______________________________________ 219

2.1.4 Upgrading and Downgrading ___ 219

2.2 Setting Up Structure License __ 220

Structure Plugin for JIRA

Page of 4 370

2.2.1 Setting Up Evaluation License __ 220

2.2.2 Licenses from ALM Works and from Atlassian ________________________________ 221

2.2.3 Purchasing a Commercial License ___ 222

2.2.4 Migrating Licenses ___ 222

2.2.5 Structure License Parameters ___ 223

2.2.6 When Structure is Available for Free _______________________________________ 223

2.2.7 License Maintenance and Expiration _______________________________________ 224

2.3 Getting Started with Structure ___ 225

2.4 Selecting Structure-Enabled Projects __ 225

2.5 Global Permissions ___ 226

2.5.1 Who Has Access to the Structure __ 226

2.5.2 Restricting User Access to Structure _______________________________________ 226

2.5.3 Changing Permission to Create New Structures _______________________________ 227

2.5.4 Changing Permission to Manage Synchronizers ______________________________ 228

2.5.5 Changing Permission to Access Automation _________________________________ 229

2.6 Changing Structure Defaults __ 229

2.6.1 Initial Configuration ___ 229

2.6.2 Changing Default Structure ___ 230

2.6.3 Changing Default View Settings ___ 231

2.6.4 Changing Default Options for the Issue and Project Pages ______________________ 231

2.7 Structure Backup, Restore and Migration __ 232

2.7.1 Using Structure Backup ___ 232

2.7.2 Backing Up Structure ___ 233

2.7.3 Restoring Structure from Backup __ 233

2.7.4 Migrating Structures __ 234

2.8 Automatic Structure Maintenance __ 236

2.8.1 Automatic Structure Maintenance __ 236

2.8.2 Maintenance Tasks ___ 237

2.8.3 Running Maintenance Tasks Manually ______________________________________ 238

2.9 Workflow Integration ___ 239

2.9.1 Structure Workflow Validator __ 239

2.9.2 Structure Workflow Condition ___ 240

2.10 Anonymous Usage Statistics ___ 241

2.10.1 Viewing Current Statistics ___ 241

2.10.2 Turning Anonymous Usage Statistics On and Off _____________________________ 241

2.11 Structure Files __ 242

2.11.1 $JIRA_HOME/structure ___ 242

2.12 Dark Features ___ 242

2.12.1 Alternative initial values for project/type when creating an issue in dialog __________ 242

2.13 Turning Off Optional Features __ 242

2.14 Advanced Configuration with System Properties ____________________________________ 244

2.14.1 Setting System Properties on Startup ______________________________________ 244

2.14.2 Setting System Properties with Script Runner _______________________________ 244

2.14.3 Synchronizer Cycle Guard __ 244

2.15 System Requirements __ 246

2.15.1 Atlassian Platform ___ 246

Structure Plugin for JIRA

Page of 5 370

2.15.2 Databases ___ 246

2.15.3 Browsers __ 246

2.15.4 Server Requirements __ 247

2.15.5 Non-Conforming systems ___ 247

2.16 Best Practices __ 247

2.16.1 (HIDDEN) Backup Strategy __ 248

2.16.2 Backup Strategy __ 249

2.16.3 Gradual Deployment ___ 251

3 Structure Developer's Guide ___ 253

3.1 Structure Developer Documentation __ 253

3.2 Structure Concepts, Developer's Perspective _______________________________________ 253

3.2.1 Basic Concepts Overview __ 253

3.2.2 A Note on Extensibility __ 254

3.3 Accessing Structure from JIRA Plugin ___ 254

3.3.1 Setting Up the Integration __ 255

3.3.2 Structure Services __ 259

3.3.3 Building Forest Specification __ 260

3.3.4 Reading Structure Content ___ 261

3.3.5 Changing Structure Content __ 264

3.3.6 Loading Attribute Values ___ 267

3.3.7 Creating and Adding Folders ___ 269

3.3.8 Creating Dynamic Structures ___ 269

3.4 Extending Structure Functionality ___ 270

3.4.1 Creating a New Column Type ___ 271

3.4.2 Creating a New Synchronizer ___ 287

3.4.3 Loading Additional Web Resources For Structure Widget _______________________ 288

3.5 Accessing Structure Data Remotely ___ 289

3.6 Reference ___ 289

3.6.1 Structure Developer Reference __ 289

3.6.2 Structure Java API Reference ___ 289

3.6.3 Structure Plugin Module Types __ 291

3.6.4 Structure REST API Reference __ 297

3.6.5 Structure JavaScript API Reference __ 323

3.6.6 Web Resource Contexts ___ 335

3.7 API Usage Samples ___ 335

3.7.1 Download __ 336

3.7.2 Example List __ 336

3.8 Structure 3 API Changes ___ 336

3.8.1 State of the API __ 336

3.8.2 Conceptual Changes __ 337

3.8.3 REST API __ 339

3.8.4 Java API ___ 341

4 Structure FAQ __ 344

4.1 Frequently Asked Questions __ 344

4.2 Cannot Create an Issue With +Next Issue (+Sub-Issue) Because of the Required Fields _____ 344

4.2.1 Question ___ 344

Structure Plugin for JIRA

Page of 6 370

4.2.2 Answer __ 344

4.3 Plugin Manager Says Structure Is Unlicensed _______________________________________ 344

4.3.1 Question ___ 344

4.3.2 Answer __ 345

4.4 No Check Mark Displayed for a Resolved Issue _____________________________________ 345

4.4.1 Question ___ 345

4.4.2 Answer __ 345

4.5 Structure plugin won't start __ 346

4.5.1 Question ___ 346

4.5.2 Answer __ 347

4.6 After an Issue is Moved to Another Project, It Cannot Be Found in the Structure ____________ 348

4.6.1 Question ___ 348

4.6.2 Answer __ 349

4.7 User Cannot Access Structure, Although Permissions Have Been Granted ________________ 349

4.7.1 Question ___ 349

4.7.2 Answer __ 349

4.8 Issues Not Added to a Structure when Using Links Synchronizer or Import ________________ 349

4.8.1 Question ___ 349

4.8.2 Answer __ 350

4.9 Where to find JIRA Server ID __ 350

4.10 Integration with JIRA Agile (Greenhopper) ___ 350

4.10.1 Question __ 350

4.10.2 Answer ___ 350

4.11 Using Subtasks and Structure __ 351

4.11.1 Question __ 351

4.11.2 Answer ___ 351

4.12 Difference from Sub-tasks ___ 351

4.12.1 Question __ 351

4.12.2 Answer ___ 351

4.13 Some Link Synchronizer Operations Are Not Written to the History _____________________ 352

4.13.1 Question __ 352

4.13.2 Answer ___ 352

4.14 Why Use Structure Plugin? __ 352

4.14.1 Question __ 352

4.14.2 Answer ___ 352

4.15 Performance Considerations ___ 352

4.16 How to restore the structure using History ___ 353

4.17 Can I export a structure to Microsoft Word so that it can be emailed as a document? _______ 353

5 Structure Troubleshooting ___ 355

5.1 Collecting Support Zip ___ 355

5.2 HAR Network Report __ 355

5.2.1 Collecting HAR Report with Google Chrome _________________________________ 356

5.3 Troubleshooting Synchronizers __ 357

5.3.1 Structure Audit Log ___ 357

5.3.2 Log Files ___ 357

5.4 Structured JQL Troubleshooting ___ 358

Structure Plugin for JIRA

Page of 7 370

5.5 Collecting Performance Snapshots ___ 359

5.5.1 Download and install Atlas-Yourkit plugin. ___________________________________ 359

5.5.2 Load Profiling Agent __ 359

5.5.3 Capturing CPU Performance Snapshot _____________________________________ 359

5.5.4 Capturing Memory Snapshot ___ 359

5.5.5 Sending the Snapshots to Support Team ____________________________________ 360

5.5.6 After Profiling Session ___ 360

5.5.7 Performance Snapshot Without Yourkit Plugin ________________________________ 360

5.6 Sending Files to Support Team __ 365

5.6.1 Attach to the Support Request in ALM Works JIRA ____________________________ 365

5.6.2 Send Files by E-mail __ 365

5.6.3 Upload Files via FTP __ 365

5.7 Alternative Structure Gadget for IE8 and IE9 __ 366

5.7.1 Enable alternative gadgets ___ 366

5.8 Troubleshooting Performance and Stability Issues ___________________________________ 367

5.8.1 Thread Dumps __ 368

5.8.2 Verbose Logging ___ 368

5.8.3 Support Zip ___ 369

5.8.4 Browser Console Log ___ 369

5.8.5 HAR Report ___ 369

5.8.6 Screenshots or Video ___ 370

Structure Plugin for JIRA

Page of 8 370

Links to the available documentation collections:

Download documentation:

Name Version Date

Structure Plugin for JIRA

Page of 9 370

1 Structure User's Guide
This section contains information for Structure users.

Contents:

1.1 Basic Concepts

Structure add-on lets you organize issues into hierarchical lists. To get started, we recommend you to get

acquainted with a few basic notions we're using throughout this manual and in the Structure add-on itself.

Structure

add-on

That's the product! We differentiate between Structure add-on and actual structures by

writing plugin name with a capital letter.

a structure A single hierarchical list of issues.

a structure

contains an

issue

A structure is initially empty - it does not contain any issues. Issues can be added to a

structure or automatically with the help of Automation or manually (see page 81)

. A single issue may be present in many structures at the Synchronizers (see page 151)

same time, or not be present in any.

structure

widget

The main tool for working with the structure - a grid with columns that shows the hierarchy

and allows to work with it. Structure widget is present at several places in JIRA (see page

.12)

a view Configuration of columns in the structure widget

a sub-item

is under a

parent item

When you place an item under another item in the hierarchy, you can say that it's a sub-

item and the other one is its parent item. A sub-item may contain sub-items on its own

(and so it's a sub-item and parent item at the same time). An item that's a sub-item in one

structure may not be a sub-item in another structure.

children

items

Sometimes we call sub-items "children items", but "sub-items" is the preferred term.

JIRA has

sub-tasks

It's important to distinguish JIRA sub-tasks from Structure sub-items. We will use "sub-

tasks" to refer to the issues of the special issue type that you can create in JIRA. They can

be shown as sub-issues inside the structure, but since there are no restrictions on issue

types in Structure, they can be placed anywhere just like other types of issues and other

items.

item – sub-

item

relationship

Structure can represent any kind of relationship between a parent item and a sub-item.

When speaking of issues, it may be compositing (whole contains parts), planning (big task

is done when smaller tasks are done), dependency (an issue can be addressed only if sub-

issues are addressed first) – it is up to you. Structure provides user interface and tools

that work great for most of the relationship types.

Structure Plugin for JIRA

Page of 10 370

1.1.1 Default Structure

Default structure is displayed to the user when there's no specific structure selected - by default. JIRA

administrator can .change the system default structure (see page 230)

For the and you can define which structure should Issue Page (see page 17) Project Page (see page 26)

be used as default. A can be specified for a project that is enabled for project-level default structure

Structure on the page.Defaults (see page 230)

1.1.2 Favorite Structures

When you are logged in, you can mark one or more structures as your favorite, so you can quickly access

them later.

As you switch between structures in the Structure widget, you can see top 5 of the favorite structures

ordered alphabetically by name.

To manage your favorite structures, use the page. To make a structure Manage Structure (see page 127)

your favorite, click a white star () near the name of that structure. The star will colored () to indicate

that the structure was added to the list of your favorite structures.

Structure Plugin for JIRA

Page of 11 370

1.

2.

Structure Popularity

Structure is the number of users who have marked this structure as favorite. popularity Manage Structure

 page has tab, which shows the most popular structures.(see page 127) Popular

1.2 Structure Menu

Once you install Structure you will see a new item added to the top-level navigation bar.

If you don't have any structures in your JIRA yet, the menu will allow you to create a new structure or see

the Getting Started page, which will help you understand the main Structure functionality:

If you already have several structures, or have access to more than one structure, the menu will look like

this:

The menu has several sections:

Current Structure. Shows the last viewed structure. Click the structure name to open Structure

Board with that structure.

Recent Structures. Shows structures that you've visited recently, or those which have been recently

updated. Click a structure to open it.

Structure Plugin for JIRA

Page of 12 370

3.

4.

Favorite Structures. Lists structures you have marked as your favorite. This section is absent if you

don't have any favorite structures

Default Structure. Shows the system-wide . Also, if another default Default Structure (see page 10)

structure is for the current project, it is also shown in this section.defined (see page 230)

1.3 JIRA Pages with Structure

The structures you work with are displayed through the , which you can see in several structure widget

places in JIRA:

On a dedicated Structure Board

On the issue page

On the project, component and version pages

On a dashboard

The widget displays a scrollable grid with the hierarchical list of issues and other items and lets you work

with the structure itself and the items displayed there.

Most functionality of the structure widget is the same on every page, however there are few specific things

that the structure does on an issue page and on project/component/version pages. You can work with the

structure on the page that's most convenient for you:

If you need to go to the Structure Board from any other page with the widget, click the link in Open

the bottom of the widget. This will open the currently viewed structure on the Structure Board.

See also: Working with the Structure Widget (see page 30)

1.3.1 Structure Board

Structure Board is a full-screen view which gives you access to all the features available in Structure.

The main elements are:

Structure Toolbar at the top, which gives you access to the main functions for manipulating

structures

Structure Plugin for JIRA

Page of 13 370

Working Panels, which allow you to display , search results, structure widgets (see page 30)

clipboard contents and issue details

Status Bar at the bottom, which shows the number of items currently displayed, links for the Undo

operations and notifications

To open the Structure Board, click in the top navigation menu in JIRA and select the specific Structure

structure you want to see.

You can press and then quickly on any JIRA page to open the structure board with the g s

structure you opened last. ()Go Structure

You can make the structure board your .JIRA Home page (see page 14)

If you cannot see the structure you need in the top menu, there are several options:

Open any other structure, click the and start typing the name of the structure you Structure Name

need. You'll see the results in the menu update as you type. Once you see your structure, click its

name and it will be opened in the widget.

Click in the top navigation menu and select - this will take you to the Structure Manage Structure

Manage Structure page where you can browse for the structure you need, and then click the

structure name to open it.

If you know the ID of the structure you need opened, you can directly open a URL:

http://<i>your.jira.address</i>/secure/StructureBoard.jspa?s=<i>structure-id</i>

Structure Plugin for JIRA

Page of 14 370

1.

2.

Making Structure Board Your JIRA Home
If you want to go straight to the when you log in to JIRA, you can make it Structure Board (see page 12)

your JIRA Home page. To do so:

Click your avatar in the top right corner of the JIRA page.

Select in the section.Structure My JIRA Home

When used as a JIRA Home page, the Structure Board will show your most recently opened structure.

You can also go to your JIRA Home at any time by clicking the JIRA logo in the top-left corner of any JIRA

page.

1.3.2 Structure on the Issue Page

If an issues belongs to , the Structure a project for which the Structure add-on is enabled (see page 225)

widget is displayed on the issue details page. The widget is presented as a separate section, located right

above the section.Activity

Structure Plugin for JIRA

Page of 15 370

When you open an issue page with the structure section, the structure is chosen based on the Structure

.Options for the Issue Page (see page 17)

The issue itself is automatically located and in the structure. This means only the Pinned (see page 69)

parent issues and sub-issues of the viewed issue are displayed. You can unpin the issue to see the whole

hierarchy by clicking the button on the toolbar or by using a keyboard shortcut.Pin

Starting with JIRA 6, search results on the Issue Navigator page can display the details of a

selected issue. The details panel also contains Structure section. You may want to configure a view

 to fit only the necessary information in a narrower space left for the Structure (see page 40)

widget.

Structure widget can be hidden from the Issue Details page. Please refer to the Structure

 article for details.Administration (see page 242)

There are several specific features on the Issue Page that are not present on the Structure Board:

Collapsing/Showing Structure Section
The section with the structure can be hidden, as any other section on the page. Once you hide the structure

section, it will remain hidden even if you open another issue page.

Also, Structure section is automatically hidden if the issue you open does not belong to the selected

structure. (This behavior can be adjusted in the .)Structure Options (see page 17)

When the structure section is hidden, the issue hierarchy is not loaded from the server – it will be loaded

only when you first open the structure section.

Structure Plugin for JIRA

Page of 16 370

The flag is stored in a browser cookie or local storage, along with flags for other sections.hidden

Structure Selection
As you open the issue details for the first time, you will see one of the structures that contain this issue (this

behaviour can be adjusted through the).Options (see page 17)

To switch to a different structure, simply click the name of the currently displayed structure and select the

one you want to see. You will see the structures that contain this issue in the top section of the displayed

menu.

The structures, where this issue is added by some Generator will not be shown in the list of

structures with this issue, as this would significantly affect the performance.

As you switch to another structure, this new structure is memorised and shown next time you open an issue.

Adding Issue to a Structure
If the issue you are viewing does not belong to the structure currently selected, you can add it to this

structure. To do so unpin the issue by clicking the button. Then in the structure that you'll see select an Pin

issue under which you want to add the issue you are viewing and click the button.Place

Now you can click the button again to see only your issue and its parents and children.Pin

If the issue is already in the structure, you can add another instance of it to the structure using the

same approach. Unpin the issue, select a location for this new instance of the issue and click the

 button.Place

Structure Tools

Next to the button you can see the button, which allows you to access some of the basic structure Pin ...

functions such as Add New issue, Expand/Collapse, Edit, Copy, Cut, Paste and Remove. Using it you can

work with the structure in a similar way you work with it on the Structure Board.

Structure Plugin for JIRA

Page of 17 370

Views and Options Drop-Downs
Located at the right corner of the Structure section header are Views and Options icons.

Click Views icon to open and select another view for the displayed structure.Views Menu (see page 42)

The asterisk is shown next to the view name if it has been locally .adjusted (see page 45)

Click Options icon to open .Structure Options for the Issue Page (see page 17)

Adjusted Time Tracking Section
Structure plugin automatically sums up time tracking information from the sub-issues and displays

aggregate values in the time tracking section. Whenever any change is detected in the child issues, the time

tracking information is refreshed.

You can turn off time tracking aggregation by clearing the check box. The Include structure sub-issues

standard JIRA time tracking will be shown (without Structure plugin). The browser will remember your

preference and will show you original Time Tracking panel when you open other issues, until you select the

 check box on again.Include structure sub-issues

When time tracking section is not present, it means that neither the current issue nor its sub-issues have

any time tracking info.

Activity tab
As you work with structures all changes are added to the JIRA Activity Stream. So in the tab of the Activity

issue page you can see all such changes that affect the current issue. This may be useful if you want to find

out why this issue is in that particular position within a structure, who and when added or moved it there.

See for more information.Structure Activity Stream (see page 175)

Structure Options for the Issue Page
There are a few options that let you adjust how Structure section on the issue page works. Click on the gear

button in the section header to bring them up. The changes are saved to the server and applied

immediately.

Structure Plugin for JIRA

Page of 18 370

1. Which Structure to Select Initially?
When you have multiple structures, an issue might be present in more than one structure. When issue page

is opened, Structure plugin needs to decide which structure to display initially in the Structure section.

This is controlled by a number of parameters:

Auto-switch When auto-switch is turned on, the structure is selected based on which project and

structures the issue belongs to. When auto-switch is turned off, the Structure section

shows the structure that the user opened last on the Structure Board (the current

structure).

Auto-switch:

structure

with

displayed

issue

When this auto-switch mode is selected, Structure plugin looks for a structure that

contains the issue displayed on the page.

Auto-switch:

default

structure

When this auto-switch mode is selected, the for the Default Structure (see page 10)

issue's project will be always selected (even if the issue is not in that structure yet).

Keep

structure

when

navigating

When you click on another issue within the Structure Widget, the browser takes you to

that issue's page. If this option is turned on, the new page displays the same structure as

the page you navigated from (auto-switch is not applied).

It's better to leave this option on! It lets you avoid unintentional change of the

viewed structure when you go through the structure's issues.

Keep structure when navigating option currently does not work when you hit button in Back

your browser – the structure on the issue page you return to will be selected based on the Auto-

switch settings.

Structure Plugin for JIRA

Page of 19 370

2. Should Structure Section be Minimized Automatically?
The setting controls whether Structure plugin Auto-minimize panel when issue is not in structure

automatically collapses the Structure panel in case the initially selected structure does not contain the

displayed issue.

You can always click the section header to open the Structure panel and proceed with adding the issue to

the structure, viewing the whole structure or selecting another structure.

3. Options Scope and Default Options
When you adjust Structure Options, the changed settings apply whenever you view any other issue on this

JIRA instance. (The settings are saved in your account settings.)

The default values of these options can be configured by JIRA Administrator on the Structure Defaults (see

 page.page 229)

1.3.3 Structure Gadget

Structure provides a dashboard gadget that allows you to view and edit structure. The gadget may be also

be imported into Confluence and included on a Confluence page.

Adding Structure Gadget to Dashboard
Structure gadget is added as any other gadget: click button in the top right corner of the Add Gadget

dashboard, find "Structure" and click . You need to have change permissions on the dashboard Add It Now

(if you don't have permissions to change the dashboard, you can try to create a copy using Tools | Copy

).Dashboard

You can add several gadgets showing different structures on the same dashboard.

Configuring the Gadget
When you first add a gadget to dashboard, gadget configuration panel appears with a dimmed preview of

the gadget below. (The same panel is shown when you use command from the gadget header drop-Edit

down or when you edit macro with Structure gadget in Confluence.)

Structure Plugin for JIRA

Page of 20 370

1.

2.

3.

4.

5.

6.

7.

8.

To configure the gadget:

Select a . Click arrow down in the Structure selector to view recently used and favorite Structure

structures, or start typing structure name and let the drop-down suggest the matching structures.

Select a . Click arrow down to choose from views associated with the selected structure, or start View

typing and let Structure suggest matching views. The selected determines which view (see page 40)

columns gadget displays. (You will be able to adjust the view later.)

Optionally, configure a . The displayed structure will be filtered in the same way as in the Filter

Structure Board – see . You can choose between a simple text filter, JQL, S-Filtering (see page 66)

JQL, or a saved JQL filter – see .Simple, JQL, and S-JQL Search (see page 64)

Optionally, define the for this gadget. By default it is the name of the selected structure.Title

Decide how large the gadget is allowed to be and specify number. If there are fewer Visible Rows

visible rows, the gadget shrinks; if more, a vertical scroll bar appears. Pick any number between 2

and 50.

Decide if you'd like dashboard viewers to make changes to the structure or issues (subject to the

user's permissions) and select or un-select the checkbox.Allow Changes

Optionally, decide if you'd like the gadget to have different and settings when View Visible Rows

maximized. Select the checkbox to configure these Alternative settings when maximized

parameters for maximized gadget.

Click .Save

Deselect to protect the structure from accidental changes, such as changes Allow Changes

caused by drag-and-drop or hitting Delete key.

Structure Plugin for JIRA

Page of 21 370

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

It may be useful to have different and settings when gadget is maximized. In View Visible Rows

this case you can use the wide screen of the maximized gadget's window optimally and see more

information for the same structure. Select to configure Alternative settings when maximized

these parameters.

Configuring Gadget View
There are several ways to configure view (columns) for the gadget.

Select a predefined view from drop-down.

Just select a view or start typing and allow Structure to suggest matching views. Set up other gadget

parameters and click .Save

Start with an existing view and modify it.

To use this method you need to have on the modified view.Update permission (see page 145)

Note that if the view you're changing is used in other gadgets, you will be modifying other

gadgets' columns configuration as well.

Select a view in the gadget configuration panel.

Click .Save

Adjust view by adding, removing or rearranging columns – see Customizing Columns (see

 for details.page 43)

A message " " will appear in the gadget footer. Click View has been adjusted. Save | Revert

.Save

Start with an existing view, adjust it and save as a new view.

Use this method if you don't have access to the view you start with or if you don't want to Update

change it to avoid messing up other gadgets configuration.

Select a view in the gadget configuration panel.

Click .Save

Adjust view by adding, removing or rearranging columns – see Customizing Columns (see

 for details.page 43)

Open gadget configuration again by clicking in the gadget header drop-down menu.Edit

Click button, located beside view selector. Additional form appears – enter new New View

view name and click .Create View

If this gadget is going to be visible to other users, make sure they have access to the view

you've created. Gadget configuration panel will suggest to make this view public (see page 145

 – click to make the view available to everyone.) Let everyone use this view

Structure Plugin for JIRA

Page of 22 370

1.

2.

3.

4.

5.

6.

Start with a new view and adjust it.

Without selecting a view in the gadget configuration panel, click button.New View

Additional form appears – enter new view name and click .Create View

If this gadget is going to be visible to other users, make sure they have access to the view

you've created. Gadget configuration panel will suggest to make

this view – click to make the view available public (see page 145) Let everyone use this view

to everyone.

Click .Save

The created view will have basic default columns (issue key and summary). Adjust view by

adding, removing or rearranging columns – see for Customizing Columns (see page 43)

details.

A message " " will appear in the gadget footer. Click View has been adjusted. Save | Revert

.Save

If the user viewing the gadget does not have permission on the configured view, the gadget Use

will show a default view with only Issue Key and Summary as columns.

When you see " " message in the gadget footer, it means View has been adjusted. Save | Revert

that you have changed columns configuration for this gadget. These changes are local and are

effective only in the same browser they were made in. Click to save and share the changes Save

or to go back to the configuration stored on the server. See Revert Saving and Sharing Views (see

 for details.page 45)

Using the Gadget
The Structure gadget contains a stripped-down version of the standard Structure widget that you see on

other pages. Because the screen space available to a gadget is usually limited, it lacks features like search

and secondary panels. It also doesn't have a toolbar. However, most keyboard shortcuts are functional. If

the gadget allows editing, you can rearrange issues with drag-and-drop; you can also move, create, edit,

and delete issues using the keyboard.

Structure Dashboard Gadget is a bit limited where it comes to editing issue fields, due to some

incompatibilities between field editors and gadget framework. Because of that, only a handful of

fields can be edited from within Structure Gadget. See for Editing from Gadget (see page 106)

more details.

If gadget is displayed in its "home" JIRA dashboard (not in Confluence or elsewhere), the last column lets

you use action drop-down for the issues.

Structure Plugin for JIRA

Page of 23 370

1.

2.

3.

Using Structure Gadget in Confluence

In the current version the Structure Gadget in Confluence is supported, but some issue may occur.

This will be fixed in the future versions.

You can embed in a Confluence page and view or edit structure in Structure Gadget (see page 19)

Confluence.

Before you can use Structure Gadget on a Confluence page, your Confluence administrator must

. If you try to insert a macro and add Structure Gadget to Confluence Configuration (see page 24)

don't see in the list, most likely the gadget is not configured.Structure

The displayed Structure gadget is not suitable for printing. Support for printable Structure gadget is

coming later. For now, please use to print a structure separately.Printable Page (see page 111)

How to Add Structure Gadget

When editing a page, click Insert/Edit Macro, and select . Macro configuration dialog Structure

appears.

If button is shown, you need to log in into JIRA first.Login & approve

If message appears, then you currently don't have any visible Structure plugin not available

structures. Probably you need to login.

Structure Plugin for JIRA

Page of 24 370

4.

5.

6.

Configure gadget (see page 19) - select the structure to be displayed and configure other

parameters, then click .Save

Configure gadget appearance, for example, set to and to .width 100% border not selected

Click and you're done!Insert

Adding Structure Gadget to Confluence Configuration
Adding JIRA gadgets to Confluence is covered by Atlassian documentation. Here's a list of references to get

you started.

Structure Plugin for JIRA

Page of 25 370

1.

a.

b.

2.

3.

1.

Unless you'd like to see Structure as anonymous user, connect Confluence to JIRA using

. You'll need to enable outgoing authentication from Confluence to JIRA.Application Links

Documentation: Configuring Application Links

Use to let the Confluence page viewer authenticate separately with OAuth Authentication

JIRA. (Preferred)

Documentation: Configuring OAuth for an Application Link

Use authentication if you'd like confluence users act in JIRA under the Trusted Applications

same usernames without additional authentication.

Documentation: Trusted Application Authentication

Structure Gadget may allow modification of structure, updating and creating issues

under the account that is used by Confluence to access JIRA. Make sure you

understand how Trusted Applications work before allowing production structures to

be accessed with this kind of authentication. Using OAuth is more secure because

the end-user will never be able to do anything that they are not able to do directly in

JIRA.

Add Structure Gadget to the list of . Remember that you can copy the URL of the External Gadgets

Gadget from the gadgets selection dialog, when you click on JIRA dashboard.Add Gadget

Documentation: External Gadgets

Check on a sample page if you can include Structure macro and get data from JIRA.

If you have problems with Structure gadget in Confluence, check the browser's console. If you see errors

saying that loading some of the resources is denied, then you hit a CORS problem in JIRA. To work around

that problem, see .Setting Up CORS Filter in JIRA (see page 25)

Main article: Adding JIRA Gadgets to a Confluence Page

Setting Up CORS Filter in JIRA
Sometimes Structure Gadget fails to load correctly in Confluence. You might see missing icons or the

application can fail to work.

This may happen because of a known JIRA issue that prevents Structure gadget from loading resources

from JIRA when it's being served in Confluence on another web domain.

To work around that problem, you can set up CORS filter in the Tomcat server that runs JIRA:

Copy cors-filter-2.4.jar, java-property-utils-1.9.1.jar from to the directory under JIRA's CORS docs /lib

installation folder.

http://confluence.atlassian.com/display/DOC/Configuring+Application+Links
http://confluence.atlassian.com/display/APPLINKS/Configuring+OAuth+Authentication+for+an+Application+Link
http://confluence.atlassian.com/display/DOC/Configuring+Trusted+Applications+Authentication+for+an+Application+Link
https://confluence.atlassian.com/display/DOC/Registering+External+Gadgets
http://confluence.atlassian.com/display/DOC/Adding+JIRA+Gadgets+to+a+Confluence+Page
http://software.dzhuvinov.com/cors-filter-installation.html

Structure Plugin for JIRA

Page of 26 370

2.

3.

Edit file and add the following:JIRA_INSTALL_DIR/atlassian-jira/WEB-INF/web.xml

 <!-- ==================== CORS configuration ====================== -->

<filter>

 <filter-name>CORS</filter-name>

 <filter-class>com.thetransactioncompany.cors.CORSFilter</filter-class>

 <init-param>

 <param-name>cors.allowOrigin</param-name>

 <param-value>http://YOUR-CONFLUENCE-DOMAIN.com</param-value> <!-- use http: or

https: depending on your configuration -->

 </init-param>

</filter>

<filter-mapping>

 <filter-name>CORS</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Restart JIRA

1.3.4 Structure on the Project Page

Structure widget is displayed in a separate tab on the project page if the project is enabled for Structure

.(see page 225)

The widget on the project page is the standard, fully-functional Structure widget and has the same

functionality you can find on the (except for Structure Board (see page 12) Perspectives (see page 149)

and Issue Details panel), but it has several specific features not found on the Structure Board.

The current project defines the scope of the displayed data – it's used to filter the structure and show project

issues in the second panel.

Layout

When you open Structure tab, Double Grid layout is selected automatically.

Structure Plugin for JIRA

Page of 27 370

The primary (left) panel displays the most recently viewed structure or the default structure for the current

project (as defined in the Options dialog). You can quickly switch to another structure by clicking the

structure name and selecting the desired structure.

The secondary (right) panel shows issues from the current project that are not part of the selected structure.

This allows to quickly place other issues in the project into the structure.

Automatic Filter

An automatic project filter is added to the primary panel. This is a non-removable transformation that hides

all issues from other projects.

If you'd like to see the full structure without this filter, click link in the Structure widget's Open

footer.

Project Page Options

You can make the widget open with the structure that is defined as a default structure for this specific

project.

To do that, click the options gear button in the top right corner and select the option. The Auto-switch

changes are saved to the server and applied immediately.

If you are the Project Administrator, the options dialog will also show the link to a page where you can

change the default structure for your project.

The default value for this option can be configured by JIRA Administrator on the Structure Defaults (see

 page.page 229)

1.3.5 Structure on Agile Boards

If you are using JIRA Software (formerly JIRA Agile or GreenHopper), it will show additional Structure tab in

the issue details panel on Scrum and Kanban boards.

Structure Plugin for JIRA

Page of 28 370

Structure tab displays the standard Structure widget that lets you quickly identify, where in the structure is

selected issue located. The widget is by default in , highlighting the Pinned Item Mode (see page 69)

position of selected issue and its sub-issues. You can un-pin selected structure by clicking Pin button on the

toolbar or hitting Ctrl+.

Due to rather constrained horizontal space, Structure initially displays only Key and Summary in the Agile

tab. However, you can if needed. (And get a larger display!)add more columns (see page 43)

When you click another issue on an Agile board, Structure widget automatically selects that issue in

structure, and, in pinned mode, pins that issue instead of previously selected.

You can switch to a different structure clicking the structure name.

You can also edit all fields inline in the structure widget, if space allows. After editing is done, Structure

signals JIRA Agile to reload the page and you will see the updated values on the board.

Only the users who have will see the Structure tab on Agile boards.access to Structure (see page 226)

1.3.6 Structure on the Issue Navigator Page

Viewing Structure Details of a Selected Issue
Starting with JIRA 6, search results on the Issue Navigator page can display the details of a selected issue.

The details panel works in the same way as the separate issue details page.

See for more information on how Structure works there.Structure on the Issue Page (see page 14)

Structure Plugin for JIRA

Page of 29 370

Opening Search Results on the Structure Board
When you use JIRA search to find specific issues, you can open search results on the Structure Board (see

 using Structure's integration with the Issue Navigator page.page 12)

To do that, select menu (on JIRA 6 and later -), and that will get you Views | Structure Export | Structure

to the Structure Board with the current structure, and with automatically turned search mode (see page 63)

on, and the query used on the search page posted as the search term into the structure's search field.

The result is that you see the current structure, with issues from the search result highlighted (or if you have

 turned on, the other issues are filtered out).Filter

If some of the issues from the search result are not in the structure, you can see them if you turn on More

 button.Issues

Structure widget displays only issues from projects that are enabled for Structure. If search result

contains issues from other projects, those issues are ignored.

When you open search results on the Structure Board, the view automatically changes to display

the same columns as in the Issue Navigator. Turn off button to get back to the usual Columns

view. Mode details: Using Issue Navigator Columns (see page 72)

Structure Plugin for JIRA

Page of 30 370

1.4 Working with the Structure Widget

Structure widget is the main tool for working with a structure and its items. It's a component of the Structure

plugin that is used on the Structure Board, on the Issue Page and in where other places (see page 12)

structure is displayed.

The following sections describe how to use the structure widget in detail.

1.4.1 Structure Widget Overview

Structure widget is a grid with adjustable columns that displays the issues as a hierarchical list. Structure

widget is displayed on the , and in Structure Board (see page 12) Issue Page (see page 14) other places

.in JIRA (see page 12)

Structure lets you navigate the hierarchy and search for specific issues.

Besides showing the Structure and allowing to navigate it, structure widget is the primary tool to change

structure by rearranging issues in the hierarchy or using JIRA actions to work with every issue.

Next: Navigating Structure (see page 32)

Switching Between Structures
You can quickly switch between structures right in the structure widget on any of the pages with structure.

Click the structure name to open the menu:

Structure Plugin for JIRA

Page of 31 370

Find the structure you need in the list of recent or favorite structures and click it to open.

If your structure is not there, start typing the name of the structure you need and you will see the list of

matching structures.

On the Structure Board apart from the structures, you can also use the widget to run text and JQL

searches, see the clipboard contents and, if you have Structure.Pages installed - search for

Confluence pages. You can find all these options in the Tools section of the menu.

Using Structure Widget for Searching
On the Structure Board you can use the structure widget not only for showing structures, but also for finding

existing issues using JQL or text search and displaying the clipboard contents.

If you have a structure open, to start searching click the structure name and select JQL or Text search.

Once the search is open, as you start typing, the results will be updated.

Structure Plugin for JIRA

Page of 32 370

Just like with structures, you can select a specific for your search results and then add and arrange view

columns as necessary.

The also works for search results the same way it works for structures. You can structure panel toolbar

apply sorting, additional filtering and more complex transformations.

Search only looks for issues from .structure-enabled projects (see page 225)

1.4.2 Navigating Structure

Navigating with Mouse
You can select items, scroll up and down, as you would do with any table. Clicking a link of an item will open

the panel with item details or take you to the item page depending on the settings. So if you'd like to just

select an item, click anywhere in the row except the underlined links. The row of an issue is also selected

when you click the JIRA actions icon at the end of the row.

To show or hide sub-items of a parent item, click the button near the item summary.Expander

To expand or collapse the whole hierarchy, use or buttons in the toolbar. You can Expand All Collapse All

also expand the structure to a certain level by clicking the drop-down menu next to these buttons and

selecting the desired level of depth.

Structure Plugin for JIRA

Page of 33 370

If there are many items in the structure, not everything is loaded from the server. As you scroll

down or expand sub-items lists, the data is loaded on demand, which means there might be a

delay before the grid is filled with the data for the displayed items.

Navigating with Keyboard
You can use to focus on the next or previous item in the list. Left and right arrows expand and arrow keys

collapse sub-items list.

To expand all sub-items, press the keyboard button twice. To collapse all sub-times lists, press twice Plus

the keyboard button .Minus

Using moves the selected item up or down in the hierarchy or indents/out-dents it.Ctrl+Arrow Key

You can press to open JIRA actions menu for the selected issue.Alt+Down

There are a lot more that let you work with the Structure almost keyboard shortcuts (see page 206)

without touching the mouse. Press to see the shortcuts cheat sheet or click at the Ctrl+? Info

bottom of the structure widget.

Selecting Multiple Issues
Structure allows you to select multiple issues and do most of the operations with selected issues at once.

Usually, you navigate structures and select a single issue for further actions with keyboard arrows or

mouse. The selected issue is highlighted with the blue background, and the actions (like moving) apply to

the highlighted issue only.

Entering Multi-Select Mode
You can select multiple issues and switch Structure widget into multi-selection mode in one of the following

ways:

Press to add currently focused issue and move to the next issue.Space

Click grey dot in the beginning of an issue row to toggle its selection.

Hold and use Up and Down arrows to select a range of issues.Shift

Hold and use Right/Left arrows to select/deselect the focused issue with all its sub-issues.Shift

Structure Plugin for JIRA

Page of 34 370

Hit (on Mac) to select all issues.Ctrl+A Command+A

Selected issues are marked with a filled circle, and the bottom line shows the total number of selected

issues.

Some of the issues are selected.

Special Selection Markers
If you collapse a list of sub-issues, and some of the sub-issues are selected, then the visible parent issue

will display hints about whether it contains selected sub-issues.

For example, if you collapse sub-issues of , , and in the example above, you will DRIVE-10 DRIVE-9 EMPR-2

see these selection markers:

Some of the issues are selected; some of the selected issues are collapsed under their parent issues.

The meaning of the markers is the following:

Structure Plugin for JIRA

Page of 35 370

DRIVE-10 DRIVE-10 itself selected, but of its sub-issues are selectedis not some

DRIVE-9 DRIVE-9 itself selected, but of its sub-issues are selectedis not all

not on the example the issue selected, and of its sub-issues are selectedis some

EMPR-2 EMPR-2 selected, and its sub-issues are also selectedis all

Exiting Multi-Select Mode
Hit key to clear multiple selection and exit multi-select mode. You can also hit Ctrl+A (Command+A) Escape

twice – first key stroke will select all issues, second one will un-select all issues.

Restoring Selection After Navigation
If you navigate to a different page while having multiple issues selected and then return back, the selection

will not be automatically restored. You can click link at the bottom of the Structure Restore Selection

widget to select the same issues that were selected previously.

Selecting Multiple Items
Structure allows you to select multiple items and do most of the operations with selected issues at once.

Usually, you navigate structures and focus on a single item for further actions with keyboard arrows or

mouse. The focused item is highlighted with the blue background, and the actions (like moving) apply to the

highlighted item only.

Entering Multi-Select Mode
You can select multiple items and switch Structure widget into multi-selection mode in one of the following

ways:

Press to add currently focused item and move to the next issue.Space

Click grey dot in the beginning of an item row to toggle its selection.

Hold and use Up and Down arrows to select a range of issues.Shift

Hold and use Right/Left arrows to select/deselect the focused issue with all its sub-issues.Shift

Hit (on Mac) to select all issues.Ctrl+A Command+A

Selected items are marked with a filled circle and the additional panel appears at the top of the grid showing

the number of selected items and several action buttons.

Structure Plugin for JIRA

Page of 36 370

The selection panel offers the following features:

Move focus from one selected item to another by clicking the up and down arrows.

Bulk Edit the selected issues using the Bulk Edit button.

Show only selected items and their parents by clicking the Filter button.

Remove selection by clicking the close button in the right corner of the panel.

Special Selection Markers

If you collapse a list of sub-items, the selection marker of the parent item will show if it contains any selected

sub-issues.

For example, if you collapse sub-issues of , , and in the example above, you will OFW-1 DTD-1 LHMGR-2

see these selection markers:

Some of the issues are selected, some of the selected issues are collapsed under their parent issues.

The meaning of the markers is the following:

DTD-1 DTD-1 itself selected, but of its sub-items are selectedis not some

not on the example the item itself selected, but of its sub-items are selectedis not all

LHMGR-2 LHMGR-2 selected, and of its sub-items are selectedis some

OFW-1 OFW-1 selected, and its sub-items are also selectedis all

Exiting Multi-Select Mode
Hit key to clear multiple selection and exit multi-select mode (or press the close button in the Escape

selection panel). You can also hit Ctrl+A (Command+A) twice – first key stroke will select all items, second

one will de-select all items.

Structure Plugin for JIRA

Page of 37 370

1.4.3 Main Structure Toolbar

The structure toolbar provides access to the main functions of the structure widget.

As you move mouse pointer over the buttons in the toolbar, the active buttons are highlighted. In some

situations some buttons may be disabled and they will remain light grey. For example, Paste action is not

possible unless you have some issues in your clipboard, so the button will remain light grey and not

clickable in that case.

Hold the mouse pointer over the toolbar button for a few moments and a tooltip with the description of the

action is shown.

Below is the table describing the set of actions available through the toolbar.

Button Action More

Information

Keyboard

Shortcut

Create a new item and add it under the item currently

selected in the structure. By default, you can add either

new issues or new folders (Confluence pages are

available if you have Structure.Pages installed). You can

also click the drop-down menu next to the button itself to

open the secondary panel, where you can search for

existing issues.

Creating

new items

Enter

Expand/collapse the whole hierarchy. Expand to a

certain level using the drop-down menu.

Navigating

Structure

(see page

32)

++ / --

Without changing the items's parent, move the item up

/down and place it before/after the previous child - if

possible.

Moving

Issues

Within

Structure

(see page

84)

Ctrl+Up /

Ctrl+Down

Unindent / Indent the item one level, if possible. Moving

Issues

Within

Structure

(see page

84)

Ctrl+Left /

Ctrl+Right

Tab

Structure Plugin for JIRA

Page of 38 370

Button Action More

Information

Keyboard

Shortcut

Edit the currently selected issue / stop editing and save

changes.

Editing

Issues (see

page 102)

Cut the selected items to the .clipboard (see page 80) Issue

Clipboard

(see page

80)

Ctrl+x or

Command+x

Save the selected items to the clipboard (see page 80)

to copy them later to another place in the structure.

Issue

Clipboard

(see page

80)

Ctrl+c or

Command+c

Paste the items from the into clipboard (see page 80)

the structure.

Issue

Clipboard

(see page

80)

Ctrl+v or

Command+v

Remove the currently selected issues from the structure. Removing

Issues (see

page 85)

Delete

Switch on/off Automation editing mode. Automation ~

Create a link to share the perspective (see page 149)

current view.

Perspective

(see page

149)

Open a with the structure printable page (see page 111)

or .export structure to Excel (see page 112)

Printing

(see page

111)

Exporting to

Excel (see

page 112)

Open the and it's secondary panel (see page 78)

options.

Secondary

Panel (see

page 78)

1.4.4 Structure Toolbar

The structure toolbar provides access to the main functions of the structure widget.

Structure Plugin for JIRA

Page of 39 370

When you move mouse pointer over the toolbar, the buttons get darker. Some buttons may remain disabled

(light grey) because the action cannot be carried out. For example, Bulk Change action is not possible

unless you have selected several issues, and so Bulk Change button will remain light grey and not clickable

in that case.

Once you move your mouse pointer over the toolbar button, a tooltip with the description of the action is

shown.

Below is the table describing the set of actions available through the toolbar.

Button Action More

Information

Keyboard

Shortcut

Pin / Unpin current issue. Pinned Issue

Mode (see page

46)

Ctrl+.

Turn History View on and off. Viewing History of

a Structure (see

page 109)

Turn Search on and off. Searching and

Filtering (see

page 63)

Alt+/

Expand/collapse the whole hierarchy. Navigating

Structure (see

page 32)

++ / --

Without changing the issue's parent, move the issue up

/down and place it before/after the previous child - if

possible.

Moving Issues

Within Structure

(see page 82)

Ctrl+Up /

Ctrl+Down

Unindent / Indent the issue one level, if possible. Moving Issues

Within Structure

(see page 82)

Ctrl+Left /

Ctrl+Right

Cut the selected issues to the Issue Clipboard (see

.page 80)

Issue Clipboard

(see page 80)

Ctrl+x or

Command+x

Paste the issues from the Issue Clipboard (see page

 into the structure.80)

Issue Clipboard

(see page 80)

Ctrl+v or

Command+v

Remove the currently selected issues from the

structure.

Removing Issues

(see page 95)

Delete

Create an issue following the currently selected issue

on the same level.

Enter

Structure Plugin for JIRA

Page of 40 370

Button Action More

Information

Keyboard

Shortcut

Creating New

Issues (see page

99)

Create a under the currently sub-issue (see page 9)

selected issue.

Creating New

Issues (see page

99)

Shift+Enter

/ Insert

Edit the currently selected issue / stop editing and save

changes.

Editing Issues

(see page 102)

F2 / / ss Tab

Filter the structure to show unresolved issues only. Searching and

Filtering (see

page 63)

rr

Bulk change multiple issues. Bulk Change (see

page 107)

Open a with the printable page (see page 111)

structure.

Printing Structure

(see page 111)

Export structure to Excel format. (On Mac OS X, this

 button is not shown unless switched on with xx
)keyboard shortcut.

Exporting

Structure to XLS

(Excel) (see page

112)

Turns on/off continuous updating of the Structure even

if there's no user activity. (This button is not shown

)unless switched on with xx keyboard shortcut.

Real-time

collaboration (see

page 114)

You can hide/show toolbar clicking the arrow icon in the top left corner of the structure widget.

1.4.5 Configuring View

The way Structure Widget displays the structure and the items it contains is very configurable.

You can configure how each item is represented by or customizing columns (see page 43) selecting

.a pre-defined View (see page 42)

You can display only part of the whole structure that is relevant for some item by pinning that issue

.(see page 69)

You can the displayed structure using text or JQL and display only the matching filter (see page 66)

items and their parent issues.

Structure Plugin for JIRA

Page of 41 370

Using Views
A is a visual configuration of the Structure Widget, which defines which columns are displayed and in view

what configuration.

Structure comes with a number of pre-installed views, but you can also define your own views -

see .Managing Views (see page 143)

On the Structure Board, the current view is displayed in the top right corner:

On picture: Current view is called "Basic view".

If you modify the view, the small blue asterisk will be shown next to it until you either save this change or

revert to the original settings:

On other pages with structure the current view may be identified if you hover mouse over the Views icon, or

click this button:

You can change which columns are displayed by or by manually switching to another view (see page 42)

.adding, removing or rearranging columns (see page 43)

When you manually change column configuration, you create your local adjustments to the currently select

view. You can then save the changes (if you have permissions to change the view) or save and share your

customization as a new view – see .Saving and Sharing Views (see page 45)

Structure Plugin for JIRA

Page of 42 370

1.

2.

3.

4.

5.

6.

7.

Views Menu
You can switch to another view by pulling down Views menu and selecting one of the views it offers, or

searching for a different view.

To open Views menu on the Structure Board, click current view name; on an issue page and project page

click the Views icon.

Apart from the list of views the Views drop-down shows important information about the current view.

In the menu you can see the following:

Current view name. Hover mouse over the name to see the tooltip with the view description.

If the view was modified, you'll see the corresponding message and links, which allow you to save or

revert the changes.

Permissions settings and a link to change them.

View search. Start typing the view name and results will be filtered as you type.

Search looks for any views that match the entered name, not only those in this list.

Associated views list. This list can be customized for each structure by the structure owner or anyone

who has Control access level on the structure – see .Customizing View Settings (see page 132)

List of views you have recently used (excluding the views shown in the section above).

Manage Views link opens dialog.View Management (see page 143)

Switching View with Keyboard
You can switch current view only using keyboard:

Structure Plugin for JIRA

Page of 43 370

1.

2.

3.

Use shortcut to open Views menu (hit "v" twice);vv

Use arrows to select a view, or enter text to search for matching views;

Hit to switch to selected view or to close the menu.Enter Escape

Customizing Columns
To configure structure columns, position mouse pointer over the structure header for a second to have grid

controls appear. These controls let you select which columns to show and how much space each column

gets.

When you add, configure, remove or rearrange columns, you make adjustments to the that's View

being used to display the structure. Adjusted view is marked with a blue asterisk (). The *

adjustments are stored in your browser and affect only yourself – to make the changes persistent

and available to others, you need to .save the view or create a new view (see page 45)

Adding Columns
To add a column, click on the button at the right corner of the table header. A drop-down with available +

column presets appears. To select the desired column, you can:

use the mouse to find a specific column, or

use keyboard to select the column and hit when done, orarrow keys Enter

start typing column name and get the column list filtered, then use arrow keys if needed and hit Enter

when done.

To abort adding new column, hit .Escape

Use keyboard shortcut to quickly open Add Column dialog (hit "t" twice).TT

Structure Plugin for JIRA

Page of 44 370

Configuring Columns
To configure a column, click the arrow icon in the column header. The column will be highlighted and its

configuration drop-down will appear, allowing you to change column name, type and other options.

The particular set of options available for the column is determined by its . For example, type (see page 48)

the column type lets you select the issue field to display and enable aggregation for Field (see page 49)

numeric and time-tracking fields.

Any changes you make are applied immediately, so you can see the effect almost instantly. When you are

happy with the column, simply close the configuration panel by clicking the arrow icon again or clicking

anywhere outside the panel.

To cancel all of your changes use the button at the bottom of the configuration panel. "Revert changes"

The column will be restored to its original state.

Removing Columns
To remove a column, click the arrow icon in the column header, then use the button at the "Remove"

bottom of the column configuration panel.

You cannot remove and .Summary Column (see page 48) Special Columns (see page 62)

Rearranging Columns
You can change position of a column by grabbing the column name with the mouse and dragging it to the

left or right until the column position hint snaps into the desired location for that column.

Resizing Columns and Autosize
Structure automatically tries to give all displayed columns enough space to display all information, but

sometimes you might need to give more space to a column or two.

Column widths are not part of the and are not saved on the server or shared.View

There are a number of ways to change column widths:

Structure Plugin for JIRA

Page of 45 370

Grab the resizer and drag. When you hover your mouse over a column, the resizer that is

responsible for that column's width is highlighted. When column size is close to what Structure

considers ideal width (based on the displayed data), the resizer "snaps" to the perfect position.

Hold CTRL and drag resizer. Works same as above, but without snapping. You can use it to fine-

tune column width.

Hold ALT (Option) and drag resizer. In this mode, you will redistribute the space between two

adjacent columns - increasing the width of one column and decreasing the width of another.

Double-click the resizer or the column header. The column will automatically resize the default

size.

Click "Autosize" icon () or double-click Summary column. All columns will be resized

automatically based on the displayed data.

Structure columns always take 100% of the horizontal space available to the structure widget, no

more, no less. After all columns sizes are determined, takes all Summary Column (see page 48)

the remaining width.

If the browser window is too narrow or the structure widget has too little horizontal space, the

resizing may not work exactly as expected because it becomes problematic to accommodate all

the columns with all the data. In that case, consider removing some columns or giving the browser

window more width.

Saving and Sharing Views
When you have , you have adjusted the view that is added, removed or rearranged columns (see page 43)

used to display the structure. The view is marked as "adjusted" with the blue asterisk:

Saving View Adjustments
The adjustments you have made to the view are local, they are stored in your browser. To make the

changes persistent and to push them to other people using the same view, you need to save a new version

of the view. To do that, open Views drop-down and click link.Save

To save view changes you need to have access level for that view (see Update View Sharing and

). If you do not have permissions to change the view, you can create a new Permissions (see page 145)

view based on your modifications with link.Save As

Structure Plugin for JIRA

Page of 46 370

If you need to remove your adjustments and get back to the original view as it stored on the server, click

 link.Revert

Sharing a View
A view has a set of permissions, just like a structure. When you initially create a view with link, the Save As

view is - it "belongs" to you and noone else can use it. You, however, can use this view with any private

structure.

To share a view with other people, you can either make view , allowing everyone to locate and use public

this view, or define more fine-grained permissions for the view.

To make current view public, click link in the view drop-down. After that, everyone will be able Make Public

to find and use the view, but only you will be able to modify it.

To define fine-grained permissions or modify sharing, click or link in the Views drop-Share Change Sharing

down to open View Management dialog. See for details.View Sharing and Permissions (see page 145)

Pinned Issue Mode
You can view only a part of a structure that is related to a specific issue, by pinning that issue with a Pin

icon on the toolbar. Structure Panel on the automatically pins the issue being Issue Page (see page 14)

displayed, so you only see the relevant part of the structure.

Sub-Issue 1 is pinned, only part of the structure related to Sub-Issue 1 is shown

Structure Plugin for JIRA

Page of 47 370

What is Displayed in Pinned Issue mode
When the structure widget is in Pinned Issue mode, only the following issues are displayed:

The pinned issue itself

All parent issues of the pinned issue, up to the top-level issue - those are displayed above the grey

line

All sub-issues of the pinned issue, down to the deepest level

The issues that are "siblings" or located somewhere else in the hierarchy are not displayed.

The issues that are not displayed when an issue is pinned are not just filtered out, they are not

loaded from the server, which provides quicker page load time.

Turning Pinned Mode On and Off
You can turn Pinned Mode on or off by clicking on the Pin button on the toolbar or by using keyboard Ctrl+.

shortcut.

On the Issue Page and JIRA Agile (GreenHopper) Rapid Board page, you can only pin the issue

currently viewed - you cannot pin any other issue from the structure. On the Structure Board, you

can pin any issue.

Limitations Imposed by the Pinned Issue Mode
When you have Structure with a pinned issue, you can't change the hierarchy from the pinned issue

upwards. That is, you can add/move/delete sub-issues of the pinned issue, but you can't add issues to the

pinned issue's parents or move pinned issue somewhere else.

On the screenshot example above, the following actions are available for the displayed issues:

Issue Relation to the

Pinned Issue

Possible Hierarchy Changes

Root Issue Parent None

Sub-Issue 1 Pinned Issue Itself Add sub-issues, Delete from structure

Sub-Sub-

Issue 1.1

Sub-Issue Any changes except moving to the top level or away from

under Pinned Issue

Even though you can't move parent issues when the view is in pinned mode, you still can select

them, edit or apply JIRA operations.

Structure Plugin for JIRA

Page of 48 370

When Pinned Issue Is Missing from Structure
If it happens that the pinned issue is missing from structure, the structure widget will not be able to display

any data and will ask for your action:

In this case you have to either unpin the view to see the whole structure, or add the pinned issue at the end

of the structure.

1.4.6 Widget Columns

Structure widget provides a number of columns that display information about issues in the structure. You

can the displayed columns by adding new columns, changing each column customize (see page 43)

configuration, or .switching to a new view (see page 42)

Out of the box, Structure provides the following columns:

Structure also contains , so the selection of available columns may be extension API (see page 253)

extended by a third-party plugin.

Issue Key Column
For issues the Issue Key column displays the issue key. For other types of items it remains empty.

Compact View

If the project key is large, the issue key column may get too wide. You can configure Issue Key column to

replace the project key with a small avatar icon of the project.

To enable compact view of the Issue Key column, open the and select column options Compact View.

Summary Column
For issues the Summary column displays the issue summary and, optionally, part of the issue description.

For folders it shows the folder name. Sub-items have the text in the Summary column indented relative to

their parent item.

https://wiki.almworks.com/display/structure2/Customizing+Columns#column_config

Structure Plugin for JIRA

Page of 49 370

Summary can be and it's the only field required for edited right in the structure widget (see page 102)

.creating new issues (see page 99)

To turn off descriptions in the Summary column, use the column configuration panel (see page

.)

Summary column cannot be removed from the Structure grid or reconfigured to a different column

type because it displays the hierarchy.

Field Columns
For each issue field in your JIRA, Structure offers a column that displays that field's value.

Displaying Aggregate Values
For numeric and time-tracking fields, Structure also offers to display an aggregated value, calculated as a

sum of the field values over sub-issues.

To display an aggregated value, use the and select column configuration panel (see page) Sum

. If there's no such option for a given field, then the aggregate cannot be calculated.over sub-issues

Alternatively, you can add a predefined column from the sub-section in the drop-Totals Add Column

down menu.

When aggregate value is displayed for an issue that also has an own value in the field, own value

is displayed next to the aggregate value in grey color.

Since each issue can be present multiple times in the structure, you can select if you want to count

every instance of this issue in the totals or count it just once.

Note that values of the totals may change depending on the selected structure.

Editing Values

Most field columns are editable – you can by double-clicking it (if the field is edit field value (see page 103)

added to the Edit Screen in JIRA). When aggregate value is displayed, you can still edit the issue's own

value.

Icons Column
Icons column displays icons for issue type, priority, status, project, reporter, and assignee.

Structure Plugin for JIRA

Page of 50 370

1.

2.

Its narrow width and short name allow to save horizontal space for other columns. You can configure (see

 which icons to display and arrange them in any order.page)

Progress Column
The Progress column displays configurable aggregate issue progress, which includes progress values from

sub-issues.

Progress column allows you to customize how the progress is calculated – based on time tracking,

Resolution and Status field, or custom fields. There are several predefined configuration of Progress

column, available under menu. You can add any available preset configuration Add Column (see page 43)

and then customize it using the (shown when you click the grey column configuration panel (see page)

arrow in the column header).

Progress is the custom Structure column, not available in the Issue Navigator or other standard

JIRA views.

How is Progress Calculated?
Configuration of the progress calculation is divided into two parts:

How individual issue progress is calculated, regardless of its position in the structure.

How progresses from sub-issues are aggregated and combined with individual progress of the parent

issue.

Individual Issue Progress Calculation

There are several progress calculation modes. Mode is selected by the option:Based On

Total Progress Calculation
When individual issue progress is calculated based on , Status (see page 55) Percent Field (see page 57)

, or , you can specify how individual sub-issue progresses are aggregated Resolution Only (see page 53)

into parent issue progress. This is defined by option:Weight

All Sub-Issues Are Equal – All sub-issues are considered equal when calculating aggregated

progress for the parent issue. Weights do not accumulate, so sub-issues of each level are considered

equal irrespective of how many sub-sub-issues they have.

Time Estimate – Sub-issues' progresses are weighted proportionally to their total time estimate (

). This option is akin to , yet allows to get individual Time Spent + Remaining Estimate Time Tracking

progress from other sources (e.g. numeric custom field or Status field). If time information is not

present, it is counted in as an average, based on the mean total time (time spent + remaining

estimate).

Custom Numeric Field – Sub-issues are weighted according to a value in the specified numeric

field, for example, . Weights are accumulated upwards. If field value is not present, it is Story Points

counted in as an average, based on the mean field value across sub-issues.

Structure Plugin for JIRA

Page of 51 370

Zero value in the field configured as weight will discard any issue's progress in parent issue

aggregation.

Progress Based on Time Tracking
The progress is calculated based on the issue's Resolution field, time tracking data and the progress of sub-

issues. Best estimate of the issue's completion is given, with extrapolation of the sub-issue estimates if

needed.

Calculating Progress for Issue Without Sub-Issues
If the issue does not have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the progress is 100%.Apply Resolution

Otherwise, if the issue has time tracking information, the progress is calculated proportionally to this

issue completion%: (Time Spent) / (Time Spent + Remaining Estimate)

Otherwise, the progress is 0%.

Calculating Progress for Issue with Sub-Issues
If the issue does have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the progress is 100% Apply Resolution

- regardless of the sub-issues progress.

If the issue and its sub-issues do not have estimates or work logged (or if time tracking is turned off),

the progress is calculated as the average from the sub-issues progresses.

If time tracking is used and all issues have an estimate (either original estimate or remaining

estimate) - the estimates and total work logged are summed up and the progress is calculated as the

total completion%: (Total Time Spent) / (Total Time Spent + Total Remaining

Estimate)

If a sub-issue does not have time tracking information, it is counted in as an average sub-

issue, based on the mean total time (time spent + remaining estimate)

If the issue has both its own time tracking information and sub-issues with progress, and if Ignore

 is turned off, issue's own progress value is counted as if it was the Parent Issue Progress

progress of one another sub-issue.

Examples
1. Example without time estimates

Structure Plugin for JIRA

Page of 52 370

Issue Explanation Progress

Sub-sub-

issue 2.1

This issue is resolved (indicated by the green mark) - so it is complete 100%

Sub-issue 2 It has two sub-issues with 100% and 0% progress, the total progress is

average value

50%

Top issue It has two sub-issues: sub-issue 1 is 0% done and sub-issue 2 is 50% done,

the mean value is 25%.

25%

2. Example with time tracking information

Issue Explanation Progress

Sub-

issue

1

It has 3 days of work logged with 1 day remaining, so its progress is time spent

/ total time = 3 / (3 + 1)

75%

Sub-

issue

2

This issue does not have any work logged, is not resolved and does not have sub-

issues

0%

Top

issue

The top issue has total time spent of 3 days (work logged on sub-issue 1) and 2 total

days remaining (estimates on sub-issue 1 and sub-issue 2), so its progress 3 / (3

.+ 2)

60%

3. More complex example

Structure Plugin for JIRA

Page of 53 370

Issue Explanation Progress

Sub-

sub-

issue

2.1

It has 2 days of work logged and 1 day remaining, the progress is 2 / (2 + 1) 66%

Sub-

sub-

issue

2.2

This issue has 1 day of work logged and no work remaining - so even though it is not

resolved, it's considered completed

100%

Sub-

issue

2

It has total time spent of 3 days, and total remaining estimate of 2 days (the

remaining time from sub-sub-issue 2.1 and its own 1 day, which is considered

additional work, besides sub-issues). The progress is .3 / (3 + 2)

60%

Sub-

issue

1

This one has 3 days of work logged and 1 day remaining - the progress is 3 / (3

+ 1)

75%

Top

issue

The progress of the is calculated as follows. The obvious total time spent is top issue

6 days, total remaining estimate is 3 days (count in all sub-issues on all levels). But

there's also , which does not have estimates or work logged, so it’s sub-issue 3

estimated based on the average among the Top Issue's children issues - sub-issue 1

and : the average between total time of (3 + 1 = 4 days) and sub-issue 2 sub-issue 1

total time of (3 + 2 = 5 days) is 4.5 days. So is treated as if it sub-issue 2 sub-issue 3

has total time 4.5 days (and given its 0% progress that's 0 days spent and 4.5 days

remaining). That yields for the : total time spent is 6 days, total remaining top issue

time is 7.5 days, and the progress is , which gives 44% value.6 / (6 + 7.5)

44%

Progress Based on Resolution Only
The progress is calculated based on the issue’s Resolution field and the progress of sub-issues.

Calculating Progress for Issue Without Sub-Issues
If the issue does not have sub-issues:

Structure Plugin for JIRA

Page of 54 370

If the issue's Resolution field is not empty, the progress is 100%.

Otherwise, the progress is 0%.

Calculating Progress for Issue with Sub-Issues
If the issue does have sub-issues:

If the issue's Resolution field is not empty, the progress is 100% - regardless of the sub-issues

progress.

Otherwise, sub-issues progress is aggregated sum with specified weights.

Example: Resolution Only with Story Points
Individual progress is 0% or 100% based on Resolution field; total progress is calculated as weighted

average, with weights contained in a field.Story Points

Column Configuration

Sample Structure

Issue Explanation Progress

This issue is resolved (indicated by the green mark) - so it is complete 100%

Structure Plugin for JIRA

Page of 55 370

Issue Explanation Progress

Sub-

sub-

issue

1.2

Sub-

issue 1

It has two sub-issues with 0% and 100% progress, and story points are 2 and 3

respectively. So the total progress is weighted average value of (0 x 2 + 100 x 3) /

(2 + 3)

60%

Top

issue

It has two sub-issues: sub-issue 1 is 60% done and sub-issue 2 is 0% done, and

their cumulative story points are (2 + 3) and 1 respectively. So progress is (60 x 5 +

0 x 1) / (5 + 1)

50%

Progress Based on Status
The progress is determined by issue's Status field. Percentage values are assigned to specific statuses.

Calculating Progress for Issue Without Sub-Issues
If the issue does not have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the progress is 100%.Apply Resolution

If the issue's Status is assigned a value (%) in the column configuration, the progress is equal to that

value.

Otherwise, the progress is undefined, so the issue neither shows any progress, nor affects the

progress of its parent issue.

Calculating Progress for Issue with Sub-Issues
If the issue does have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the progress is 100% Apply Resolution

- regardless of the sub-issues progress.

Otherwise, sub-issues progress is aggregated sum of progresses with chosen weights.

If the issue has both its own status and sub-issues with progress, and if Ignore Parent Issue

 is turned off, issue's own progress value is counted as if was the progress of one Progress

another sub-issue.

If some of statuses don't have any percentage configured, issue progress is considered undefined.

Structure Plugin for JIRA

Page of 56 370

Example: Progress Based on Status, All Sub-Issues Are Equal
In this example, statuses have the following percentages: Open = 0%, In Progress = 50%, Resolved or

Closed = 100%, Reopened = 80%. is turned on, is Apply Resolution Ignore Parent Issue Progress

turned on.

Column Configuration

Sample Structure

Structure Plugin for JIRA

Page of 57 370

Issue Explanation Progress

Sub-

sub-

issue

1.1

This issue is Open, so it is 0% 0%

Sub-

sub-

issue

1.2

This issue is In Progress, so it is 50% 50%

Sub-

sub-

issue

1.3

This issue is Resolved, so it is 100%. Also, according to workflow, it has non-empty

Resolution, which also means it's complete.

100%

Sub-

sub-

issue

1.4

This issue is Close, so it is 100%. Also, according to workflow, it has non-empty

Resolution, which also means it's complete.

100%

Sub-

issue

1

Average progress is (0+50+100+100)/4. Issue's own status is In Progress, but it's

percentage is ignored because of "Ignore parent issue progress in aggregation"

option

63%

Sub-

sub-

issue

2.1

This issue is Reopened, so is 80% 80%

Sub-

sub-

issue

2.2

This issue is Open, so is 0% 0%

Sub-

issue

2

Average progress is (80+0)/4 = 40%. But issue itself has Resolution and "Issues

with Resolution are 100% done" option is turned on, so this overrides sub-issues

progress and makes issue complete

100%

Top

issue

It has two sub-issues: sub-issue 1 is 63% done and sub-issue 2 is 100% done.

Average progress is (63+100)/2

82%

Progress Based on Percent Field
The progress is assigned to each issue manually in a custom field, and aggregated for parent issues.

You can use any numeric JIRA custom field to store the current progress % – a value from 0 to 100.

Structure Plugin for JIRA

Page of 58 370

Calculating Progress for Issue Without Sub-Issues
If the issue does not have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the progress is 100%.Apply Resolution

If the issue's Custom Field value is not empty and is between 0 and 100, it's considered as the

completion progress in percents.

If the issue's Custom Field value is less than 0, the progress is 0%, if greater than 100, the progress

is 100%.

Otherwise, the progress is undefined, so such issue neither shows any progress, nor affects progress

of its parent issue.

Calculating Progress for Issue with Sub-Issues
If the issue does have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the progress is 100% Apply Resolution

– regardless of the sub-issues progress.

If the issue's Custom Field value is not empty, it's considered as that issue's completion progress in

percents (from 0 to 100) – regardless of the sub-issues progress.

Otherwise, sub-issues progress is aggregated sum of progress with chosen weights.

Examples
A: Percent Field, All Sub-Issues Are Equal

Custom field named , total progress is based on , and Complete All Sub-Issues Are Equal Apply

 is turned on.Resolution

Column Configuration

Structure Plugin for JIRA

Page of 59 370

Sample Structure

Issue Explanation Progress

Sub-sub-

issue 1.1

This issue is 50% complete as specified by custom field 50%

Sub-sub-

issue 1.2

This issue is resolved (indicated by the green mark) - so it is complete, even if

"Complete" field is empty

100%

Sub-sub-

issue 1.3

This issue has no progress information (neither "Resolution" nor "Complete"

fields), so progress is undefined and not counted at all.

n/a

Sub-sub-

issue 1.4

This issue has 0 "Complete" value, which means it's 0% complete 0%

Sub-issue

1

It has two four sub-issues, but 1.3 is ignored. So the total progress is average of

the rest: (50 + 100 + 0) / 3

50%

Sub-issue

2

The issue is 25% complete as specified by custom field 25%

Top issue It has two sub-issues: sub-issue 1 is 50% done and sub-issue 2 is 25% done.

So the progress is average between two (25 + 50) / 2

38%

B: Percent Field, Story Points

Custom field named , total progress is based on the field , and is Complete Story Points Apply Resolution

turned on.

Structure Plugin for JIRA

Page of 60 370

Column Configuration

Sample Structure

Issue Explanation Progress

Sub-sub-

issue 1.1

This issue is 50% complete as specified by custom field and has 2 story points 50%

Sub-sub-

issue 1.2

This issue is resolved (indicated by the green mark) - so it is complete, even if

"Complete" field is empty and has 3 stroy points

100%

Sub-sub-

issue 1.3

This issue has no progress information (neither "Resolution" nor "Complete"

fields), so progress is undefined and not counted at all.

n/a

Sub-sub-

issue 1.4

This issue has 0 "Complete" value, which means it's 0% complete. It has no story

points, so it's counted as mean of 2 and 3 = 2.5

0%

Structure Plugin for JIRA

Page of 61 370

1.

2.

3.

1.

2.

3.

4.

Issue Explanation Progress

Sub-

issue 1

It has two four sub-issues, but 1.3 is ignored. So the total progress is weighted

average of the rest: (50 x 2 + 100 x 3 + 0 x 2.5) / (2 + 3 + 2.5)

53%

Sub-

issue 2

The issue is 25% complete as specified by custom field and has 1 story point 25%

Top

issue

It has two sub-issues: sub-issue 1 is 53% done and sub-issue 2 is 25% done. So

the progress is calculated as (53 x 7.5 + 25 x 1) / (7.5 + 1)

50%

Images Column
Images column displays small thumbnails of the attached image files and allows to view those images in a

pop-up dialog.

Viewing Full-Size Images
Using your mouse:

Click the image thumbnail to see the full-size image in a dialog box.

Click the left or right side to view the previous or next image.

Click the close button at the top right corner to close full-size image view.

Using your keyboard:

Select the issue that contains images.

Press ("i" twice) to view the first image.i,i

Press and to go to the next or previous image.

Press to close full-size image view.Esc

Images from Wikipedia

Structure Plugin for JIRA

Page of 62 370

Work Logged Column
The Work Logged column displays the sum of time spent over a specific period.

Work Logged column allows you to select one of the predefined periods using the column configuration

.panel

Displaying Aggregate Values
Work Logged column also offers to display an aggregated value, calculated as the sum of time spent over

sub-issues.

To display an aggregated value, use the and select .column configuration panel Sum over sub-issues

How is Work Logged Calculated?
Each time you log work on some issue you have to define "Time Spent" and "Date Started" values. The

Work Logged column will summarize logged time spent over a selected period.

Note that the start of the selected period is calculated based on the column creator's time zone.

This time zone can be configured on the .user's profile page

You can also create your own instance of Work Logged column to calculate the sum of time spent

over a selected period in your current time zone if work logs are being created in different time

zones.

Special Columns
Some columns in the Structure widget are special. They either display structure-specific information or allow

you to perform actions with the issues in the structure.

Flags Column
The flags are the small icons displayed at the left side of the table to mark specific issue states.

Structure displays the following flags:

Resolved flag means that the issue's Resolution field is not empty. Such issue is considered

completed and filtered out by the button.Unresolved (see page)

Read-only flag means that the current user does not have permission on this issue, so Edit Issue

you cannot . Additionally, if the structure is configured to edit this issue (see page 102) require Edit

, you cannot change or rearrange the immediate Issue permission on Parent Issue (see page 132)

children of this issue.

https://wiki.almworks.com/display/structuremaster/Customizing+Columns#CustomizingColumns-config-panel
https://wiki.almworks.com/display/structuremaster/Customizing+Columns#CustomizingColumns-config-panel
https://wiki.almworks.com/display/structuremaster/Customizing+Columns#CustomizingColumns-config-panel
https://confluence.atlassian.com/display/JIRA/Managing+your+User+Profile

Structure Plugin for JIRA

Page of 63 370

JIRA Actions Column
The JIRA actions column displays the gear button that calls out the menu with available JIRA actions for the

issue.This column works like the similar column on the JIRA's Issue Navigator page and lets you log work,

apply workflow actions and available for the issue.use other JIRA actions (see page 108)

You can click the gear button and select the desired action with the mouse, or you can use keyboard

shortcut to open the menu for the currently selected issue and then use and Alt+Down Arrow Up Down

arrow keys and key to select the action.Enter

Sequential Index Column
Sequential index column displays the hierarchical number (for example, "1.2.15") based on the position of

an item in the structure.

Sequential index ignores – if you see only a part of a structure, the Filtering (see page 66)

numbers will still show you the position of the item in the unfiltered structure.

1.4.7 Searching and Filtering

The Search feature provides several important functions:

Find and highlight issues in your structure.

Filter (see page 66) your structure so that it only displays specific issues.

To access Search function, click the button on the Structure Panel Toolbar.Search

The Search panel will appear below the toolbar. By default, the Search looks for the entered text in issues'

summary or items' names.

The search starts once you start entering the query, refining results as you keep typing. The non-matching

items are greyed-out in order to highlight the matching items.

Structure Plugin for JIRA

Page of 64 370

Once you've found the items you need, you can quickly move focus between the matching items

by pressing and .Ctrl+Alt+] Ctrl+Alt+[

Search function allows you to search for issues inside the currently selected structure in Simple, JQL, and S-

 modes and use text search for all other item types. To switch between the modes, click JQL (see page 64)

the name of the currently selected mode and select the one you need from the menu.

If data changes on the server, search results are automatically refreshed for the structure. So

issues can be hidden and shown in the structure in realtime.

You can turn on searching on by pressing . If you press it again, you will switch to the Ctrl+Alt+/

next search mode. To close the search panel and cancel the search, press or click again Escape

the search button in the toolbar.

Simple, JQL, and S-JQL Search
In the Search Area, you can specify a , a , simple text condition (see page 65) JQL condition (see page 65)

or a . To switch between these search modes, click the name of the currently Structure query (see page 66)

selected mode and select the one you need from the menu or press .Ctrl+Alt+/

Structure Plugin for JIRA

Page of 65 370

Simple Search
Simple (text) search mode is selected by default. In this mode, you can specify the following search

conditions:

Condition

Type

Example How it works

Simple

text

structural

hierarchy

Look for items that have mentioned words in the field. Each word all Summary

in the search sentence must be present in the summary or name, or the

summary must have a word that the specified word. The words begins with

may come in any order.

Quoted

excerpt

"the

quick

brown

fox"

Look for the whole phrase in the summary or name (but see below about Lucene

indexes).

Issue

keys

MARS-1,

MARS-

331

If the text looks like one or more issue keys (delimited by comma or whitespace),

search for exactly these issues.

All issues * Use single asterisk to search for "all items". Only issues from the projects

enabled for Structure are found.

Structure relies on the JIRA search engine to run text searches. The engine is based on Lucene

index which has a few peculiarities that may cause unexpected results. For example, short words

may not be found. The result also depends on the Indexing Language specified in the JIRA

General Configuration.

JQL Search
In the JQL mode, the search condition is treated as a JQL (JIRA Query Language) query. JQL lets you

specify arbitrarily complex conditions to find very specific issues.

When the JQL mode is on, the usual JQL auto-complete suggests fields, operators and values as you type.

Whenever you have a correct JQL in the search field, there is a green tick icon shown in the input box.

When the JQL is incorrect or not complete, the red icon with the exclamation mark is shown.

Structure Plugin for JIRA

Page of 66 370

More information on JQL is available in the .JIRA documentation

S-JQL Search
In the S-JQL mode, the search condition defines a . S-JQL is a special Structure query (see page 183)

language that allows to search for issues by their relations in the current structure, e.g., matches all root

top-level issues, matches first two levels, and root or child of root child of [priority =

 matches all children of critical issues. See for more Critical] S-JQL documentation (see page 178)

information.

As with the JQL mode, the there is an indicator showing whether the query is correct or not.

Filtering
If you wish to see only the items that match the criteria specified in the search field, click the button on Filter

the left from the input box.

You can use keyboard shortcut or to turn filtering on and off.Ctrl+Alt+; ;

Once Filtering is turned on, you only see the matching items and their parent items. Parent items of a

matching item are always shown to preserve the hierarchy view, even if they don't match the search criteria.

Non-matching items are grayed out.

In the status bar at the bottom you can see the updated items count.

http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Structure Plugin for JIRA

Page of 67 370

Filtering is just one of many ways to adjust the scope of the items you are seeing. Such adjustments in

Structure are called and you can add them clicking the Transformations Transformations (see page 73)

button.

As you add the filtering - the button is highlighted, showing you that a transformation has been applied.

You can either remove the filtering completely by clicking the close button on the right of the search field, or

you can hide the search panel by clicking the arrow button next to it.

Filtering mode remains even if you navigate to another page.

Default Quick Transformations
There are six predefined saved filters:

Unresolved (works as a shorthand for filtering using JQL: Resolution is EMPTY)

Assigned to me (JQL: Assignee = currentUser())

By Assignee (items are grouped by Assignee)

By Status (items are grouped by Status)

By Version (items are grouped by FixVersion)

Sub-tasks (Sub-tasks are added underneath tasks)

To apply them, click the button next to the button in the structure panel toolbar and Filter Transformations

select the filter you need.

You can apply these filters and then use search and additional filtering at the same time.

Press ("r", then quickly "r" once again) to turn the Unresolved filter on and off.RR

Searching and Filtering Within Structure

Searching within the Structure
When the structure widget gets search results from the server, the number of matching issues found in the

structure is displayed next to the field.Find

Structure widget grays out non-matching issues in the structure in order to highlight the matching issues.

Structure Plugin for JIRA

Page of 68 370

The selection is also moved to the first matching item, and if you press while the Down/Up Arrow Keys

input focus is still in the search field, the selection will go to the next/previous matching issue in the

structure.

If you click somewhere else and the input focus is no longer in the search field, you still can

navigate to the next or previous matching issue by pressing or .] [

Filtering Structure
If you wish to see only the issues that match the criteria specified in the search field, click the button Filter

next to the issue count.

You can use keyboard shortcut to turn filtering on and off.Alt+f

Once Filtering is turned on, you will only see the matching issues and their parent issues. (Parent issues of

a matching issue are always shown to preserve the hierarchy view, even if they don't match the search

criteria. Non-matching issues are grayed out.)

Structure Plugin for JIRA

Page of 69 370

Filtering mode remains even if you navigate to another page.

Showing Unresolved Issues Only
Structure toolbar has button, which works as a shorthand for filtering using JQL: Unresolved Resolution is

. Clicking button would filter the structure in the same way Filtering would do.EMPTY Unresolved

You can turn on Unresolved button and use search or filtering at the same time.

Press ("r", then quickly "r" once again) to turn Unresolved filter on and off.RR

Pinned Item Mode
You can view only a part of a structure that is related to a specific item, by pinning that item with a icon Pin

on the structure panel toolbar. Structure Panel on the automatically pins the Issue Page (see page 14)

issue being displayed, so you only see the relevant part of the structure.

In an item is present in several places in the structure, both instances of this item are shown.

Structure Plugin for JIRA

Page of 70 370

What is Displayed in Pinned Item mode

When the structure widget is in Pinned Issue mode, only the following items are displayed:

The pinned item itself

All parent items of the pinned item, up to the top-level item

All sub-items of the pinned item, down to the deepest level

The items that are "siblings" or located somewhere else in the hierarchy are not displayed.

The items that are not displayed when an item is pinned are not just filtered out, they are not

loaded from the server, which provides quicker page load time.

Turning Pinned Mode On and Off
You can turn Pinned Mode on or off by clicking the Pin button on the toolbar or by using keyboard Ctrl+.

shortcut.

On the Issue Page and JIRA Agile (GreenHopper) Rapid Board page, you can only pin the issue

currently viewed - you cannot pin any other issue from the structure. On the Structure Board, you

can pin any issue.

Limitations Imposed by the Pinned Item Mode
When you have Structure with a pinned issue, you can't change the hierarchy from the pinned issue

upwards. That is, you can add/move/delete sub-issues of the pinned item, but you can't add items to the

pinned item's parents or move pinned item somewhere else.

Even though you can't move parent items when the view is in pinned mode, you still can select

them, edit or apply JIRA operations.

Structure Plugin for JIRA

Page of 71 370

When Pinned Issue Is Missing from Structure
If it happens that the pinned item is missing from structure, the structure widget will not be able to display

any data and will offer to remove Pin:

If you are seeing this on the Issue Page, one you remove the pin you'll be able to add the issue you are

viewing to the structure you have opened in the widget (issue).Place

Searching Outside Structure

Searching for Issues Outside Current Structure
If there are matching issues that do not belong to the structure, an additional button is More Issues

displayed on the search panel, telling exactly how many matching issues are there in JIRA that are not in

the structure.

You can turn mode on or off by clicking this button. When it is turned on, the extra issues are More Issues

displayed in the secondary panel.JIRA Search Results (see page 94)

The search is run through all projects for which the Structure plugin is enabled (see Selecting

).Structure-Enabled Projects (see page 225)

You can turn mode on and off with keyboard shortcut .More Issues Alt+m

If the search results is large, only the first 1,000 issues are displayed in the Search Results Panel.

If you add those issues to the structure, the next 1,000 issues are pulled. Use JQL ORDER BY

phrase to sort the issues in the result to have the most important issues come first.

Adding Issues to Structure
When you have issues found outside Structure with the mode on, you can add them from the More Issues

Search Results secondary panel to the structure.

There are several options:

Structure Plugin for JIRA

Page of 72 370

Using Drag-And-Drop (see page 86), move issues from the Search Results Panel to a specific

location in the structure.

Select several issues or all of them using check boxes and use drag-and-drop to move all the

selected issues to the structure.

Select an issue in the structure and click button to place all issues from the Search Results Add All

Panel the selected issue.after

Select an issue in the structure, then select several issues in the Search Results Panel and click Add

 button to place the selected issues from the Search Results Panel the selected N Selected after

issue.

While still having input focus (input caret) in the search criteria field, hit to add all (or only Ctrl+Enter

selected) issues from the Search Results Panel after the currently selected issue in the structure.

(Similar to Add All button.)

Or hit to add all (or only selected) issues from the Search Results Panel the Ctrl+Shift+Enter under

currently selected issue in the structure - the selected issue becomes the parent of the newly added

issues.

Use Cut/Paste actions and .Issue Clipboard (see page 80)

In , issues can be added only as sub-issues of the pinned Pinned Issue Mode (see page 46)

issue. The result of using or other means of adding issues to structure may be Ctrl+Enter

automatically adjusted to place the new issues as sub-issues of the pinned issue.

Using Issue Navigator Columns
Structure can display the same columns as the Issue Navigator when showing search results.

You can toggle Issue Navigator columns by clicking button in the Search toolbar.Columns

When Issue Navigator columns are turned on, Structure temporarily switches to a system view that displays

the same columns as Issue Navigator would display for that query. To switch back to your usual view,

switch off the button or switch off panel.Columns Search

A separate columns configuration may be defined for a Saved Filter. When you use a saved filter

in your JQL query (), Structure detects that and will display columns filter = "filter-name"

defined for that filter. (If button is turned on, of course.)Columns

Structure Plugin for JIRA

Page of 73 370

If you have a column in the Issue Navigator, then the Structure's column will Progress Progress

be shown instead. The same applies to aggregate columns like . Please keep Original Estimate

in mind that these Structure columns and their JIRA counterparts work by different rules, and may

display different values.

1.4.8 Transformations

As you work with a structure, sometimes you may want to reorganize the issues you are seeing, so that you

can focus on the most important ones. The simplest example of this is and Sorting. Filtering (see page 66)

For example, you may want to see only issues assigned to you sorted by progress.

These are the two examples of the functionality. With transformations you can locally Transformations

adjust the structure without changing it for everyone else. All other users will see this structure without these

transformations applied.

Available Transformations
Transformations use the same type of functions as . The main difference is that generators (see page 117)

the transformations can only be applied to the whole structure (while generators can be inserted under

some folder or under a manually added issue) and you cannot use Insert generators as you already have a

set of issues to work with. You can use the following transformations:

Filter

Sort

Group

Extend

For more details on how they work, please check the documentation on .Generators (see page 117)

Working with Transformations

Using Transformations

Sorting and Filtering
Sorting and Filtering are two kind of transformations you can apply really quick.

To your items, simply click the header of the column to sort the structure by this column in ascending sort

order. On every level, the items will be sorted accordingly. To sort in descending order - click the column

header again.

As you add the sorting, the Transformations button is highlighted, showing there are transformations

applied:

Structure Plugin for JIRA

Page of 74 370

To remove the sorting - click the Summary column header.

To apply a , you can run a and then out non-matching filter search (see page 63) filter (see page 66)

items, or you can access the Quick Filters panel through the button on the panel toolbar and select Filter

any of them.

Transformations Panel
All transformations can be added and modified on the transformations panel. To access it, click the

 button in the panel toolbar. The panel with the currently applied transformations will Transformations

appear.

Once you add the transformations, they'll be preserved as you switch between structures if you are

using the , not the Structure menu. This allows you Structure selection in the widget (see page 30)

to quickly check several structures focusing on the issues you need.

There are several things you can do with transformations.

Add
To add a new transformations, click the Add button in the Transformations toolbar and select one of the

available transformations.

Structure Plugin for JIRA

Page of 75 370

Edit
To edit an existing transformation, click the transformation name - for Grouping and Sorting you can quickly

select a column by which you want to sort or group, for Filtering and Extending, select the type of filter or

extender. You can also click the Edit button, to open the transformation Edit Dialog with all the options. The

options you see are the same as .generators have (see page 125)

Remove a Transformation
To remove a transformation, click the transformation name and select Remove from the menu that appears.

Hide Transformations Panel
After you've configured your transformations, you can hide the panel, so it doesn't take up the screen space.

Click the up arrow button on the right side of the transformations panel to hide it.

Remove All Transformations
To remove all transformations, click the cross button on the right side of the transformations panel.

Save Transformations
Users who have Control permission on a structure can save transformations as Quick Transformations (see

, associated with that structure.page 75)

Quick Transformations
Quick Transformations feature lets you set up some transformations to be readily available for a structure,

so they can be turned on and off with a single mouse click. (They are sometimes called "Quick Filters",

although there could be other transformations besides filters.)

Quick Transformations Panel
You can start using quick transformation by showing Quick Transformation panel.

Structure Plugin for JIRA

Page of 76 370

Quick transformation panel shows transformations that are associated with the current structure. If quick

transformations were not customized for the displayed structure, default quick transformations are shown.

Default transformations are also shown when panel contains a query result or another non-structure

content. See for description of each default transformation.Default Transformations (see page 78)

To activate a quick transformation

Turn on Quick Transformation Panel

Click on the desired transformations

Structure will remember the selected transformations, so next time you open that structure, the

transformations will be already applied.

To deactivate a quick transformation

Click on the transformation you'd like to stop applying, OR

Toggle Quick Transformations Panel or click " " button to close Quick Transformations Panel.x

When you close Quick Transformations Panel, all quick transformations are deactivated.

You can use keyboard shortcuts to toggle quick transformations, based on their position in the

transformation list. The shortcut is and then the number (), typed in quick succession.Q 1—9

The transformations are applied in the order they were turned on. If you need to change the order

in which quick transformations are applied, you can turn off the transformation that should come

last, and then turn it back on.

Alternatively, you can use Transformations panel to reorder currently active transformations with

drag and drop.

Structure Plugin for JIRA

Page of 77 370

Defining Quick Transformations
Quick transformations can be customized for each structure by anyone who has access to the Control

structure. You either or and then save it as use a filter (see page 63) use a transformation (see page 73)

a quick transformation.

If you don't see a way to add a quick transformation, probably you don't have the access and you

need to ask the structure's owner to add the quick transformation that you need.

Adding a Quick Filter
To add a Filter transformation, click "Save" on the filtering panel.

Adding an Extender, Grouper or Sorter Transformation
For all other transformations, use the Transformations panel.

Structure Plugin for JIRA

Page of 78 370

Modifying Quick Transformations
If you have access to the structure, you can change the associated quick transformations, remove Control

unused transformations, or change the order in which transformations appear.

To edit Quick Transformations, click the Pencil icon on the quick transformations panel.

You can remove the default quick transformations for your structure if they are not needed. It will

not affect other structures.

Default Transformations
Default quick transformations are shown whenever a structure does not have customized quick

transformation or when a panel shows query result, clipboard or other non-structure content.

The following transformations are available:

Transformation Effect of applying this transformation

Unresolved Only issues with empty Resolution field are shown.

Assigned to me Only issues assigned to the current user are shown.

By Assignee All top-level issues are grouped by Assignee

By Status All top-level issues are grouped by Status

By Version All top-level issues are grouped by Version

Sub-tasks Sub-tasks are added to the structure under their parent tasks

1.4.9 Two-Panel Mode

When working with Structure on the Structure Board page, you can switch to the two-panel mode and thus

take the full advantage of the screen space.

The left panel always displays the structure widget or search and on the right panel you can open one of the

following:

Structure Plugin for JIRA

Page of 79 370

Another structure widget. In the widget you can open another structure and work with two structures

side by side or you can use it to run text/JQL search or show clipboard.

Issue details (see page 97). As you click an issue in the structure, you can see the issue details in

the panel on the right.

History (see page 109). You can see the list of changes done to the structure and navigate through

them to see the previous versions of the structure.

Other items details. If you have Structure.Pages installed, you can display the Confluence page

contents there.

You can switch to the two-panel mode using the button and menu in the Toggle Panels Main Structure

.Toolbar (see page 37)

Clicking the button opens/closes the second panel with the structure widget. By default the widget opens

with the JQL search and you can switch to text search, clipboard or another structure by clicking the JQL

label.

Structure Plugin for JIRA

Page of 80 370

1.

2.

3.

Resizing Secondary Panel
You can divide the horizontal space between a secondary panel and the main panel by dragging the

separating border.

Swapping panels
You can swap panels completely using corresponding quick action:

Open quick actions menu by pressing s+q shortcut;

Type 'swap' and find the swap action;

Apply the action by pressing enter.

Structure Widget on Secondary Panel
The structure widget that you open in the secondary panel is fully functional and differs very little from the

widget in the main panel on the left. In both of them you can open structures, run JQL and Text search and

open the clipboard.

Just like the main panel, it has its and the .panel toolbar view menu

You can also use the Main Structure Toolbar actions to work with the secondary panel widget. The toolbar

actions will be applied to the panel that is in focus. The focused panel is highlighted with a thin blue line at

the top.

The toolbar of the secondary panel has one extra function - hide/show the items that exist in the panel in the

right:

This is especially useful when you need to make sure that the structure in the main panel has all the issues

you've found using search in the secondary panel.

Issue Clipboard
The structure widget on the Structure Board allows you to see not only the structures and search results,

but also the clipboard contents. To see what you have in the clipboard, click the structure name or the

search type label and select Clipboard from the menu.

You can open it both on main and secondary panel (if in two-panel mode).

For details about using Issue Clipboard, see .Using Cut, Copy and Paste (see page 91)

Structure Plugin for JIRA

Page of 81 370

1.4.10 Changing Structure

There are several basic operations you can do with a structure. They include:

Adding existing issues and other items (see page 81) to the structure

Moving items (see page 84) inside the structure

Creating new items inside the structure

Removing items (see page 85) from the structure.

There are several ways to make these changes. Some of these operations can be applied to a group of

 and some to individual items only. See the respective subsections for more details.items (see page 86)

See also: Creating New Items (see page 99)

Adding Existing Issues to Structure
You can add an issue to a structure both from the and from the Structure Board (see page 12) Issue Page

.(see page 16)

On the Structure Board open the text or JQL search on a , find the issues secondary panel (see page 78)

you need and add them to a structure using , .drag-and-drop (see page 86) copy/paste (see page 91)

Instead of search you can also open a structure, which contains the items you are looking for and add them

to your structure from there.

You can also add multiple items at once. To do that, and add select the items you need (see page 35)

them using , .drag-and-drop (see page 86) copy/paste (see page 91)

On an Issue Page, select the structure where you need to add an issues and use the Place (see page 16)

button.

Structure Plugin for JIRA

Page of 82 370

Adding Issues to Structure
You can add an issue to a structure both from the and from the Structure Board (see page 12) Issue Page

.(see page 14)

On the Structure Board, use to find the desired issues and add them to a structure Search (see page 63)

using , , or the button on the search panel.drag-and-drop (see page 86) copy/paste (see page 88) Add

When searching, make sure the secondary panel is switched JIRA Search Results (see page 94)

on. Use button on the search panel.More Issues

On an Issue Page, if the issue you are viewing is not in the current structure, the Structure section contains

 and you can drag the issue to the current structure from Current Issue secondary panel (see page 96)

there. You can also . Besides, you can select a different structure using Structure Selector (see page 14)

use Search on the issue page as well and add other issues to the structure.

Adding issues to a structure can be .undone (see page 93)

Moving Issues within Structure

Basic Moves
There are four basic operations that change structure. All of them are available on the toolbar, and they also

can be done from keyboard. Hover mouse pointer over the operation button in the toolbar and a tooltip with

the keyboard shortcut will appear.

Structure Plugin for JIRA

Page of 83 370

Operation Keyboard

Shortcut

What it does

Move Up Ctrl + Up Without changing the issue's parent, moves the issue up and places it before

the previous child - if possible.

Move

Down

Ctrl +

Down

Without changing the issue's parent, moves the issue down and places it after

the next child - if possible.

Level Up /

Unindent

Ctrl + Left Makes the issue follow its current parent. The new issue's parent is the

previous parent's parent. (Confusing enough? Simply speaking, you're moving

the issue one indent level to the left.)

Level

Down /

Indent

Ctrl +

Right

Move the issue to be a sub-issue of its current preceding sibling. You guessed

it, it's one indent level to the right.

When you move an issue that has sub-issues, the whole sub-tree is moved.

When you make changes in the structure, they are uploaded to the server asynchronously,

allowing you to continue working regardless of the network delay. You can do a rapid succession

of the basic moves, for example, regardless of the time it takes to effect these changes on the

server side. There's a icon in the widget status bar that tells whether there are synchronizing

pending uploads or downloads.

Moving an Issue to an Arbitrary Position
The basic moves can only adjust issue position one place at a time, so if you need to place an issue at a

specific position not close to its current position, you can do that with or Drag-and-Drop (see page 86) Cut

. Cut & Paste also allows to copy hierarchy from one structure to another.& Paste (see page 88)

Moving issues with Drag-and-Drop or Cut & Paste can be .undone (see page 93)

Multiple Selection
You can select multiple issues and move them all together in one action. Move Up/Down and Level Up

/Down support moving multiple issues only if they are at the same level in the hierarchy and under the same

parent. Drag & Drop and Copy & Paste support multiple issue selection in any configuration.

See also: Selecting Multiple Issues (see page 33)

Structure Plugin for JIRA

Page of 84 370

Moving Items within Structure

Basic Moves
There are four basic operations that change structure. All of them are available on the toolbar, and they also

can be done from keyboard. Hover mouse pointer over the operation button in the toolbar and a tooltip with

the keyboard shortcut will appear.

Operation Keyboard

Shortcut

What it does

Move Up Ctrl + Up Without changing the items's parent, moves the item up and places it

before the previous child - if possible.

Move Down Ctrl + Down Without changing the items's parent, moves the item down and places it

after the next child - if possible.

Level Up /

Outdent

Ctrl + Left Move the item one level up. This will place the item after its parent.

Level Down /

Indent

Ctrl + Right Move the item to be a sub-issue of its current preceding sibling.

When you move an item that has sub-items, the whole sub-tree is moved.

When you make changes in the structure, they are uploaded to the server asynchronously,

allowing you to continue working regardless of the network delay. You can do a rapid succession

of the basic moves, for example, regardless of the time it takes to effect these changes on the

server side. There's a icon in the widget status bar that tells whether there are synchronization

pending uploads or downloads.

Moving an Item to an Arbitrary Position
The basic moves can only adjust item position one place at a time, so if you need to place an item at a

specific position not close to its current position, you can do that with or Drag-and-Drop (see page 86) Cut

. Cut & Paste also allows to copy hierarchy from one structure to another.& Paste (see page 91)

Moving item with Drag-and-Drop or Cut & Paste can be .undone (see page 93)

Structure Plugin for JIRA

Page of 85 370

Multiple Selection
You can select multiple item and move them all together in one action. Move Up/Down and Level Up/Down

support moving multiple item only if they are at the same level in the hierarchy and under the same parent.

Drag & Drop and Copy & Paste support multiple item selection in any configuration.

See also: Selecting Multiple Items (see page 35)

Removing Items from Structure
To remove an item from the current structure, select this item and press button on the keyboard or Delete

click button on the toolbar. The item is removed with all its children item.Delete

You can and remove them all in one action.select multiple items (see page 35)

Removing an issue from a structure does not delete the issue itself. It just removes it from the

current structure.

Removing items can be .undone (see page 93)

Changing Multiple Issues
You can apply most of the changes to multiple issues in one action. Select multiple issues (see page 33)

and use toolbar, keyboard shortcut or drag and drop.

Some actions may have limitations of applicability when multiple issues are selected. For example, if you

select both a parent issue and a sub-issue, the "Unindent" action will not be possible.

The following actions work with the multi-selection:

Drag and drop (see page 86) lets you move a selection of issues within a structure or add them to a

structure from the , such as Issue Clipboard or Search secondary issue panels (see page 94)

Results.

Cut and paste (see page 88) allow you to move issues both within a structure and between different

structures.

Remove button or key lets you remove multiple issues from the structure.Delete

Toolbar buttons , , , are allowed on multiple issues only if all Move Up Move Down Indent Unindent

issues in the selection are at the same level in hierarchy and have the same parent issue.

Bulk Change (see page 107) button lets you use JIRA bulk change wizard with selection of issues

from the structure.

See for details about working with multi-selection.Selecting Multiple Issues (see page 33)

Structure Plugin for JIRA

Page of 86 370

Changing Multiple Items
You can apply most of the changes to multiple items in one action. and Select multiple items (see page 35)

use toolbar, keyboard shortcut or drag and drop.

Some actions may have limitations of applicability when multiple items are selected. For example, if you

select both a parent items and a sub-items, the "Outdent" action will not be possible.

The following actions work with the multi-selection:

Drag and drop (see page 86) lets you move a selection of items within a structure or add them to a

structure from the , such as Clipboard or Search Results.secondary panels (see page 78)

Cut and paste (see page 91) allow you to move items both within a structure and between different

structures.

Remove button (see page 85) or key lets you remove multiple items from the structure.Delete

Toolbar buttons , , , are allowed for multiple items only if all items Move Up Move Down Indent Outdent

in the selection are at the same level in hierarchy and have the same parent item.

Bulk Change (see page 107) button lets you use JIRA bulk change wizard with selection of issues

from the structure.

See for details about working with multi-selection.Selecting Multiple Items (see page 35)

Using Drag and Drop
Drag-and-drop feature allows you to quickly move or copy items or selections of items within the structure or

add them from the to the structure.secondary panels (see page 78)

Basic Drag-And-Drop

To grab an item, move your mouse pointer over the "handle" of the item (the pointer will change to when

it's over the handle).

Then press and hold down the mouse button and start moving the issue.

You can also drag items by grabbing them anywhere in the row. To do that, press on the Shift

keyboard and press mouse button anywhere on the row except the link. It is especially useful if

you need to outdent an item, since the drag handle is usually close to the edge of the screen.

After dragging has started you can release keyboard button.Shift

Structure Plugin for JIRA

Page of 87 370

As you move the item over the grid, the structure will rearrange itself to show the possible positions for the

dragged items. Once the item is in the correct place, release the mouse button and the item will be moved.

Drag

direction

Effect

Up / Down Moves items up and down the hierarchy without changing the indentation level, if

possible.

Left / Right Changes indentation level of the moved items, if possible – without moving them up or

down.

Moving vs Copying
As you move an item you will also see a hint saying if the item will be or . As you move items moved copied

inside the structure, the default behaviour is moving. If instead of moving an item, you want to create a copy

of it in a new place, hold the (for Mac) or (for PC) key as you move it.Alt Ctrl

If you have two structures open side by side and you drag an item from one to another, the default

behaviour is copying (so the item ends up in both structures). If you want to move it from one structure to

another (so it's removed from the original structure) hold the (for Mac) or (for PC) key as you drag Alt Ctrl

the item.

Dragging Multiple Items
To move more than one issue, first (start with hitting button) select multiple issues (see page 35) Space

and then move them using the "handle" of one of the selected items. Holding and dragging by any Shift

other place on the item row also works.

If you have multiple items selected, but start dragging an item that's not included in the multiple

selection, only that item is dragged.

Cancelling Drag
If you need to cancel drag-and-drop without dropping items at some random position, hit keyboard Escape

button.

Drag-and-drop can also be .undone (see page 93)

Impossible Moves
If it's not possible to move the dragged items onto the current position (for example, due to structure

permission settings), you will see the message.Drop is not possible

Structure Plugin for JIRA

Page of 88 370

1.

Scrolling Structure While Dragging
If you have a large structure, you may need to have Structure grid scrolled up or down while you're dragging

items. Just move the items over the top or bottom edge of the structure widget and the structure will be

scrolled up or down. The further you move the dragged items, the faster the scrolling is.

Using may be more effective than Drag-and-Drop if you need to move Cut & Paste (see page 91)

several items to distant positions.

Using Copy and Paste
Copy/cut and paste is a handy way to move issues around.

When you copy or cut issues (with toolbar button or Ctrl+C / Ctrl+X (Command+C / Command+X), selected

issues are put into . When you paste with Ctrl+V (Command+V), issues are Issue Clipboard (see page 80)

added the currently focused issue. You can use Ctrl+Shift+V (Command+Shift+V) to paste issues from after

clipboard currently focused issue.under

While is nice and visual way to rearrange issues, it might get drag and drop (see page 86)

tedious if you have to drag issues across long distances. Copy and paste solves that problem

perfectly – copy issues to clipboard and scroll through the structure looking for a place to paste

issues to.

See for details about multi-selection.Selecting Multiple Issues (see page 33)

Copy / Paste Scenarios
There are two main scenarios for using the Issue Clipboard:

Please note that if you really have some text selected on the page, keyboard Copy/Cut/Paste

shortcuts would operate on that text – you'll get a copy of the text in the system clipboard, and

Structure clipboard will not be affected.

Copying Issues Between Structures
The contents of the clipboard is preserved in the , which allows you to copy current browser window

issues from one structure and paste them into another.

To copy issues (with their sub-issues) from one structure to another do the following:

Cut
First add the desired issues to the clipboard:

Structure Plugin for JIRA

Page of 89 370

1.

2.

3.

4.

5.

1.

2.

3.

4.

Open the structure to copy from.

Select the issues you want to cut. Either select a single issue, or use .multiple select (see page 33)

Click the button on the structure toolbar (or press or).Cut Ctrl+x Command+x

Selected issues will be added to the clipboard and marked with a small scissors icon .

The icon with the number of the cut issues will appear in the top right corner of the Clipboard

structure widget.

Note, that the cut issues are not removed from the structure.

If the cut issue contains sub-issues, these sub-issues are not automatically cut with their parent.

You need to select them explicitly. To cut an issue and all of the children, please select a parent

issue, press Shift+Arrow Right (this selects an issue and all of the sub-issues) and then the Cut

button.

Paste
After you have cut the issues, you can now paste them to any other structure:

In the same browser window, switch to a desired structure (you can use Structure Board or any

).other JIRA page with Structure (see page 12)

If want to see the panel, you can open it clicking the icon . However, Issue Clipboard Clipboard

this is not necessary to use the Cut/Paste function.

In the structure grid select the issue after which the issues from the clipboard should be placed.

Either click button on the toolbar (or press or) to place the issues Paste Ctrl+v Command+v after

the selected issue at the same indentation level, or press (or on Ctrl+Shift+v Command+Shift+v

Mac) to place the issues the selected issue (as the children).under

When you paste issue hierarchy from a different structure, it's possible that the target structure already

contains some of the issues. In this case, iterative is performed, where issue is either moved to a Merge

new position if it is present in the structure or added if it is not present.

If you need to copy the same set of issues to several different structures, you can use drag-and-

drop operation to move the issues from the secondary panel to the main grid instead of the Paste.

In this case the issues will not be removed from the clipboard.

Structure Plugin for JIRA

Page of 90 370

1.

2.

3.

4.

1.

2.

3.

If the cut issue contains sub-issues, these sub-issues are not pasted with their parent unless they

were manually selected.

The Paste operation can be .undone (see page 93)

Moving Issues Within A Structure
Instead of using function to move the issues within a structure, you can use drag-and-drop (see page 86)

the cut/paste feature. This is especially convenient, if you have a large structure and, for example, need to

move some issues from the top of the structure to the bottom or the other way around.

Cut
First add the desired issues to the clipboard:

Select the issues you want to cut. Either select a single issue, or use multiple selection (see page 33

.)

Click the button on the structure toolbar (or press or).Cut Ctrl+x Command+x

Selected issues will be put into the clipboard and marked with a small scissors icon .

The icon with the number of the cut issues will appear in the top right corner of the Clipboard

structure widget.

Note, that the cut issues are not removed from the structure.

If the cut issue contains sub-issues, these sub-issues are cut with their parent.

Paste
After you have cut the issues, you can now paste them back to any place in the structure:

If want to see the panel, you can open it clicking the icon . However, Issue Clipboard Clipboard

this is not necessary to use the Cut/Paste function.

In the structure select the issue after which the issues from the clipboard should be placed.

Either click button on the toolbar (or press or) to place the issues Paste Ctrl+v Command+v after

the selected issue at the same indentation level, or press (or on Ctrl+Shift+v Command+Shift+v

Mac) to place the issues the selected issue (as the children).under

Structure Plugin for JIRA

Page of 91 370

1.

2.

3.

If the cut issue contains sub-issues, these sub-issues are pasted with their parent.

After Paste the clipboard is cleared.

The Paste operation can be .undone (see page 93)

Using Cut, Copy and Paste
Copy/cut and paste is a handy way to move items around.

When you copy or cut issues (with toolbar button or Ctrl+C / Ctrl+X (Command+C / Command+X), selected

items are put into Clipboard. When you paste with Ctrl+V (Command+V), items are added the after

currently focused items. You can use Ctrl+Shift+V (Command+Shift+V) to paste items from clipboard under

currently focused issue (as its children).

While is a nice and visual way to rearrange items, it might get drag and drop (see page 86)

tedious if you have to drag items across long distances. Copy and paste solves that problem

perfectly – copy items to clipboard and scroll through the structure looking for a place to paste

them to.

See for details about multi-selection.Selecting Multiple Items (see page 35)

Copy / Paste Scenarios
There are two main scenarios for using the Issue Clipboard:

Please note that if you have some text selected on the page, keyboard shortcuts Copy/Cut/Paste

would operate on that text – you'll get a copy of the text in the system clipboard, and Structure

clipboard will not be affected.

Moving Items Between Structures
The contents of the clipboard is preserved in the , which allows you to copy/cut current browser window

items in one structure and paste them into another.To copy items (with their sub-items) from one structure

to another do the following:

Cut/Copy
First add the desired items to the clipboard:

Open the structure to cut/copy from.

Select the items you want to cut or copy. Either select a single item, or use multiple select (see page

.35)

Structure Plugin for JIRA

Page of 92 370

3.

4.

1.

2.

3.

1.

Click the button on the structure toolbar (or press or Cut/Copy Ctrl+x/Ctrl+c Command+x

)./Command+c

Selected items will be added to the clipboard and marked with a small scissors icon for cut and

the clipboard icon for the copied .

Note, that the cut items are not removed from the structure until you paste them into another

structure.

If the copied item contains sub-items, these sub-items are not automatically copied with their

parent. You need to select them explicitly. To copy an item and all of the children, select a parent

item, press Shift+Arrow Right (this selects an item and all of the sub-issues) and then the Copy

button.

Paste
After you have cut/copied the items, you can now paste them to any other structure:

In the same browser window, switch to a desired structure (you can use Structure Board or any

).other JIRA page with Structure (see page 12)

In the structure grid select the item after which the items from the clipboard should be placed.

Either click button on the toolbar (or press or) to place the items the Paste Ctrl+v Command+v after

selected issue at the same indentation level, or press (or on Mac) Ctrl+Shift+v Command+Shift+v

to place the items the selected item (as the children).under

When you paste items from a different structure, it's possible that the target structure already contains some

of them. In this case the existing items will not be affected and new copies will be created as you paste.

If you need to copy the same set of issues to several different structures, you can open the

clipboard in the and use drag-and-drop operation to move the secondary panel (see page 78)

issues instead of using Paste. In this case the issues will not be removed from the clipboard.

The Paste operation can be .undone (see page 93)

Moving Items Within A Structure
Instead of using function to move items within a structure, you can use the cutdrag-and-drop (see page 86)

/paste feature. This is especially convenient, if you have a large structure and, for example, need to move

some items from the top of the structure to the bottom or the other way around.

Cut
First add the desired items to the clipboard:

Structure Plugin for JIRA

Page of 93 370

1.

2.

3.

1.

2.

3.

Select the items you want to cut. Either select a single item, or use .multiple selection (see page 35)

Click the button on the structure toolbar (or press or).Cut Ctrl+x Command+x

Selected items will be added into the clipboard and marked with a small scissors icon .

The cut issues are not removed from the structure until you paste them to a new location.

If the cut issue contains sub-issues, these sub-issues are cut with their parent.

Paste
After you have cut the issues, you can now paste them back to any place in the structure:

If want to see the panel, you can open it in the . However, Clipboard secondary panel (see page 78)

this is not necessary to use the Cut/Paste function.

In the structure select the item after which the items from the clipboard should be placed.

Either click button on the toolbar (or press or) to place the items the Paste Ctrl+v Command+v after

selected item at the same indentation level, or press (or on Mac) to Ctrl+Shift+v Command+Shift+v

place the items the selected item (as the children).under

If the cut item contains sub-items, these sub-item are pasted with their parent.

After Paste the clipboard is cleared.

The Paste operation can be .undone (see page 93)

Undoing Changes
Structure lets you undo a potentially destructive operation if you realize that you have made a mistake or

that the result is not what you expected. These operations can be undone:

Adding (see page 81) items from search results;

Removing (see page 85) items from a structure;

Drag-and-Drop (see page 86);

The Paste operation of a sequence.Cut & Paste (see page 91)

When you perform an operation that can be undone, a corresponding hyperlink appears in the footer at the

bottom of the Structure widget. For example, if you drag and drop some items, the link will read "Undo Drag

and Drop". If you click the link, your changes are reverted, and the link itself changes to a "redo" link,

allowing you to reapply the operation.

Structure Plugin for JIRA

Page of 94 370

When you , a notification pop-up with an "undo" link also appears at the top of remove items (see page 85)

the page.

Currently only the last operation can be undone, but we are working on the new functionality for

Undo and it will be added in the future versions.

If the operation being undone has been uploaded to the server already, then a new operation (or

several operations) will be uploaded in order to revert the changes. You will see both the original

operation and the undo operation in the .structure history (see page 109)

1.4.11 Secondary Issue Panels

Secondary Issue Panels are the auxiliary grids, which can open next to the structure main grid. Even though

they serve slightly different purposes, they work very similarly. They display a set of issues, which you can

add to the structure grid using the or .drag-and-drop (see page 86) cut & paste (see page 80)

Structure has the following secondary panels:

Configuring Secondary Panel View
You can configure the columns displayed on the secondary panel in the same way it's done on the primary

structure panel - see . The secondary panel configuration is the same Customizing Columns (see page 43)

for all secondary panels and is stored like the main panel's configuration.

Resizing Secondary Panel
You can divide the horizontal space between a secondary panel and the main panel by dragging the

separating border.

Secondary Panels Are Read-Only
Although they seem to work in the same way the structure panel works, you cannot edit or create issues on

the secondary panel, nor can you move issues around there.

JIRA Search Results
JIRA Search Results panel is displayed when the is on, there are issues in the Search (see page 63)

search result that are not in the structure, and button is .More Issue turned on (see page 71)

Structure Plugin for JIRA

Page of 95 370

As you start typing your search query, apart from the highlighted/filtered issues belonging to the current

structure, you can also see those that match your search criteria, but are not included in the structure. They

will be displayed in the JIRA Search Results panel, which opens to the right of the main grid.

Besides moving issues from the secondary panel with drag-and-drop or cut/paste, you can use Add All

button on the search toolbar or keyboard shortcuts specific to the search field.

See for the details.Searching Outside Structure (see page 71)

The search is run through all projects for which the Structure plugin is enabled (see Selecting

).Structure-Enabled Projects (see page 225)

Removed Issues
Removed Issues panel contains the issues that you have just removed from the current structure - just in

case you need them back.

Once you remove an issue from a structure it is saved to the secondary panel. If you Removed Issues

have removed an issue by mistake, you can open Removed Issues panel and reinsert it back into the

structure.

Structure Plugin for JIRA

Page of 96 370

The Trash icon in the top right corner of the structure widget indicates if there are any issues in the

Removed Issues panel. To show or hide the panel, click the Trash icon.

To add issues back to the structure, select the desired issues in the Removed Issues panel and move them

to the desired location in the structure using or drag-and-drop (see page 86) cut and paste (see page 80)

operations.

Contrary to the , the contents of the Removed Issues panel does Issue Clipboard (see page 80)

not survive page reload. So if you navigate to a different page, you will no longer be able to view

the removed issues.

Current Issue
The secondary pane is shown in the structure widget on the , if Current Issue Issue Page (see page 14)

the displayed issue is not present in the currently selected structure.

With this secondary pane you can immediately see that the issue is not in the structure and, if necessary,

add it to the structure on the spot .using drag-and-drop (see page 86)

To hide/show current issue, click the Pin icon in the top right corner of the structure widget.

1.4.12 Working with Issues

Structure lets you work with issues right in the structure widget.

Structure Plugin for JIRA

Page of 97 370

Viewing Issue Details
As you work with a structure or search results on the Structure Board, you can open the full issue

information in the issue details panel on the right.

By default the issue details panel opens as you click the issue link (key or summary). You can also access it

via the menu:Toggle Panels

You can define what should happen when you click the issue link in the structure. By default the

Issue Details panel is opened. If you don't like this behaviour, you can open the standard JIRA

issue page instead, or do nothing. You can switch between these two options in the Toggle Panels

menu in the section.Item Link Action

Working with issue
In the details panel, you can work with the issue in the same way as in the Issue Navigator: , edit view and

, , , , and do many other things. We refer you add comments share view history view development information

to the for more information on that.JIRA documentation

https://confluence.atlassian.com/display/JIRA/Editing+an+Issue
https://confluence.atlassian.com/display/JIRA/Commenting+on+an+Issue
https://confluence.atlassian.com/display/JIRA/Commenting+on+an+Issue
https://confluence.atlassian.com/display/JIRA/Emailing+an+Issue
https://confluence.atlassian.com/display/JIRA/Viewing+an+Issue%27s+Change+History
https://confluence.atlassian.com/display/JIRA/Viewing+the+Code+Development+Information+for+an+Issue
https://confluence.atlassian.com/display/JIRA/Working+with+an+Issue

Structure Plugin for JIRA

Page of 98 370

To see details for another issue in the structure, simply by clicking it or select another issue (see page 32)

pressing arrow keys.

To close the issue details panel, click the close button in its top right corner.

You can use Structure's when the details panel is shown. Details inline editing (see page 102)

panel will be disabled while you are in the edit mode.

You can also open issue page in a separate browser tab or window by clicking issue key or

summary in the table while pressing (Mac: or on the keyboard.Ctrl Cmd) Shift

Separate view for issue details
As the details panel is typically wide, the space for the main Structure panel is constrained, so you might

want to use a different view with less columns when the details panel is open. By default, a compact view

with only and columns is used.Key Summary

Structure remembers views used with and without issue details, and switches between them automatically

when you open or close issue details.

Default views and the list of views in the View Menu for both modes (with and without issue

details) are configured in .View Settings (see page 132)

Resizing details panel
You can divide the horizontal space between the details panel and the main panel by dragging the

separating border. Structure remembers the ratio of the details panel width to the window width, and it will

maintain that ratio when you open Structure Board the next time or resize your browser's window.

Details panel width is remembered for the selected view. Thus, if you select another view and adjust the

details panel width, the original width will be restored when you select the original view.

Details and secondary panels
Details panel displays information only for the issues selected in the main panel. If you have the secondary

panel open when you click an issue in the main panel, will be hidden while secondary panel (see page 78)

the details panel is open and restored back when the details panel is closed.

Using keyboard
Use or to show/hide the details panel.o Shift+o

As with the , you can switch keyboard focus between panels using secondary issue panels (see page 78)

the (backslash) shortcut. When the focus is in the issue details panel, keys like or (also \ PgUp, PgDn,

) scroll the details panel, while all other work Home, End, or , , , Structure shortcuts (see page 206)

as usual (including and which select next/previous issue in the structure). All shortcuts available to you j k

Structure Plugin for JIRA

Page of 99 370

1.

2.

3.

4.

1.

2.

3.

4.

5.

on the Issue Page should also work as usual: e.g., (comma) should open field selector, should open Edit , e

Issue dialog, etc.

When you open the details panel with , the details panel is automatically focused. doesn't switch o Shift+o

focus.

Creating New Issues
Structure plugin lets you create new issues and folders right in the structure widget or use standard "Create

Issue" dialog and add newly created issue to structure automatically.

Quickly Add a New Issue

Use the button in the toolbar and select or press . Use to create Add New Issue Enter Shift+Enter

an issue as a sub-issue of the currently selected issue.

Specify the issue summary.

Make sure you have the checkbox cleared, select the project and the issue type.Categories

Press or click to finish editing and create a new issue on the server.Enter Done

Hit to cancel creating a new issue.Escape

Create a New Issue Based on Existing Issue
As you create a new issue, you can copy Project, Type and most other attributes from the previously

selected issue.

Select an issue in the structure.

Use the button in the toolbar and select or press . Use to create Add New Issue Enter Shift+Enter

an issue as a sub-issue of the currently selected issue.

Specify the issue Summary.

Make sure checkbox is selected.Categories: Copy from...

Press or click to finish editing and create a new issue on the server.Enter Done

Structure Plugin for JIRA

Page of 100 370

When you create an issue this way, the following fields are copied from the issue that was previously

selected:

Project and Issue Type

Parent Issue if the cloned issue is a JIRA sub-task

Component, Affects Versions, Fix Versions, Environment, Assignee, Priority, Security Level

All custom fields that are by the fields configuration for that particular Project and Issue required

Type

Please note that the archived versions are skipped when copying Affects Versions, Fix Versions and

version-based custom fields.

Editing Other Fields during Creation
The New Issue panel only allows you to select the project and the issue type or copy some fields from

another issue, but sometimes you may want to edit more fields (for example, if you have some required

fields).

To be able to edit them, you need to add the corresponding columns to your current view before you start

creating a new issue. Then, when editing a field, you can navigate to other fields by using , , Tab Shift+Tab

or keyboard shortcuts, or simply by clicking a cell you wish to edit.Ctrl+Alt+arrows ()

If some fields are required and do not have default values, and you send a new issue to the server

without those required fields, the operation will fail – but you can fix it, just add the required fields

as columns, edit the field values and hit again. The other way to achieve this is to use Done

 functionality and use standard dialog to provide all required values.Switch to Dialog

You cannot create a JIRA sub-task from scratch in the structure widget, but if you already have

one in the structure, you can create a sub-task with the same parent using the copying option (this

refers to JIRA sub-task issue type, not Structure sub-issues).

Using "Create Issue" Dialog
You can click in any editor panel to display JIRA's dialog, which allows to Switch To Dialog Create Issue

fill in fields not editable or not currently displayed in structure widget.

Structure Plugin for JIRA

Page of 101 370

Once you're done, you can click and the created issue will be automatically added to the structure.Create

You can switch back to structure widget editor by clicking This will preserve all entered Switch to Panel.

data and populate existing columns if possible. You can also switch back to dialog mode at any time. The

system will remember the last used mode (dialog or panel) and use it next time you start creating a new

issue.

You can click if you want to create an issue, but don't want to add issue to the Don't Add to Structure

structure.

Creating JIRA Agile (GreenHopper) Epics
GreenHopper 6.1 or later introduces the Epic Name custom field, which is required by default for any epic.

To simplify the process of creating multiple epics in the widget, Structure will copy the new epic's summary

to its Epic Name field, if the latter is empty. This way you can simply type an epic name into the Summary

field, and proceed to the next issue. The copying only happens once, when an epic is created. You can

change the summary or the epic name at a later time if you want them to be distinct. Of course, you can

also add the Epic Name column to the table and enter new epic names explicitly.

Structure Plugin for JIRA

Page of 102 370

Additional Keyboard Shortcuts
Immediately after you have press or or to start editing a new issue, you can also Enter Shift+Enter Insert

use keyboard to change the creation mode.

Use the following keyboard shortcuts :while the summary field is still empty

Enter or

Tab

Cycle through Project, Issue Type and Summary field. When Project or Type field is

selected, use arrows or start typing to select a project or type.

Ctrl+Enter Toggles cloning mode (checkbox).Categories: Copy

Alt+Enter Switches editor to dialog mode and back to panel.

If you already have entered the summary, you can use mouse to change creation mode, project or

issue type.

Uploading New Issue to the Server
After you've provided the summary and pressed , the structure widget displays only the Summary field Enter

for a short moment as it takes some time to actually create an issue in JIRA. After the widget receives the

confirmation from the server that the issue has been created, other columns for that issue are loaded.

While the new issue is being uploaded to the server, you can start creating the next issue.

Using Edit Mode
Note that when you are creating a new issue, Structure widget is in the – you can Edit Mode (see page 102)

also enter values for other fields besides Summary by clicking on the field to be modified, or using keyboard

. When you have hit or clicked , the new issue will be created with shortcuts (see page 104) Enter Done

those values you have entered.

Editing Issues
In the Edit Mode, Structure widget lets you change fields of an issue right on the issue grid. This lets you

quickly update issues without leaving the web page.

Editing works on every page where Structure widget is displayed. However, there are some limitations when

.editing issues from the Structure Gadget (see page 106)

You need Edit Issue permission on the issue to edit its fields. If you don't have the permission, a

 is shown.read-only flag (see page 62)

Structure Plugin for JIRA

Page of 103 370

Entering Edit Mode
You use the Edit Mode when you are editing an existing issue or . To creating a new issue (see page 99)

edit a value displayed in the Structure widget, do one of the following:

double-click that value;

select the issue and click button on the toolbar;Edit

select the issue and use a keyboard shortcut – or Tab F2.

If the value is a link (like in the Summary or Assignee fields), you can still double-click it: the

browser will not open the link but will start editing instead.

If you are already in the Edit Mode, you can simply the value you need to edit, or navigate there with click

special keyboard shortcuts (see).Using Keyboard in Edit Mode (see page 104)

In the Edit Mode:

a field editor is shown in the currently edited cell;

the edited column is highlighted in the table header;

Edit button on the toolbar is toggled on.

Changing Fields
When editing a field, make the change with the field editor and click (or hit) to have the change Done Enter

saved on the server. If you'd like to change several fields at once, click the other field you need to change or

use , , or to navigate and edit other fields. The changes will be saved on the Tab Shift+Tab Ctrl+Alt+arrow

server as soon as you have finished editing, or switched to editing another issue.

If your JIRA is configured to send e-mail notifications about changes, then a notification will be sent as soon

as you have finished editing an issue - see .On E-mail Notifications (see page 107)

You can hit to cancel changes that you have done to the edited field and exit Edit Mode. Click Escape

 link to restore the original value of the field and stay in the Edit Mode for further editing.Revert Field

Hitting only reverts the value of the currently edited field. Changes to other fields remain. Escape

So if you edit fields Summary, Assignee and Components, and hit Escape while editing

Components, the changes to Summary and Assignee will still be uploaded!

Structure Plugin for JIRA

Page of 104 370

The Field Editor
The editor for each field is the same as the one used on the Edit Issue page, but is designed to be a bit

more compact.

All help texts, descriptions and field labels are not shown. Hover mouse pointer over the input field to

see help and field description.

Normally, the editor is aligned with the top left corner of the edited cell. However, if it does not fit

horizontally on the page, its position is adjusted and a small blue triangle is shown to mark the place

where the edited cell starts. (You can also look at the table header to see which field is being edited.)

Allowed Changes
In the Edit Mode, you can change fields that are added to the Edit Screen for the edited issue. If a field is

not on the Edit Screen, or if it can't be edited directly (such as the Status or Resolution fields), the editor

won't be shown or it will display a corresponding error.

Additionally, each field may have particular limitations – such as Original Estimate being not editable after

work has been logged (in JIRA's legacy time tracking mode).

Using Keyboard in Edit Mode
You can use keyboard shortcuts to quickly edit issues in the Structure widget.

Entering Edit Mode

Keyboard

Shortcut

Action

Tab or F2 Edit issue. The editing starts for the Summary field of the currently selected issue, or for

the field that was edited previously.

Enter

Insert or

Shift+Enter

Enters Edit Mode for a new issue or sub-issue.

Keyboard Shortcuts in the Edit Mode

Keyboard

Shortcut

Action

Enter

Ctrl+Enter (in

large text fields)

Exit Edit Mode and save all values on the server.

Escape

(hit twice in combo

boxes and drop-

downs)

Revert the field to the value that was there before editing has started and exit Edit

Mode. Note that if there are pending changes in other fields, they will be saved on

the server.

Tab Edit next editable field. If the currently edited field is the last editable field for the

selected issue, start editing next issue.

Structure Plugin for JIRA

Page of 105 370

Keyboard

Shortcut

Action

Shift+Tab Edit previous editable field. If the currently edited field is the first editable field for

the selected issue, start editing previous issue.

Ctrl+Alt+ Edit the same field of the next editable issue.

Ctrl+Alt+ Edit the same field of the previous editable issue.

Ctrl+Alt+ Edit next editable field. Unlike , this combination will not move editing to the Tab

next issue.

Ctrl+Alt+ Edit previous editable field. Unlike , this combination will not move editing Shift+Tab

to the previous issue.

 or Alt+

(in drop-downs)

Opens drop-down list or selects the next value in the list. If the drop-down is shown,

use to select a value or to cancel selection.Enter Escape

Alt+

(in date/time fields)

Opens date picker. Use arrows to navigate dates in the date picker and use Enter

to select a date or to close date picker.Escape

 and Move between multiple fields on the same editor (for example, between the two

editors of a Cascade custom field). Does not work if the input is a text field.

 and

(for checkboxes

and radio buttons)

Move between multiple fields on the same editor (for example, between the

checkboxes of a Multiple Checkboxes custom field).

Space Select / unselect a checkbox or a radio button.

, , , Shift+ Shift+ Select / unselect values in a Multi-Select custom field.

Note that key moves editing to the next cell, so if you have multiple input fields on a single Tab

field editor, you need to use arrow keys to switch between them.

See Also: Keyboard Shortcuts (see page 206)

Correcting Input Errors
If you enter an incorrect value when editing a field, or if there are any other problems saving that value on

the server, Structure widget will display a warning message and mark the cells with the problems.

Click the warning message or the cell with the error to enter Edit Mode, see problem details and correct the

error. You can:

correct the value and hit or click to try to save the values on the server again, orEnter Done

click to restore a previous value of the field, known to be valid, orRevert Field

click to cancel all changes to this issue, including possible changes to other fields.Cancel Changes

Structure Plugin for JIRA

Page of 106 370

You can edit other issues and work with the Structure widget before fixing the editing problem.

However, it is advised to correct the error as soon as possible.

Input Errors when Creating a New Issue
If the error happens when saving a new issue on the server, saving any further changes on the server is

suspended – until the error is fixed or the creation of the new issue is cancelled. This is a necessary

measure as the success of the following changes may depend on the success of the creation of that new

issue.

When you have errors in the fields of a new issue, fix them as soon as possible or cancel the

creation of that issue. Otherwise, any further changes are not uploaded until the problem is fixed

and you risk losing them!

You can cancel creation of a new issue if you select it and click button or hit key.Delete Delete

Editing from Gadget
Structure Dashboard Gadget allows editing issues too, but due to some incompatibilities between field

editors and gadget framework, not all fields can be edited.

The following fields are editable from Structure Gadget:

Summary

Assignee

Issue Type

Priority

Reporter

Security Level

Original Estimate

Remaining Estimate

To edit other fields, open Structure Board or issue page or any other page with the structure.

Structure Plugin for JIRA

Page of 107 370

1.

2.

3.

4.

To be able to edit the fields in the gadget, the user should have permissions to edit them and the

fields should be present on the Edit Screen.

On E-mail Notifications
Usually, when an issue is edited, an e-mail notification is sent to everyone involved with that issue.

When editing an issue with the Structure widget, the changes are saved on the server and the e-mail

notification is sent when you:

hit button;Done

or start editing another issue.

So if you switch from editing one field of an issue to editing another field of the same issue immediately, no

update will have happened and no mail will have been sent yet.

If you need to change several fields of an issue and avoid multiple e-mails being sent, edit one

field then navigate to the next field. Only hit or when you have finished editing all Done Enter

fields.

To switch from editing one field to editing another field, you can:

click on another field that you need to edit;

use Tab, Shift-Tab, Ctrl+Alt+arrows to move to the next/previous keyboard shortcuts (see page 206)

fields.

So if you edit a field, click Done, then edit another field - that's two edits and there will be two notifications. If

you edit a field, then edit another field, and only then click Done - that's one edit and one notification.

Bulk Change
With Structure, you can quickly and open JIRA's standard bulk select multiple issues (see page 35)

change wizard for those issues.

Select issues by clicking on issue selectors, or pressing , , or other Space Shift+Space Keyboard

 for selecting issues.Shortcuts (see page 206)

Click action on the panel.Bulk Edit

Standard JIRA bulk operation wizard opens. Select the action you'd like to take and proceed.

At the end, the browser will be redirected back to Structure Board.

Structure Plugin for JIRA

Page of 108 370

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

Cloning Multiple Issues
Structure allows you to copy the whole structure and clone all issues in the structure. See Copying Structure

.and Cloning Issues (see page 136)

If you need to clone only some of the issue in the structure, you can use the following procedure:

Select issues you'd like to clone using .multiple selection (see page 35)

Use action on the toolbar (or hit Ctrl+C / Command+C) to copy the issues to the Copy Issue

.Clipboard (see page 91)

Use menu and create a new temporary structure, let's call it .Structure | Create Structure T1

Open the new structure and use action to add issues from clipboard.Paste

Copy and clone structure – see . Let's name T1 Copying Structure and Cloning Issues (see page 136)

the resulting copy .T2

Open , select all issues (use Ctrl+A / Command+A).T2

Use issue clipboard in the same way to copy cloned issues back to the structure where they are

needed.

Delete structures and .T1 T2

Using JIRA Actions
Structure widget lets you use JIRA actions available for the issues from the JIRA's Action & Operations

Drop-Down and JIRA keyboard shortcuts for the most frequent actions.

Using Actions Drop-Down
Structure widget has drop-down menu with actions and operations available for the selected issue - just as

the JIRA's Issue Navigator.

To use an action:

Click on the at the right side of the widget in the issue's row, or select the issue with the Gear Button

keyboard and hit .Alt+Down

Select the action with the mouse or use keys and then to select the action Up/Down Arrow Enter

with the keyboard.

Using JIRA Shortcuts
Most JIRA shortcuts that are available on the Issue Navigator page also work in the structure widget. Just

select an issue and hit the shortcut.

Structure Plugin for JIRA

Page of 109 370

The most useful shortcut is "." (dot) - available since JIRA 4.2 - which lets you type in the name of

the action you need performed.

Calling an action usually brings up a dialog or moves the browser to another page. Please pay attention to

the dialog title or the window title to see that you're applying the action to the correct issue.

On the , keyboard shortcuts are always applied to the viewed issue - Issue Page (see page 14)

regardless of the selection in the structure!

No Page Reload
In many cases Structure is able to proceed without page reload after you have applied a JIRA action to an

issue. The applied changes are immediately visible in the Structure widget, and that gives you a very

smooth experience of working with a collection of issues.

Whether a page is reloaded after an action is applied depends on which page are you using to

work with issues, and what action is being applied. On the , most Structure Board (see page 12)

actions do not require page reload.

1.4.13 Viewing History of a Structure

Structure plugin records every change that you or other users make to a structure. The History View lets

you see those changes and previous versions of your structures.

To turn on the History View, click the menu button and select . The list of Toggle Panels Grid + History

recorded changes will appear in the panel on the right.History

Structure History has been introduced in Structure version 1.4. All changes made with earlier

versions of Structure plugin have not been recorded.

Structure Plugin for JIRA

Page of 110 370

History does not work for dynamic parts of the structure. Changes done to issues added to the

structure by will not be stored. However, the addition, moving and generators (see page 117)

removal of the generators themselves is recorded.

Reading History View

By default, 20 most recent changes are loaded. If there are more, you can click the Show More button at the

bottom of the list to load earlier changes.

New changes are loaded and added to the top of the list as they happen.

For each change, the following information is shown:

The avatar and the name of the user who has made the change. In JIRA 4.4 and up you can hover

your mouse over the user avatar to see the user details.

If the change has been made by a synchronizer, the synchronizer's name is shown. User

avatar displays the user account that the synchronizer was running under.

The nature of the change – how many issues were affected, were they added, removed or moved.

The date and time when the change was made.

When you click a particular change, the main panel of the widget shows the structure as it was when that

change was made. The affected issues are highlighted, and the structure expands and scrolls as needed to

bring them into view.

Use the and keyboard shortcuts to navigate to an earlier or later change.Ctrl+] Ctrl+[

If issues were removed, they are shown in their position before the removal.

Moved issues are shown in their new position by default, and their original position is marked by a red

horizontal line. Use the small toggle button in the history section to show moved issues in their original

position instead.

Structure Plugin for JIRA

Page of 111 370

Limitations of the History View

History only tracks the structure changes, not the changes of JIRA fields. All columns with issue

fields show current values – the values that the issue had when the structure change was made.not

You cannot edit issues, create new issues or change structure when viewing history.

The history cannot be modified. (The administrator can clear the entire Structure history.)

Printing a Previous Structure Version
You can when viewing a previous version of the structure. The Open Printable Page (see page 111)

printable page will show the structure as it was after the selected change has been applied.

Note that all limitations apply: the current values of the fields will be displayed and Progress and other

aggregate columns will not be displayed.

Exporting a Previous Structure Version to XLS Format
Like with the printable page, you can . The XLS file will export structure to XLS (Excel) (see page 112)

contain structure as it was after the selected change has been applied.

1.4.14 Printing Structure

Printable page lets you print the current structure from the browser.Click the button on the structure Export

toolbar and select .Printable Page

Structure Plugin for JIRA

Page of 112 370

The structure spreadsheet will open in a separate browser window or tab. The view fully copies the structure

widget appearance - you can see the same issues as in the structure. For example, if some sub-issues are

hidden, you will not see them on the printable page either.

The columns displayed on the printable page will be the same as in the structure widget, however, the

widths of the columns will be set by the browser. To change the columns on the printable page, change

them in the structure widget and open the page again.

Summary column on the printable page displays only the summary field, without issue description. If you’d

like to print description, add a separate Description column to the structure widget.

Depending on the number of columns, and the amount of text, it may be necessary to adjust font size before

printing.

It's a good idea to print a single sample page to decide whether font size needs changing.

When ready to print, click Print button on the printable page or use your browser's Print menu.

1.4.15 Exporting Structure to XLS (Excel)

You can download the structure that you see on the screen as an XLS file and open it in Microsoft Excel or

in other applications that support this format.Click the button in the toolbar and select Export Export to

.Excel

The browser will download a new XLS file, which you can save or open. The XLS file will contain all the

issues that are present in the structure and the hierarchy will be preserved.

The XLS file has the same columns as the structure widget. Like with the printable page, the Summary

column displays only the Summary field, without issue description, but indented to show how sub-issues are

nested. If you'd like to export issue description, add a separate Description column to the structure widget.

Compatibility
The exported file is compatible with Microsoft Excel 2003, 2008 and 2010.

Note that XLS format allows up to 65536 rows in the spreadsheet, so a larger structure wouldn't fit

- use filtering to hide some of the issues, if you have more than that.

Likewise, if you have issues that are more than 15 levels deep in the hierarchy (have more than 14

"parents" and "grand-parents"), in Excel they will all be shown on level 15, due to a technical limit.

Structure Plugin for JIRA

Page of 113 370

Row Groups
The rows are grouped together using Excel grouping feature to form structure in the spreadsheet – you can

expand and collapse sub-issues under a certain parent issue.

The maximum depth of grouping in XLS file is 8, so if you have a deeper structure, it still will be exported but

the grouping will work only for the top 8 levels.

Not all spreadsheet applications that support XLS format also support row grouping feature. At the

time of writing, Open Office does support it, but Google Docs don't.

Columns
The columns are formatted in the best way suitable for a spreadsheet.

Column

Type

Notes

Issue Key The cell with an issue key is a link to the actual issue.

Summary Cells in the Summary column have indentation just like on the Structure Widget. Note that

if you change the format of a cell there, you might lose the indentation level.

Progress Progress field contains a fractional number from 0 to 1, formatted as a percent value.

Description,

Environment

and large

text fields

The text might not fit in the column. You can increase column size or use Format Cells |

 option in Excel to have a large text take more than one line, Alignment | Wrap Text

increasing the row height. Note that a cell might not accommodate a very large text and

you might see only the first part of it.

Dates Date values are displayed in your local date format.

Estimates,

Time

Worked

The duration fields contain actual numbers (fractional number of days), which you can

sum or otherwise process. The display format is , where HH is the number of HH:MM

hours and MM is the number of minutes. So an estimation of 5 days will be displayed as

 (if you have 8-hour days).40:00

Standard

custom

fields

Standard custom fields are rendered according to their type.

Plugin-

provided

custom

fields

Custom fields from other plugins are displayed as they are rendered.

Note for Plugin Developers

Structure Plugin for JIRA

Page of 114 370

If your plugin provides a new custom field type, please ensure that the field is displayed with the

best compatibility with the other plugins, including Structure. In your column view velocity template,

check for and/or and/or $displayParams.textOnly $displayParams.excel_view

 – all those parameters will be set to by Structure and may also $displayParams.nolink true

be used by other plugins. See and JIRA sources for examples.CommonVelocityKeys.java

Printing
The XLS file is set up for a standard printing configuration:

Page orientation is Landscape.

The content is fit horizontally on the page (you might need to change that if you have too many

columns or large content).

Paper size is set to if your account locale is US or Canada, otherwise it is set to .Letter A4

Make sure you see Print Preview before sending the document for printing. If you don't like how it looks,

consider using .Printable page (see page 111)

1.4.16 Real-Time Collaboration

Structure widget is a real-time collaboration tool.The hierarchy displayed in the widget is kept up-to-date

with the JIRA server, so if someone else changes the structure on the server, you will see the web page

update within several seconds. Items that have been added, removed, or moved are highlighted for a

second with a flashing yellow background.

In the same fashion, the values of the issue are maintained up-to-date: if someone edits an issue or

otherwise changes it, the structure widget will update the displayed fields within a few seconds. A value that

has been changed is highlighted for a second with a flashing yellow background.

This feature lets you collaborate with other people who may work with the same structure on different

computers.

Structure keeps data up-to-date by polling the server with short requests every few seconds when

the application is ready. If structure widget detects that the browser is inactive it will reduce polling

frequency to conserve network traffic.

On all pages with the Structure widget, except for the Dashboard, when user inactivity is detected

(there's no using of keyboard or mouse for at least 5 minutes), the polling of the server stops. It

resumes as soon as the user moves the mouse or touches the keyboard (when the browser's

window is active). This allows session cookies to properly expire after some inactivity period.

Structure Plugin for JIRA

Page of 115 370

1.

2.

In some cases you would like to open a Structure Board and have it continuously display up-to-

date information without any user activity – for example, to show a structure on a heads-up

display. To have Structure always poll the server, press ("x" two times) to display additional xx

actions on the and turn on Continuous Polling with the Main Structure Toolbar (see page 37)

button

1.5 Automation

Automation is a powerful feature that lets you create . Unlike a manually created dynamic structures

structure, a dynamic structure can update itself when there are changes in JIRA. You can make parts of

your manually created structure dynamic – for example, automatically place all issues that match a query

under a manually added folder.

Automation works through – special rules which define, how the issues should be organised. generators

Generators are added right inside the structure just like other items and their scope is defined by their

position in the structure.

With generators you create a structure "skeleton" - the rules based on which your structure should be built,

and only the skeleton is saved, not the issues. This means the structure is generated when you open the

structure - hence the .Generators

Once you open some structure, the automation will start checking for relevant changes in your JIRA and

update your structure as necessary, ensuring that the structure you are seeing is up-to-date. So there is no

need to reload the page to see the latest updates.

1.5.1 Types of Generators

 Insert. (see page 117) Insert generators allow you to automatically add issues to the structure. It can

be the results of a JQL or text query, Epics or Stories from an Agile board, or an entire structure. If

some issue is updated and no longer satisfies the query, it's not shown anymore.

Filter. (see page 118) If you want to remove some of the issues after you've built the structure (for

example, remove all closed issues), you can use the and specify the query that Filter Generator

describes the issues that you want to keep - the rest will be removed from the structure.

Sort. (see page 123) To arrange your issues in a certain order you can use the Sort generator.

Group. (see page 123) With this function you can break a list of issues into groups based on your

JIRA fields.

Extend. (see page 124) Using the extend functions you can pull in issues related to those that are

already in the structure. You can extend with sub-issues, JIRA links and Epic links (if you are using

JIRA Agile).

1.5.2 How to Add a Generator

Normally, generators are not shown – you need to switch on the button to be able to Automation

see and configure generators.

Structure Plugin for JIRA

Page of 116 370

2.

3.

4.

5.

6.

1.

2.

3.

As you click the button, you will see the top level item with the structure name appear at the of Root

the structure - this item works a parent for the whole structure.

Select where you want to add your generator - you can select the item if you want the Root

generator to be applied to the whole structure, or select some static item if you want the generator to

work under this item only.

You can only add generators under static parts of the the structure. You can not add them

under items, which are added by other generators.

Now click the icon next to the button and select the type of generator you need.+ Automation

For some generators you will need to select some options. Once you did that, click . You will Apply

see the generator added to the structure.

Click the button to hide the generators from the structure.Automation

1.5.3 How to Edit a Generator

If you want to edit some existing generator, first switch on the Automation Editing mode by pressing

the Automation button.

Find the generator you want to edit.

To change the scope of the generator, simply move it to the new place in the structure, just as you

would move any other item. You can use drag-and-drop, or copy/paste.

You can not move the generator under an item, that was added by a generator. Only the

static items added manually.

Structure Plugin for JIRA

Page of 117 370

4.

5.

6.

1.

2.

3.

To change the generator settings, double-click the generator or use the button in the structure Edit

toolbar.

Make the required changes and click to save to them.Apply

Click the button to hide the generators.Automation

1.5.4 How to Remove a Generator

If you want to remove some existing generator, first switch on the Automation Editing mode by

pressing the Automation button.

Select the generator you want to delete and press or use button in the toolbar.Delete Delete

Click the button to hide the generators.Automation

1.5.5 Generators

There are several types of generators, that are available by default:

Insert
Insert generators allow you to automatically add issues to the structure. The issues can be the result of a

JQL or text query, Epics or Stories from an Agile board, or an entire structure.

As you add and Insert generator you can choose from the following options:

Agile Board. Will add epics or stories from the Agile board that you select.

JQL Query. Will adds results of the JQL query.

Text Query. Will add results of a text search.

Please note, that both for text and JQL options only issues from the projects, for which

 will be added.Structure is enabled (see page 225)

Structure. Will add the selected structure into your structure. This option is especially useful when

several teams work with their own structures and you want to create a structure with an overview of

them all.

When you insert a structure into another structure, it's always a good idea to create a

special folder for this structure and insert it there. Thus you'll be able to see where the

inserted structure begins and ends.

If you have allowed for this generator, you can update editing via structure (see page 125)

the inserted structure right from your master structure. For example, if you have inserted

structure A into structure B, as the users work with structure A, you will see all the changes

Structure Plugin for JIRA

Page of 118 370

1.

2.

reflected in structure B. And the other way around - if you open structure B and start

modifying structure A in it, the actual structure A will be updated too.

Since the generators run every time you open the structure, the list of issues added by the inserter

is always up-to-date. If some issues no longer pass the query criteria, they won't be added. Also, if

you already have the structure open, the generator will be tracking the changes in your JIRA and

add/remove issues as necessary.

Filter
Filter generator allows you to hide from your structure issues that don't pass certain criteria. You can use

JQL, Text and queries.S-JQL (see page 178)

Once you add this generator, you will only see the items from the structure that pass the query and their

parents. The parents are necessary to show the issues without breaking the hierarchy.

Additional Options

All filters have an option to show not only matching issues, but also all their descendant. Select the

option in the generator settings to enable this.Show all sub-items of matching items

JQL Filter has an option that allows you to keep non-issues as you apply the filter. Since the folders

and other types of items are not returned by the JQL, this is the only way to tell the filter not to

remove them.

Inserter/Extender Duplicates Filter
This filter should be used when you want to add a number of issues into your structure using an Inserter and

then arrange them into a hierarchy based on the links which exist between them.

Here is how you can do it:

The Inserter adds a number of issues on the top level.

The Link Extender adds the issues which are linked to them as children.

If some of the children have already been added to the top level by the Inserter, you will get duplicates - an

issue at the top level also added as a child.

The Inserter/Extender Duplicate Filter will remove such issues and will only keep the children. Please see

examples below for a more detailed explanation.

Basic Example
Imagine we have a project with issues Story 1, Story 2, Story 3, and Story 4, and some of the issues are

blocking other issues:

Story 1 is blocked by Story 2

Story 2 is blocked by Story 3 and Story 4

Structure Plugin for JIRA

Page of 119 370

In our structure we want to see all issues from our project arranged based on the existing "Blocks" links.

After you add all four issues by a JQL Inserter and add a Links Extender, you will get the following

hierarchy:

You can see that the issues are now duplicating as the Extender just adds the children under parents, not

moves them.

Now let's add the Duplicates Filter:

As a result we get a structure with the hierarchy and no duplicates:

Structure Plugin for JIRA

Page of 120 370

Multiple Parents Example
We have the same situation as in the example above, but we have one story that blocks two other stories,

so it should be shown under both of them:

Story 1 is blocked by Story 2 and Story 3

Story 2 and Story 3 are blocked by Story 4

So without Duplicate Filter it looks like this:

Structure Plugin for JIRA

Page of 121 370

And with the filter applied all the duplicates are removed. Please note that Story 4 is present in two place to

reflect the hierarchy and in this case these two instances are not duplicating each other:

Structure Plugin for JIRA

Page of 122 370

Example With Link Cycles
If there are link cycles between the issues, the Filter will remove one of the branches and will keep the other

to make sure all the issues added by the inserter and extender are in the structure.

In this example Story 1 blocks Story 2 and Story 2 blocks Story 1.

Without the filter we get the following structure:

And as we add the Filter, one of the branches with the cycle gets removed:

Structure Plugin for JIRA

Page of 123 370

Sort

Rank. If you use JIRA Agile and add sorting by Rank, Structure can update the Rank as a user moves

issues up and down inside the Structure.

Manual. If you are working with a structure where issues were added by the based on Insert Generator

some JQL query, by default you will not be able to re-order issues in such a structure. To be able to do that,

you need to add the .Manual Sorting Generator

Group
Structure lets you group by most standard JIRA fields, custom fields provided by JIRA and other issue

aspects:

: Affects Version, Assignee, Component, Epic, Epic Status, Epic/Theme, Fix Version, Standard fields

Flagged, Issue Type, Labels, Priority, Project, Reporter, Resolution, Status, Sprint.

: fields that give you a list of values to choose from, such as radio button, list single JIRA custom fields

choice, checkboxes, user picker, labels, select list.

 built-in and custom text fields.Text attributes:

 you can group issues by their parent issue as defined in Portfolio for JIRA.Portfolio parent link:

: you can group issues by their linked issues. You can select link type and direction, so that, for Issue links

example, you can group issues under their respective blockers (issues that block them).

The fields that cannot be grouped by are dates and numbers.

Groups can be nested. For example you can take a list of issues and group them by fixVersion and then by

Assignee. Thus you will see the existing fixVersions on the top level, Assignees on the second and then the

Structure Plugin for JIRA

Page of 124 370

issues themselves on the third, grouped accordingly. If you enable editing via Structure in the generator

settings, Structure can update the fields by which the issues are grouped when you drag-and-drop issues

from one group to another.

Extend
The Extend generator allows you to pull issues into the structure hierarchy based on Issue Links, Epic Links

and Sub-task relationships.

Linked issues
The linked issues extender allows you to pull in issues that are linked to issues already in the structure.

Select the link type and direction from the drop-down lists.

You can also choose to limit the levels on which the linked issues extender acts.

The default option is , meaning the extender will extend issues at the first 10 All levels up to 10

levels of the hierarchy, starting from the level where the extender itself is located.

The option means that the extender will extend issues at any level in the hierarchy.All levels

The option restricts the extender to operating on issues at the same level in the Current level only

hierarchy as the extender itself.

The option allows you to specify a range of levels at which the extender should Manual levels range

operate.

As with other generators, you can enable and the links will be updated as you move editing via Structure

issues in your structure.

Stories under Epics
The Epic links extender pulls in stories belonging to epics already in your structure.

As with the links extender, you can choose the hierarchy levels at which the Epic links extender operates.

As with other generators, you can enable and the Epic links will be updated as you editing via Structure

move stories in your structure.

Structure Plugin for JIRA

Page of 125 370

Sub-tasks
The Sub-tasks extender pulls in sub-tasks belonging to issues already in your structure. You can choose the

types of sub-task to be pulled in.

As with the links extender, you can choose the hierarchy levels at which the Sub-tasks extender operates.

As with other generators, you can enable and sub-tasks will be assigned to new editing via Structure

parents as you move them in your structure.

Child issues from Portfolio for JIRA
The Portfolio extender pulls in child issues using the Parent Link field from the Portfolio for JIRA add-on.

As with the the other extenders, you can choose the hierarchy levels at which the Portfolio for JIRA

extender operates.

As with other generators, you can enable and the Portfolio parent links will be updated editing via Structure

as you move issues in your structure.

1.5.6 Generators Options

Even though the generators do different things, there are a couple of settings most of them share:

Permissions to change JIRA data via changes in structure

The scope of the generator (the levels where it works)

Editing Issues via Generators

When you use the , or generators, by default the structure will be able to Group Extend Sort by Rank

update some JIRA data as you move issues in the structure:

For the grouper it will update the field by which you group as you move an issue between the groups.

For example, if you have issues grouped by assignee, as you move an issue from one group to

another, it will be re-assigend.

For the extender it will update the JIRA, Epic links or parent of a sub-task as you move a child from

one parent to another. For example, if you move a story from one epic, under the other, the epic field

of the story will be updated.

For the sorter by rank it will update the Agile Rank as you move an issue up or down.

If you want to disable this, deselect the checkbox in the generator settings.Allow changes via Structure

Defining Generator Scope
The scope of the generators is defined by its position in the structure and the option.Levels

If you place the generator under the top-level root item, the generator will be applied to the whole structure.

If you place it under some static item in the structure, the generator will only affect the descendants of this

item.

Structure Plugin for JIRA

Page of 126 370

1.

2.

3.

To limit the scope further you can set on which levels the generator should run.

All levels means it will be applied to all descendants of the parent item.

Current level only means it will be applied on the level, where the generator is added.

Manual levels range allows you to define the specific levels, where the generator should work.

The levels created by Group generators are not taken into account when applying the specified

manual levels limitation.

The From and To fields define the range of levels to which the generator will be applied. For

example, if you want to pull in issue linked to the issues on level 2, you need to set the field From

to 2 and to 2, not 3. Setting the value to 3 will make extender add issues linked to the ones on To

level 2 and add the issues linked then to the ones that were just added.

This option is especially useful when you are defining generators for the hierarchy, where on

different levels you have different types of relations. For example, the top level and the 2nd are

connected with issue links, the 2nd to the 3rd with epic links, and on the 4th level you have sub-

tasks.

In this case you will have three generators added under the root of the structure with the following

 settings:Levels

Links extender () working only on the top level - Linked Issues Current level only

Agile extender () working on the second level - : Stories under Epics Manual levels range

from 2 to 2

Sub-tasks extender working on the third level - : from 3 to 3Manual levels range

Structure Plugin for JIRA

Page of 127 370

1.6 Managing Structures

Structure Plugin lets you have several independent structures in JIRA. Manage Structures page lets you

view, search for, create, and delete structures as well as change their settings.

To open Manage Structures page, go to menu in the top navigation bar, and then select Structure Manage

.Structures

Manage Structure page contains the following tabs:

Current – shows only the structure you're currently working with.

Favorite – lists structures that you have marked as your .favorite (see page 10)

My – lists structures created by you.

Popular – lists structures that are marked as favorite by at least 2 users, ordered by their popularity

.(see page 10)

Search – allows you to .find structure by name, owner or ID (see page 128)

All – this tab lists all structures visible to you.

Since anonymous users can't create structures and can't mark structures as their favorites,

 and tabs are not shown when you are not logged in.Favorite My

More about managing structures:

Structure Plugin for JIRA

Page of 128 370

1.

2.

1.6.1 Locating a Structure

To find a specific structure, use menu and select tab.Structure | Manage Structures Search

Finding Structures by Name, Access Level or Owner
To search for structures by their properties:

Enter any of the search parameters. Parameters are:

Name Only structures that contain the specified text in their name will be shown. You can

use a part of the word that you know should be in the structure's name.

Owner Only structures that are owned by the specified user will be shown.

Permission

Level

Lets you select the structures that you can Edit or Control, according to the selected

permissions level. (For example, if you select permission level, you will see all Edit

structures that you can edit and control, but you will not see structures that you can

only view.)

Click . If no parameters were specified, all structures visible to you will be shown.Search

You can search by structure owner only if you have the permission to browse users.

Finding a Structure by Its ID
To perform a search by structure's numeric ID:

Click tab.Search by the structure ID

Enter the structure ID. (It must be a number.)

Structure Plugin for JIRA

Page of 129 370

1.

2.

Click . If there's a structure which has the specified ID and you have the permission to view it, Search

it will be shown.

1.6.2 Structure Details

Every structure has the following parameters:

Name (

)required

Name is used to identify the structure in the drop-downs like the menu in the top Structure

navigation bar.

Description Used to describe the meaning of the structure to the users.

Owner The owner of the structure. Only JIRA administrators can change the owner.

Permissions Define who can view, edit or configure the structure. See Structure Permissions (see page

 for details.130)

Require

Edit Issue

Permission

flag

When flag is set, Require Edit Issue permission on parent issue to rearrange sub-issues

additional permission constraints are applied to figure out what changes the user is

allowed to make. See for details.Structure Permissions (see page 130)

You can specify structure details when and when Creating New Structures (see page 130) Editing Structure

.Details (see page 129)

Editing Structure Details
To edit of a structure:details (see page 129)

Open Manage Structure page by using menu.Structure | Manage Structures

Locate the structure you need to change and click on link in the column.Configure Operations

If you do not see link, then you probably do not have Control permission on that Configure

structure.

Structure Plugin for JIRA

Page of 130 370

1.6.3 Creating New Structures

To create a new structure, use menu or click button on the Structure | Create Structure Create Structure

Manage Structures page.

You need to specify at least the name of the new structure, and optionally description, permissions and

other parameters. See for description of the structure parameters.Structure Details (see page 129)

When you create a new structure, you become the owner of the structure. Structure owner always has full

access to the structure - see .Structure Permissions (see page 130)

Only logged in users who have access to the Structure Plugin are allowed to create new

structures. See .Who Has Access to the Structure (see page 226)

1.6.4 Structure Permissions

Every structure has a list of permission rules, which define who is allowed to see, edit or configure the

structure.

Access Levels
Each user has one of the following access levels to a structure:

None The user does not see the structure at all and does not know that it exists.

View The user can view the structure but cannot make changes.

Edit The user can view the structure and can rearrange issues in the structure, add issues to the

structure and remove issues from the structure. The user cannot, however, create or modify

.Generators (see page 117)

Edit

Generators

The user has full edit access to the structure, including modifying generators.

Control The user can view, edit and configure the structure - including changing structure

permission rules and configuring synchronizers.

Default Access
By default, all users have access level.None

The structure's owner and JIRA administrators always have access level.Control

Therefore, if you create a new structure and do not specify any permission rules, it will be a private structure

that only you and JIRA administrators will be able to see and modify.

Structure Plugin for JIRA

Page of 131 370

Permission Rules
Users who have permission on a structure can define permission rules by Control Editing Structure Details

.(see page 129)

Permission rules list is an ordered list that's used to calculate the access level for a given user. Each rule

has a that is matched against the user, and which is set if the condition matches. condition access level

The conditions are applied from top to bottom, and the .last matching rule has precedence

The following conditions are supported by permission rules:

Anyone Matches any user, including anonymous (not logged in). This condition can be used to set

a default permission for everyone.

Group(G) Matches users that belong to the group G.

Project Role

(R,P)

Matches users that have role R in project P.

Additionally, there is a special rule type , which works by going through the Apply Permissions From

permission rules from a different structure. You can apply permission rules only from structures with Control

access level for you.

Examples

Anyone can view, developers can edit, only the owner and admins can control:

1. View for Anyone

2. Edit for jira-developers (Group)

Any logged in user can edit, except for the users from structure-noaccess group, who can't even view

the structure. Project administrators are allowed to control the structure:

1. Edit for jira-users (Group)

2. None for structure-noaccess (Group)

3. Control for Administrators of Mars Colony (Project Role)

Incorrect configuration: everyone is given View access level

1. Control for jira-developers (Group)

2. Edit for jira-users (Group)

3. View for Anyone

Although the configuration looks ok at first glance, remember that the last matching rule has

. So regardless of whether the user is part of jira-developers or jira-users group, their precedence

access level will be set to View by the last rule.

Structure Plugin for JIRA

Page of 132 370

Edit Issue JIRA Permission and Editing Structure
If you set flag on the page, Require Edit Issue Permission on Parent Issue Structure Details (see page 129)

additional per-issue permissions checks will be performed to decide whether the user is allowed to change

the structure.

If the flag is on, the user must have Edit Issue permission on a parent issue to adjust its sub-issues. In other

words, direct sub-issues (or children issues) are treated as if they are part of the parent issue, and therefore

adding sub-issues, removing sub-issues and rearranging sub-issues is actually changing the parent issue -

for which the Edit Issue permission is required.

The user must also have access level to the structure to be able to make changes at all.Edit

Note the following:

Top-level issues do not have a parent issue, and therefore are not affected by this flag: the user can

add/rearrange issues at the top level of the structure if they have Edit access level.

If issue A has sub-issue B, and B has sub-issue C, then to be able to move or remove C from the

structure, the user needs Edit Issue permission on B - not on A. In other words, the Edit Issue

permission is required only for the direct parent issue.

Permissions Caching
Structure plugin maintains a cache of users permissions with regards to each structure. In most cases, the

cache is recalculated automatically, but in some cases Structure plugin may miss a change in a user's

groups or roles. The result could be that the changed permissions take effect several minutes later (but only

with regards to). A user can force the cache to be recalculated by Structure Permissions (see page 130)

doing from the browser. Typically, it's done by holding or or both and clicking the hard refresh Ctrl Shift

 button.Refresh

1.6.5 Customizing View Settings

A structure's view settings determine which views are offered to the users in the Views Menu (see page 42)

when they are using that structure, and which view is the default. Initially, each structure has default view

settings, defined globally for all structures.

A view is called with a structure if it is part of the Views Menu, as defined by the associated

structure's view settings.

You can customize view settings if you have access level to the structure – open Control Manage

 page and locate the structure, then click link.Structures Views

You can change the default global view settings if you are a JIRA administrator – open Administration |

 tab and click in Default View Settings section.Structure | Defaults Change

Structure Plugin for JIRA

Page of 133 370

View Settings page

Switching Between Default and Customized View Settings
To customize view settings for the structure, select radio button. The default settings are Customized

copied and you can adjust them up to your needs.

To revert to default view settings, select radio button.Default

Configuring Views Menu
Views Menu section on the view settings page lets you configure for each type Views Menu (see page 42)

of JIRA pages where Structure widget is present.

To add a view to the menu, select the view in the drop-down and click .Add view Add

To remove a view from the menu, click button.Remove

To change a view's position in the menu, drag the view by the drag handle at the left of the view bar.

Structure Plugin for JIRA

Page of 134 370

1.

2.

3.

4.

5.

6.

To restrict a view's appearance in the menu to some specific pages, click line and select Offered on:

the pages where you'd like this view to be used.

Configuring Default View
In the section, you can select which view from those added to the menu is the default for a Default Views

given JIRA page (Structure Board, Structure Board with Issue Details, Issue Page and Project Page). Pick

one view from those offered in the drop-down.

If views menu configured above does not have any views for a specific page (for example, no

views for Issue Page), you won't be able to configure the default view for it.

Changes take effect when you press button.Apply

1.6.6 Copying a Structure

With the action, you can create a full copy of a structure, and, optionally, clone every issue in the Copy

structure.

If you need to copy only a part of a structure, create a new empty structure and use Issue

 to copy a part of the structure.Clipboard (see page 91)

To create structure copy:

Open page using top navigation menu.Manage Structures Structure

Find the structure you'd like to copy and click link in the Operations column.Copy

If you don't see in the Operations column, then you probably don't have permissions Copy

to create new structures.

Choose if you'd like to copy synchronizers if any. If you don't see option, then Copy Synchronizers

you probably don't have a permission to create synchronizers. For details about configuring and

running synchronizers copying, see .Copying Synchronizers (see page 140)

Choose if you'd like to clone issues.

When cloning issues, .enter additional parameters for the cloning process (see page 136)

Press or .Copy Structure Start Cloning

Structure Plugin for JIRA

Page of 135 370

Copying Structure As-Is vs. Cloning Issues

 Copy Structure Copy Structure & Clone Issues

Selected answer for

Clone Issues?

No Yes

New structure created? Yes Yes

New structure contains: same JIRA issues as the

original structure

clones (copies) of the issues from original

structure

Quick? Yes No, background process is launched to

do issue cloning

Permissions required: View access to the original

structure

 permissionCreate Structure

View access to the original structure

 permissionCreate Structure

 global JIRA permissionBulk Change

A number of project-level permissions

For details about configuring and running cloning, see Copying Structure and Cloning Issues (see page 136)

.

New Structure
The new structure is created with the following properties:

Structure name is automatically set to "Copy of ()".<old structure name> <date of copy>

Structure description is copied.

View settings are copied.

You become the owner of the copied structure.

Structure Plugin for JIRA

Page of 136 370

If you have access level to the original structure, permission rules are copied. Otherwise, Control

permission rules for the new structure are empty (it is a private structure). To share the new

structure, add .permission rules (see page 130)

You can immediately edit new structure's properties on the screen with the copy result.

Copying Structure and Cloning Issues
When , you can turn on parameter and have Structure copying a structure (see page 134) Clone Issues

plugin create a copy (clone) of every issue in the original structure.

How Issue Cloning Works
Each issue in the original structure is cloned by creating a new issue with the same summary, description,

and the same value for every other field, including custom fields. There are a few exceptions to this rule,

however:

The field is not copied. The cloned issues are always created in the initial status, according to Status

each issue's project and workflow scheme.

If a field is not present on the Create Issue screen, its value is not copied. The cloned issues will

have the default value for that field instead.

Archived versions are removed from , , and custom fields that have Affects Versions Fix Versions

versions as values.

If you clone issues to a different project, and some custom fields of the original issues are not

available in that project, the values of those custom fields are not copied.

If you clone issues to a different project, and some field values of the original issues are not available

in that project, those values are removed. For example, this may happen to the field, or Components

to the fields that take versions as values.

Cloning issues to a different project may even be impossible, for example, when a certain field is required in

the target project, but absent (or not required) in the source project. If this is the case, you will need to either

change the target project restrictions or make sure that every issue in the copied structure satisfies them.

In any case, Structure does its best to verify that it can indeed clone each issue in the original structure

 it begins the actual cloning. If Structure detects a potential data loss, for example, because one of before

the custom fields is absent in the target project, it warns you and lets you decide whether you want to

continue. If even a single issue cannot be cloned (for example, if you do not have the Create Issues

permission for a certain project), then the operation stops before creating any clones.

On a rare occasion when permissions or other restrictions are changed while the cloning operation

is in progress, the operation may still fail after the initial checks.

The field is not copied. The cloned issues are always created in the initial status, according Status

to each issue's project and workflow scheme.

Structure Plugin for JIRA

Page of 137 370

Cloning Parameters

Additional parameters may be specified for the cloning process:

Create in

Project

Lets you specify a project for the new issues, different from the project the issues

currently belong to. If not specified, every new issue is created in the same project as

the original issue.

Summary

Prefix

Summary

Suffix

Let you modify the summary of the clones. If the resulting summary gets longer than the

JIRA limit (255 characters), it will be truncated.

Labels Space-delimited labels to be added to the cloned issues. (Already existing labels are

preserved.)

Link Back If specified, every new issue will be linked with its original issue.

Copy

comments

If selected, all comments are also copied. If not selected, new issues will have no

comments.

If selected, attachments are copied (the actual files are copied on JIRA server).

Structure Plugin for JIRA

Page of 138 370

Copy

attachments

Clone JIRA

sub-tasks of

the cloned

issues

Let's say the copied structure contains issue A-1. In JIRA, A-1 has a subtask A-2. But

this subtask is not in the structure. If this option is selected, A-2 will also be cloned. If

the option is not selected, A-1 will be cloned without the subtask.

Copy issue

links

If selected, all issue links and remote issue links will be copied. If a link exists between

two issues, which both are cloned, then the new link will be created between clones of

the original issues.

If you use option, then the links of the type selected for linking back Link Back

to original issues will .not be copied

If you have JIRA Agile (GreenHopper) 6.1 or later installed, its Scrum board Epic-Story

relationships are also copied when you select this option. The rule is the same as for

issue links:

If you clone an epic together with its stories, the cloned stories will be added to

the cloned epic.

If you clone the stories alone, the clones will be added to the original epic.

Copy

watchers

If selected, the users watching an original issue will be added to the watcher list of the

clone.

Notifications If selected, an email may be issued for every created issue, depending on the JIRA

notification scheme for the issue's project.

Required Permissions

To be able to clone structured issues you need global permission.Bulk Change

Because the result of cloning is a new structure, you also need to be allowed to create new

structures. (Configured by JIRA administrator - see .)Administrator's Guide (see page 227)

You need to have permission in the projects where clones are created. If you specify Create Issue

 option, the issues will be created only in the specified project. Otherwise, clones Create in Project

are created in the same projects as their respective original issues.

Users in the field of the original issues will have to have permission in Assignee Assignable User

the target project – otherwise, issue clone cannot be assigned to that user and will be assigned by

default.

If you don't have permission, you won't be able to set the value of field in Modify Reporter Reporter

the cloned issues. Instead of the original reporter, you will be the reporter of the issue clones.

Structure Plugin for JIRA

Page of 139 370

1.

2.

3.

4.

You need to have permission to copy comments, permission to copy Add Comments Link Issues

issue links or use , permission to copy attachments, Link Back Create Attachments Manage

 permission to copy watcher lists, and permission to copy GreenHopper's Epic-Watchers Edit Issue

Story relationships.

Executing Bulk Cloning
When you press button, a background process starts on JIRA server, which performs the Start Cloning

following:

Copy original structure's hierarchy and store it in memory.

Check all necessary permissions required for cloning.

Clone all issues.

Create a structure and fill it up with the cloned issues.

At step 2 the cloner process might discover some problems. If critical problems are discovered, an error

message is shown and process is aborted. If non-critical problems are discovered, then warnings are shown

and user input is required. The warnings may suggest that cloning may continue, but the resulting issues

might not be exact copies. After your confirmation, the process continues.

Cloning issues is potentially a long operation. Cloning a structure with tens of thousands of issues

may take an hour or more. Cloning smaller structures usually takes reasonable time.

As cloning proceeds, progress bar is shown on the screen. When cloning is done, the resulting structure is

opened for modification of its name and permissions.

Checking Clone Progress
When cloning has started, you can navigate away from the cloning progress page. To see the progress and

get back to the progress screen, open page and locate your structure. It should show Manage Structures

that the structure is being copied.

When cloning is completed, or if there are warnings or questions from the cloning process, the link will read

"Waiting for input". Click the link to open cloning progress page.

Cancelling Cloning
You can cancel cloning process from the cloning progress page by pressing link.Cancel

Structure Plugin for JIRA

Page of 140 370

Issues that have already been created by the cloning process will be assembled into a special structure

marked " " in the structure name. You can use to [Cancelled Cloning Result] Bulk Change (see page 107)

quickly delete the unwanted issues.

Cloning Queue
Cloning issues can place considerable load on JIRA server. To avoid overloading server with cloning jobs,

there is a limit to the number of cloning processes that can happen simultaneously. If this limit is exceeded,

your cloning process will initially be in "waiting" state, pending for other cloning processes to finish.

Copying Synchronizers
When that has synchronizers, you can use the option to make copying a structure Copy Synchronizers

Structure plugin create a copy of every synchronizer installed in the original structure.

If you don't see the option, then you probably have no permission to create Copy Synchronizers

synchronizers.

Synchronizers Copying Parameters

You can decide to leave the original ownership of a synchronizer (" " parameter) or make yourself a Run As

new owner for each of the copied synchronizers.

Only JIRA administrators can change synchronizer ownership.

Making yourself the new owner means that all synchronizers in the copied structure will run under

your account.

Required Permissions
To be able to copy synchronizers you need a permission to create and configure synchronizers (see page

.228)

https://wiki.almworks.com/display/structuremaster/Copying+a+Structure

Structure Plugin for JIRA

Page of 141 370

1.

2.

3.

1.

2.

3.

Copied Synchronizers
When structure copying is complete, all of the copied synchronizers become disabled until you run Resync

manually. To use them, you need to review their configuration, adjust if necessary, and run & Enable

.Resync & Enable

1.6.7 Archiving a Structure

With the action you can make a structure read-only and hide it from search results and menus Archive

(including structure selector on the).Issue Page (see page 14)

Read-only means that users cannot add, remove or move issues in the archived structure.

The issues that the structure contains are not affected in any way. They remain in JIRA and can still be a

part of another structure.

To archive a structure:

Open page using top navigation menu.Manage Structures Structure

Find the structure you'd like to archive and click link in the Operations column.Archive

You need access level to be able to archive a structure.Control

Review the structure you are about to archive and confirm the operation. You can the Unarchive

structure in future.

If there are any synchronizers installed for the structure you archive, they will be disabled.

Unarchiving Structure
You can the archived structure to make it editable and visible in all menus.Unarchive

To unarchive a structure:

Open page using the top navigation menu.Manage Structures Structure

Select tab on the left side or search for structures on the tab with an option Archived Search Show

 checked.Archived

Find the structure you'd like to unarchive and click link in the Operations column.Unarchive

You need access level to be able to unarchive a structure.Control

Structure Plugin for JIRA

Page of 142 370

1.

2.

If there are any synchronizers installed for the structure you unarchive, you probably need to

review the synchronizers configuration and maybe resync and enable them.

Searching for Archived structures
You can find an archived structure on some tabs of page:Manage Structures

On the tab.Archived

On the tab if your favorites list contains any of archived structures.Favorite

On the tab when searching for structures by structure parameters with the option Search Show

checked.Archived

On the tab when searching for structures by the structure ID.Search

Synchronizers
If there are any synchronizers installed for the structure you archive, they will be disabled. After unarchiving

you will probably need to review the synchronizers configuration and maybe resync and enable them.

Until the structure is unarchived you cannot resync and enable synchronizers.

Nevertheless, you can an archived structure if you have a special permission to Export (see page 153)

control synchronizers.

1.6.8 Deleting a Structure

When you delete a structure, the following information is deleted:

The hierarchical list of issues from the structure

Structure details - name, description, permissions

Synchronizers installed into structure

The issues that the structure contains are not affected in any way. They remain in JIRA and still can be part

of another structure.

If there's any synchronizer installed for the structure you delete, it will not have a chance to react.

So, if removing an issue from the structure should cause synchronization (such as removal of the

links, done by the), you might need to first manually delete Links Synchronizer (see page 164)

issues from the Structure to let the synchronizer do its job, and then delete the structure itself.

To delete a structure:

Open page using top navigation menu.Manage Structures Structure

Find the structure you'd like to delete and click link in the Operations column.Delete

Structure Plugin for JIRA

Page of 143 370

2.

3.

You need access level to be able to delete a structure. See Control Structure Permissions

.(see page 130)

Review the structure you are about to delete and confirm the operation. There's no Undo!

1.7 Managing Views

A view is a named configuration of the columns in the Structure widget. There are a number of pre-installed

views that come with the Structure plugin, and the users may create and share more views.

You can find and select a View via . You can also Views Menu (see page 42) save changes, create a new

 in the same Views drop-down. For other operations with the views, view and share a view (see page 45)

you need to open dialog:Manage Views

See the following sections for details on view management:

1.7.1 Locating a View

To do anything with a view, first you need to find it.

You can use search box in the , and find a view by name. You can also Views drop-down (see page 42)

open dialog and find the view on one of its tabs:Manage Views

Structure Plugin for JIRA

Page of 144 370

The following tabs are present:

Current tab displays only the view that is currently selected in the Views menu. You can quickly go to

the current view's details from this tab.

Managed tab displays all views that you can – that is, you have full administrative access to Manage

those views.

Associated tab displays all views that are associated with the currently viewed structure (by the

structure administrator).

Search tab allows you to find views or list all views.

When you have located the view, you can click its name to switch to that view in the Structure widget. The

view will also appear in section of the .Also Recently Used Views Menu (see page 42)

To see and edit View details, click button that appears when you move mouse pointer over the view Detalis

record.

1.7.2 Changing View Settings

When you have in the Manage Views dialog, click button to open located a view (see page 143) Details

View Details page in the same dialog:

Structure Plugin for JIRA

Page of 145 370

View Details page shows a number of tabs:

Properties tab lets you change the name and the description of the view.

Sharing tab lets you view and modify sharing permissions for the view – see View Sharing and

.Permissions (see page 145)

Associations tab shows structures, which are associated with the view (have this view in their Views

drop-down). See .Associating Views with Structures (see page 147)

Advanced tab shows some technical information about the view.

Delete tab lets you .delete this view (see page 148)

The tabs and the scope of functionality available may be limited, depending on your access level

to the view.

Renaming a View and Changing Other Properties
When you change view name, description, sharing permissions, or anything on Advanced tab, the changes

are not save until you hit button. After you have saved the changes, they take effect for you Save Changes

and anyone else who has access to the view.

Associations tab is different – it contains only links to structures. The associations between structures and

views are managed by the structure administrator on the page.Manage Structure (see page 127)

1.7.3 View Sharing and Permissions

Like structures, views can be shared with different levels of access for each group of users.

Structure Plugin for JIRA

Page of 146 370

There are four levels of access to a view:

None The view is not visible nor usable by the user.

Use Read-only access: the user can use the view, but cannot modify it.

Update The user can use the view, and also save view adjustments as the new version of the view.

The user cannot modify view name or sharing permissions.

Manage The user can change any of the view's properties and also can delete it.

View owner and JIRA administrators always have access to a view.Manage

People who have only permission for a view still Use can add, remove or rearrange columns (see

, but they won't be able to save the modified configuration as a new version of the view. page 43)

They will be able, however to use link to create a new view with the modified Save As

configuration.

Changing permissions
If you have access to a view, you can modify its permissions on the tab of the view details Manage Sharing

dialog.

For each level of access, you can define categories of users who have this type of access:

Nobody

Structure Plugin for JIRA

Page of 147 370

1.

2.

Specific user groups

Specific roles in specific projects

Everyone (including anonymous users)

Note that higher-level access implies all lower-level access. So everyone who can a view, Manage

can also and it - no need to add those users at all three levels!Update Use

Private and Public Views
When a view is not shared with anyone, it's called . You can quickly make a view private by private view

clicking link – this will have the effect of removing all permission assignments.Make Private

When is given at least permission for a view, it is called . You can quickly make everyone Use public view

view public by clicking link on the the tab and also in the Make Public Sharing Views Menu (see page 42)

– this will give permission on that view to everyone.Use

You need to have global permission to be able to share views.Create Shared Objects

1.7.4 Associating Views with Structures

Views, which are associated with a structure, can be easily accessed from the Views Menu (see page 42)

when that structure is used – they are always located in the section of the menu.Associated Views

Views are associated with a structure by a structure administrator (someone who has access level Control

to it) on the on the page – see for details. Manage Structures Customizing View Settings (see page 132)

Also, JIRA administrator may specify , which define associated global default view settings (see page 231)

views for structures that don't have customized view settings.

When you look at a view in the dialog, tab lists all structures that have this view View Details Associations

in their view settings. If you have access level to some of those structures, you can quickly jump to Manage

 page for those structures to change the settings.View Settings

View settings (associations between a view and a structure) are a property of the structure, not the

view. The tab on the View Details dialog is provided for convenience.Associations

1.7.5 Copying a View

There's currently no way to directly copy a view, but you can use function to create a new view Save As

based on the existing view configuration:

On the Structure Board, select a view you'd like to copy so it is your current view. You can use Views

 or to find the view you need.Menu (see page 42) Manage Views dialog (see page 143)

Structure Plugin for JIRA

Page of 148 370

2.

3.

4.

1.

2.

3.

1.

2.

3.

4.

If you don't have local adjustments to the view, make some – for example, add a column, or change

column order. (Note that just resizing a column does not change view configuration.)

Open views drop-down menu and use link to create a new view.Save As (see page 45)

Use dialog to review the new view's description and sharing permissions.Manage Views

1.7.6 Deleting a View

To delete a view:

Open dialog.Manage Views

Locate a view (see page 143) you'd like to delete and click the view record or button.Details

Open tab and use Delete button to delete the view.Delete

Deleting a view cannot be reverted.

Open tab and take a look at the list of structures that are associated with this view. Associations

The associations won't stop you from deleting the view, but you might want to discuss the matter

with administrators of those structures.

1.8 Template Structures and Projects

Template structure is a structure that you copy & clone to get the real, "workable" structures.

Technically, template structures are ordinary structures, containing ordinary issues. It is up to you to

designate a structure to be a template and configure it accordingly.

1.8.1 Configuring Template Structures

Here are some suggestions about configuring template structures:

Clearly designate them as a template - for example, have "[Template]" marker as a part of the

structure's name.

Give permissions to change the template structure only to those users who really need it. If needed,

create another JIRA group for them (or ask JIRA administrator to do so).

Do not install any synchronizers on the template structure (unless you want the template to change,

of course... which would be a quite unusual case).

Do not mark template issues as template in the issue summary. If you need to mark template issues

somehow, use a label, which you will be able to remove from cloned templates via Bulk Change.

If you need to remove template issues from a JQL search, you can add to JQL: AND NOT

. See (issue in structure('template structure name')) structure() JQL function (see

.page 178)

Structure Plugin for JIRA

Page of 149 370

1.

2.

1.

2.

1.8.2 Creating Issues and a Structure from Template

Once you have a template structure, you can use action from the Copy (see page 134) Manage Structures

page and turn on option. For details about configuring and running cloning Clone Issues (see page 136)

operation, refer to article.Copying Structure and Cloning Issues (see page 136)

After you have created a new structure with new issues from template, you might want to:

Rename the new structure and give it a meaningful name.

Assign permissions for the new structure, if they are different from template structure permissions.

Open the new structure to make sure it looks good.

Do a on all issues - for example, to remove a template marker.Bulk Change (see page 107)

1.8.3 Template Projects

In the same manner, you can create a template project with template issues, and put them all into a

template structure.

When you need to create a new project based on the template project, do the following:

Manually create an empty new project.

Create new structure and issues from template structure, as advised above. When configuring

cloning parameters, specify the new project in the parameter.Create in Project

1.9 Sharing a Perspective

Structure Perspectives is a feature that lets you store the way you see a structure in the form of a

permanent link which can be published or sent to another person.

To create a perspective:

Open Structure Board (see page 12)

Click the "Share perspective" button. A message with the link will appear:

Structure Plugin for JIRA

Page of 150 370

2.

3.

1.

1.

2.

3.

4.

5.

Copy the link and save it, publish it, or send it to persons you want to share it with.

To use a perspective:

Follow the link you've received. This will open a Structure Board in Perspective mode, that is, the

Structure Board will look mostly the way it looked when the perspective was created.

A special will be automatically selected. It represents the Perspective View (see page 143)

column configuration that was in use when the perspective was created. It is temporary and

read-only. You can modify it, make it permanent by saving it under a new name, or switch

back to some other view.

When creating a perspective, please consider the following:

If you send the link to someone who has no access to the Structure Plugin in general, or to the

individual structure for which the perspective was created, they won't be able to use your link.

If the structure contains issues accessible to you but not to the recipient, they will not see them in the

structure, even in Perspective mode.

Issue hierarchy is not stored in the perspective. A structure opened in Perspective mode will always

show the current issue hierarchy (it will contain all the changes that were made after the perspective

was created).

You can open structure history and select the latest change before creating a perspective.

This way, users will always see structure in history mode when opening your perspective.

If a perspective is not accessed for some time, it may be automatically removed from the system.

This behavior can be configured or disabled by JIRA administrators via Structure Maintenance (see

.page 236)

Once created, a perspective becomes accessible to any person who has access to the structure for

which that perspective was created.

Structure Plugin for JIRA

Page of 151 370

1.10 Synchronization

Synchronization lets you keep Structure issue hierarchy in sync with some other issue properties. For

example, you can enforce the rule that JIRA sub-tasks should always be placed under their parent in the

structure, or that there should be an issue link from parent issue to each sub-issue.

Synchronization can also be run once to perform a one-time update of the structure (Import) or one-time

update of the issues based on the structure (Export).

Synchronization is extendable system that allows JIRA plugins provide their own synchronizers. The

following synchronizers are supplied with the Structure plugin:

Sub-Tasks Synchronizer (see page 160) places JIRA sub-tasks under their parent issues in the

structure

Links Synchronizer (see page 164) makes sure that sub-issues are linked to their parent issues with

a specific link type, and it also can be used to reconstruct structure from links

Filter Synchronizer (see page 161) populates structure with issues that pass a saved filter, it also can

be used to remove issues from structure when they no longer pass the filter

JIRA Agile (GreenHopper) Synchronizer (see page 167) works to sync JIRA Agile ranking of issues

with their position in the structure and to make it easier to assign stories to epics by using Structure

Status Rollup Synchronizer (see page 171) allows to make propagate issue status upwards, for

example, make parent issue Resolved if all sub-issue are resolved.

One-time synchronization works when you run or , or when Export (see page 153) Import (see page 152)

you run a . Automatic synchronization runs in the background and listens for the Resync (see page 157)

updates in the structure and beyond.

Please be careful: synchronization may cause massive changes on the issues. For example, if you

install JIRA Agile (GreenHopper) synchronizer and then add issues to the structure in some

random order, those issues' ranks will be changed according to that order almost immediately! We

plan to add "synchronization undo" in the future version to reverse possibly uncalled bulk changes.

But for now, please make sure you have daily backups and carefully read how a synchronizer

works before installing it

In order to install a synchronizer you need to have permissions on a structure and have necessary Control

permissions on the JIRA issues.

Note that you also need to have special permission to . If there is a warning Control Synchronizers

message above the feature description please contact your for assistance.JIRA Administrator

Anonymous user cannot install synchronizers or use Export/Import even they are granted Control

permissions.

Structure Plugin for JIRA

Page of 152 370

1.

2.

3.

4.

5.

6.

1.10.1 Importing Structure

When you a structure, you get a set of issues which should be in the structure and/or information on Import

how they should be arranged in a hierarchical list. Then this information is applied to an existing structure.

For example, you can use a to add All Open Issues to a structure (or the Filter Synchronizer (see page 161)

results of whatever Saved Filter you have), or to JIRA Agile (GreenHopper) Synchronizer (see page 167)

rearrange issues in the structure according to their rank and epic in JIRA Agile.

To run Import, you must have permissions on the structure and additional permissions Control

may be required by a specific synchronizer.

To import hierarchy into a structure:

Open page using top navigation Structure menu.Manage Structures

Select the structure you'd like to import into and click link.Import

If you don't see link in the Operations column, then you possibly don't have Control Import

permissions for this structure.

Select a synchronizer from the drop-down list and proceed to configure import parameters.

If there are no synchronizers in the drop-down list, then either none are currently installed or

none of the installed synchronizers support import into a structure.

Enter synchronizer parameters. Each synchronizer has its own parameters, so please refer to

. If you're not yet acquainted with how this specific synchronizer documentation (see page 160)

specific synchronizer works, please read the Rules section on the parameters page.

Click . When you start import, synchronizer will analyze data and possibly update the Run Import

whole structure.

After you click Run Import and confirm the operation, a job status page is shown. When the job is

marked as Finished, the synchronization is done and you can view the results by opening the

affected structure.

When import is run, it runs under your user name and with your permissions. So if you don't have

enough permissions to read values somewhere else or to view issues you'd like to import, you may

not see the expected result.

Structure Plugin for JIRA

Page of 153 370

1.

2.

3.

4.

5.

6.

 and are actually a one-time . Import (see page 152) Export (see page 153) Resync (see page 157)

Export is resync from Structure and import is resync into Structure. If you need to run export or

import periodically, you can set up a synchronizer with all the parameters but without enabling it -

so no synchronization happens in the background. When you need to export or import, you can

open Synchronization Settings page for the structure and run Resync. Just make sure you've

selected the correct Resync direction!

1.10.2 Exporting Structure

When you a structure, you use the hierarchy from the structure to create, update or delete other Export

issue attributes or make any other changes based on the hierarchy that a specific synchronizer provides.

For example, you can use to create issue links between sub-issues and Links Synchronizer (see page 164)

their parents.

To run Export, you must have permissions on the Structure, and you will likely need some Control

additional permissions, depending on which synchronizer you're going to use. For example, you

have to have permission when working with the Links synchronizer.Link Issues

To export hierarchy from a structure:

Open page using top navigation Structure menu.Manage Structure

Select the structure you'd like to export from and click link.Export

If you don't see link in the column, then you possibly don't have Export Operations Control

permissions on this structure.

Select a synchronizer from the drop-down list and proceed to configure export parameters.

If there are no synchronizers in the drop-down list, then either none are currently installed or

none of the installed synchronizers support exporting from a structure.

Enter synchronizer parameters. Each synchronizer has its own parameters, so please refer to

. If you're not yet acquainted with how this specific synchronizer documentation (see page 160)

specific synchronizer works, please read the section on the parameters page.Rules

Click . When you start export, the synchronizer will read the current structure and apply it Run Export

to whatever it syncs with.

After you have clicked Run Export and confirmed the operation, a job status page will be present.

When the job is marked , the synchronization is done and you can inspect the results.Finished

Structure Plugin for JIRA

Page of 154 370

1.

2.

3.

4.

When export is run, it runs under your user name and with your permissions. So if you don't have

enough permissions to make a certain change in JIRA, the synchronizer will skip that change (a

warning will be printed out in the server logs).

 and are actually a one-time . Import (see page 152) Export (see page 153) Resync (see page 157)

Export is resync from Structure and import is resync into Structure. If you need to run export or

import periodically, you can set up a synchronizer with all the parameters but without enabling it -

so no synchronization happens in the background. When you need to export or import, you can

open Synchronization Settings page for the structure and run Resync. Just make sure you've

selected the correct Resync direction!

1.10.3 Installing Synchronizer

When you install a synchronizer on a structure, you make this structure automatically sync with something

else. For example, after you have installed and enabled a , any changes Links Synchronizer (see page 164)

someone makes to the structure will cause issue links to be created or deleted to match those changes. Or

when you have installed and enabled in mode, creating or changing Filter Synchronizer (see page 161) Add

an issue that causes it to pass the selected saved filter will cause this issue to be added to the structure.

When you install a synchronizer, you define its parameters. Those parameters can be edited (see page 155)

later.

Please note that after a synchronizer is installed, it's not working yet - it must be to start monitoring Enabled

the changes.

To install a new synchronizer:

Open page using top navigation Structure menu.Manage Structure

Find the structure you'd like to sync. The column shows currently installed synchronizers. Sync With

Click on the link in that column.Settings

If you don't see link in the column, then you possibly don't have Settings Sync With

 permissions on this structure.Control

Synchronization settings page shows detailed information about each installed synchronizer and lets

you work with them. To proceed with the installation of a new synchronizer, select the type of the

synchronization and click .Configure and Install Synchronizer

Enter synchronization parameters. Each synchronizer has its own parameters, please refer to the

.specific synchronizer documentation (see page 160)

If you're not acquainted with how this synchronizer works, please make sure to read the

 section at the top of the page. Especially text in red.Rules

Structure Plugin for JIRA

Page of 155 370

4.

5.

a.

b.

c.

1.

2.

3.

Press button and the synchronizer gets installed. However, it's not enabled yet.Create

Before synchronization is enabled, you might want to run Resync to bring the current state of

the structure and JIRA to the same page. In that case, press button after Resync and Enable

the synchronization is installed, or later use the same link on the synchronization settings

page.

If you need to enable synchronization without resyncing first, press Enable without

.Resyncing

You can enable and resync the synchronizer later from the synchronization settings page.

Press if you don't need to enable the newly installed synchronizer now.Done

 and are actually a one-time . Import (see page 152) Export (see page 153) Resync (see page 157)

Export is resync from Structure and import is resync into Structure. If you need to run export or

import periodically, you can set up a synchronizer with all the parameters but without enabling it -

so no synchronization happens in the background. When you need to export or import, you can

open Synchronization Settings page for the structure and run Resync. Just make sure you've

selected the correct Resync direction!

1.10.4 Modifying Synchronizer

You can change the parameters of a synchronizer to alter how it works. If the synchronizer is enabled (and

so, working in the background), it first needs to be stopped.

Changing synchronizer's parameters may completely change the result of synchronization. That's

why the synchronizer first needs to be stopped, and after the parameters are changed, Resync

 is recommended.(see page 157)

To edit a synchronizer:

Open page using top navigation Structure menu.Manage Structure

Find the structure of the synchronizer you'd like to edit. Click on the link in the Settings Sync With

column.

If you don't see link in the column, then you possibly don't have Settings Sync With

 permissions on this structure.Control

Find the synchronizer you'd like to edit. Click on the link or the link in the Edit Disable and Edit

 column. The synchronizer will be automatically disabled.Operations

Structure Plugin for JIRA

Page of 156 370

3.

4.

5.

a.

b.

c.

1.

2.

3.

1.

If you don't see neither the link nor the link in the Edit Disable and Edit Operations

column, then the synchronizer is probably provided by the third-party plugin and does not

support editing.

Set the new synchronizer parameters. Also, if you are a and not the JIRA Administrator

synchronizer owner, choose if you want to become the new synchronizer owner.

Press button. This will update the synchronizer parameters and make you the new owner of Apply

the synchronizer (unless you chose not to do so in the previous step). However, the synchronizer is

not enabled yet:

Before synchronization is enabled, you might want to run Resync to bring the current state of

the structure and JIRA to the same page. In that case, press button, or Resync and Enable

later use the same link on the synchronization settings page.

If you need to enable synchronization without resyncing first, press Enable without

.Resyncing

You can enable and resync the synchronizer later from the synchronization settings page.

Press if you don't need to enable the updated synchronizer now.Done

1.10.5 Removing Synchronizer

You can remove an installed synchronizer at any time if you have permissions on the structure.Control

Open page using top navigation Structure menu.Manage Structure

Find the structure you need to remove a synchronizer from. You can look at column to see Sync With

which synchronizers are installed in a structure. Click link for the selected structure.Settings

Find the synchronizer in the list and use link to remove it.Delete

Note that if the synchronizer is currently performing an incremental sync or resync, it will be allowed to

finish.

1.10.6 Turning Synchronizer On and Off

A synchronizer is disabled by default and it's usually explicitly enabled after it is installed into a structure,

probably with a resync. The following list summarizes the possible states of a synchronizer:

Disabled - the background incremental synchronization is not running. You can run resync (see page

 to do a one-time full sync.157)

Enabled - the background incremental synchronization is running. When a change is detected,

synchronization applies the change to the other part of the synchronous link as soon as possible,

typically within several seconds.

Not Available - the synchronizer is installed but it cannot run any synchronization. The possible

reasons are changes in JIRA configuration or lack of permissions from the user.

To an active synchronizer:disable

Structure Plugin for JIRA

Page of 157 370

1.

2.

1.

2.

3.

Open synchronization settings page for the structure.

Find the synchronizer and click link.Disable

If the synchronizer is currently running a sync, it will be allowed to finish.

To an inactive synchronizer:enable

Open synchronization settings page for the structure.

Find the synchronizer and click link.Enable

Alternatively, you can click to and enable immediately Resync and Enable resync (see page 157)

after resync finishes.

1.10.7 Running Resync

A resync, or full resynchronization, is a one-time process activated manually by the user to bring Structure

and some other aspect of issues to the same page. Resync typically scans all issues that may be affected -

contrary to the incremental synchronization, which inspects only issues that have been changed.

For example, running resync on a Saved Filter synchronizer (in mode) runs the related Saved Filter and Add

makes sure all issues from the result set are in the structure. When the same synchronizer is working in the

background, it checks only those issues that have been changed.

Resync Directions
Resync is also different from incremental synchronization in that it has a direction. The incremental sync

tries to apply changes on sides to the other side, if possible, depending on where the change has both

happened: with JIRA Agile (GreenHopper) synchronizer, if you change the rank (issue position in backlog

on the Planning Board), its position in the structure is also changed; and if you change the position in the

structure, GreenHopper's rank is changed. However, when applying Resync, you need to choose which side

of the data is to be taken as the final version and which is to be updated.

Resync can be run:

from Structure, which means that the issue hierarchy in the Structure is the final data and the

synchronizer should update whatever it syncs with. This is what happens when you export from a

.structure (see page 153)

into Structure, which means that the issue hierarchy is going to be updated (or issues possibly added

or removed), and whatever the synchronizer syncs with has the final say. This is what happens when

you .import into a structure (see page 152)

A synchronizer may support resyncing in only one direction. For example, Saved Filter

synchronizer, which adds issues from a saved filter result, can only sync Structure.into

Structure Plugin for JIRA

Page of 158 370

1.

2.

3.

a.

b.

4.

5.

6.

Running Resync
To run a resync:

Open page using top navigation StructureManage Structure

Click link in the column for your structureSettings Sync With

On the synchronization settings page, find the synchronizer you'd like to Resync, and either

Click Resync

Click if the synchronizer is disabled and you'd like to enable it Resync and Enable

immediately after Resync finishes

Select a direction for the Resync. For example, means that the JIRA Agile (GreenHopper) Structure

data will be taken from JIRA Agile and the structure will be rearranged. If a direction is not supported

by the synchronizer, it will be disabled.

Click .Start Resync

Resyncing in a wrong direction may lead to data loss! Please make sure you understand

that you're doing the correct thing and confirm running the resync when a confirmation

dialog appears.

The job status page that appears will tell you when the Resync has finished.

If the synchronizer is currently running an incremental synchronization, the resync will wait until it

finishes.

1.10.8 Synchronization and Permissions

IMPORTANT! Please read.

When synchronizer makes changes to bring structure and some other aspect of issues to the same page, it

should do that on behalf of a certain user - for the sake of permissions and logging. This user is the one who

has created the synchronizer, and it is displayed in column on the synchronization settings Run as User

page.

Due to asynchronous nature of the synchronization, the changes that cause sync may be effected by a

different user or users. However, when sync runs, the updates will be made on behalf of the user who

installed the synchronizer!

This is really important to understand. Consider the following settings:

You create a Structure and you set up structure so that anyone can edit permissions (see page 130)

the structure.

Structure Plugin for JIRA

Page of 159 370

You have Link Issues permissions on a project and you install Links synchronizer to have children

issues linked to their parent issue.

Now, anyone can edit the structure - add issues there, remove issues from there and rearrange the issues

in the structure. Every change of the structure will lead to adding and removing links between the

affected issues on your behalf - even if the user who changes the structure does not have Link

Issues permission!

So when using synchronizer, Structure edit permissions implicitly grant limited permissions to make

changes according to the synchronizer's algorithm, as well as issue permissions implicitly grant limited

permissions to edit the structure.

1.10.9 Protection from Synchronizer Cycles

It is possible to accidentally create a pair of synchronizers that would contradict each other. For example, a

 can be configured to put a sub-task under an issue, while a sub-tasks synchronizer (see page 160) links

 with the "links primacy" option would have to move it to the top level of the synchronizer (see page 164)

structure.

If both such synchronizers are enabled (i.e. perform automatic synchronization), they will end up in an

endless cycle, processing and overriding one another's changes, forever. These situations are undesirable,

because they put unnecessary load on the server and quickly fill up issue and structure histories with

meaningless change records.

Structure is designed to detect and stop such infinite cycles. In the background, Structure keeps track of

how many times each of the enabled synchronizers has been invoked to process the changes generated by

another synchronizer. If this number passes a certain threshold (10 by default), and there were no user-

generated changes between the invocations, Structure will flag this as a probable conflict, and perform one

or more of the following actions, depending on the configuration:

Prevent one of the synchronizers from running this particular time, but keep both synchronizers

enabled.

Disable both of the synchronizers involved in the cycle.

Send e-mail notifications to the user (or users) who created the conflicting synchronizers.

If the synchronizers are not automatically disabled and keep cycling, send e-mail notification to the

JIRA administrators (all users having the "System Administrator" global permission).

The default behavior is to disable the conflicting synchronizers and send e-mail notifications to the users

who installed them.

How do I respond to a cycle warning?

If you've installed a Structure synchronizer and then receive a cycle warning e-mail from Structure,

please take appropriate measures to reconcile the synchronizers – disable or reconfigure one or

both of them. If the second synchronizer was created by a different user, you may need to

cooperate with them to solve the problem. If you're not sure what to do, contact your JIRA

administrators or ALM Works support team.

Structure Plugin for JIRA

Page of 160 370

JIRA administrators can configure the cycle guard as described in the Administrator's Guide (see page 244)

.

1.10.10 Bundled Synchronizers

There are several bundled synchronizers coming with the Structure. Other synchronizers can be provided

by other JIRA plugins.

Sub-Tasks Synchronizer
Sub-Tasks Synchronizer lets you have sub-tasks automatically placed under their respective parent issues

in the structure.

This synchronizer is available only when Sub-Tasks are enabled in your JIRA and you have at

least one Sub-task issue type defined.

Sub-Tasks Synchronizer Parameters
You can select which sub-task issue types the synchronizer works with. Issues of other issue types will not

be affected.

This synchronizer supports only Import / Resync into Structure ().more about resync (see page 157)

Sub-Tasks Synchronizer Rules

When there's a sub-task (of one of the selected types) and its parent issue is in the structure, the sub-

task is also added to the structure and placed under its parent task.

The parent issue must be in the structure already - the synchronizer does not add parent AND sub-

task, neither does it add parent for the sub-tasks already added.

You can add parent issues to structure manually, or use Saved Filter synchronization to add

parent issues (and probably sub-tasks) automatically.

If a sub-task is already in the structure, and is located under a different parent (or at the top level), it

will be moved under its (with all sub-issues that it may have).subtask parent

Changes in structure are not synced back to sub-tasks: if you place an issue under another issue, it

will not become a sub-task.

If you move a sub-task away from its parent task, it will soon be moved back by the

synchronizer.

Structure Plugin for JIRA

Page of 161 370

Filter Synchronizer
Filter Synchronizer lets you automatically add issues to structure or remove issues from structure based on

a Saved Filter or a JQL query.

This powerful synchronizer lets you control the contents of the structure with an issue filter (either a Saved

 or an arbitrary). You can either add issues to structure automatically, or remove issues Filter JQL Query

from structure automatically, or do both.

Structure Plugin for JIRA

Page of 162 370

Filter Synchronizer Parameters

Filter A Saved Filter or a JQL Query to sync with. Click to choose a saved filter or switch to Select

 and enter the JQL.JQL query

When this synchronizer is enabled and runs in background, it "listens" to JIRA

events about issues being changed. That means that if the result of a query may

change without an issue being actually changed, the synchronizer will not detect the

change and will not update the structure.

For example, if you use JQL query , the updatedDate > startOfMonth()

synchronizer will not update the structure at the beginning of a month, when the

result of the query changes. You will need to do a or use Resync (see page 157)

scheduled synchronization.

Add Turns on : the synchronizer will make sure that all issues from the filter's result are Add Mode

present in the Structure.

Place

added

issue at

the top

level

The newly discovered issues from the filter result are placed at the top level, at the end of the

structure.

Place

added

issue as

a sub-

issue of

...

You can enter issue key (like PROJECT-123) of an issue that will serve as the parent for the

newly discovered issues from the filter. They will be placed as children of this issue, at the

end of the current children list. Note that if this issue is not present in the structure, the issues

won't be added at all.

Allow

move

This option is available if you have specified the parent issue for adding matching issues. This

option tells the synchronizer what to do if a discovered matching issue is already added to the

structure, but is located somewhere else, not under the designated parent issue. If the option

is on, the synchronizer will move the issue (with all its possible sub-issues) under the parent

issue. If the option is off, the issue will be left alone where it now resides.

Remove Turns on : the synchronizer will remove issues from the structure when they Remove Mode

no longer are present in the filter result. However, if an issue to be removed contains sub-

issues that should stay in the structure, it will not be removed.

Remove

only

from

where

Additional flag to remove issues only if they are either at the top level or under the issue

where they were initially placed by the synchronizer. So if you move an automatically added

issue somewhere else, it will not be removed even if it is no longer present in the search

result.

Structure Plugin for JIRA

Page of 163 370

added

issues

are

placed

This synchronizer supports only Import / Resync into Structure ().more about resync (see page 157)

If the Saved Filter used in configuration is deleted later, or if you lose permissions to run it, the

synchronizer will not work.

No matter how synchronizers are configured, they will only affect issues from the projects that are

.enabled for synchronization (see page 225)

CAREFUL! Please be careful when turning on Remove mode and installing another synchronizer

into the same structure. It is possible to set up the structure synchronizers in a way to make them

cycle: some other synchronizer, like Sub-tasks synchronizer, would add an issue to the structure

and then Saved Filter synchronizer in Remove or Add/Remove mode would remove that issue,

and so forth.

Filter Synchronizer Rules

Synchronizer adds issues from its filter's result to structure and/or removes issues that no longer are

in the filter's result.

Whenever an issue changes, a query is run to see if it matches the filter. On resync, all issues are

checked.

With mode on, an issue will be added to the structure if it matches the filter - even if the user has Add

manually removed it from there. If the issue is already in the structure, it will not be affected, unless

 is on - in which case it will be relocated under the specified parent issue.Allow Move

With mode on, an issue will be removed from the structure if it does not match the filter - Remove

even if the user has manually added it before.

When adding issues on Resync or Import, synchronizer places them at the end of the structure (or at

the end under the specified parent issue), in the order that corresponds to the filter's order. However,

if only part of the filter result is added (for example, because other issues are already in the

structure), the final sequence of issues may be different from the filter result.

Automatic Branches Removal
The “Double-check sub-issues” option is useful when you want to build and, more importantly, maintain a

Structure, where you have a certain set of issues on the top level and then all the issues that are linked to

them added under them.

Specifically the Double-Check option is necessary for removing from the structure the top level issues and

all the issues linked to them, when the top level issue no longer passes the filter of the synchronizer.

Structure Plugin for JIRA

Page of 164 370

Here is an example.

You are trying to build a structure, where you have all Open Stories on the top level and then the issues

which block them added below.

To build this structure you will need to configure the Filter synchroniser, which will add Open Stories to the

top level and the Links synchroniser, which will add linked issues.

You can find more information on Link Synchroniser in .this article (see page 164)

To get the list of the top level issues you can use the JQL query, which looks like this:

issuetype = Story and status = open

However, if you use this as the filter query and select the remove option, the Filter Synchroniser will remove

all children, which will be added by the Link Synchronizer, because the children do not pass the JQL query.

To solve this problem you can extend the query with S-JQL expression, which returns both parents and their

children, which are already in the structure - this will prevent the Filter Synchronizer from removing children

from the Structure:

(issuetype = Story and status = Open) or issue in structure(“Open Stories Structure“,

"issueOrAncestor in [type = Story and status = Open]”)

For more information on S-JQL please refer to the .documentation (see page 178)

Now the last step is the removal of the Story and issues linked to it when the status of the story changes. If

the Double-Check option is not selected, once the Story status changes the synchronizer will see, that the

Story should be removed, but will think that the children still pass the filter (because there were no explicit

changes done to them). As a result it will keep both the Story and the children in the Structure. Selecting the

Double-Check option will force it to check if the children still pass the filter and it will remove the whole

branch.

Links Synchronizer
Links Synchronizer maintains issue links between parent issue and children issues.You can use this

synchronizer to replicate the hierarchy in the structure with issue links, or to import a hierarchy that was

previously created with links.

Links synchronizer is available only when Links are enabled and there's at least one link type.

Structure Plugin for JIRA

Page of 165 370

This synchronizer supports Resync in both directions (Import and Export) (more about resync (see page 157

). Incremental synchronization watches both structure changes and issue link changes and applies the)

change to the other side (unless option is specified, see Reverse contradicting changes below (see page

).166)

No matter how synchronizers are configured, they will only affect issues from the projects that are

.enabled for synchronization (see page 225)

When synchronizer adds or removes JIRA issue links, it has the same permissions as the user

that installed the synchronizer.

Links Synchronizer Parameters

Link Type
The type of the link to sync with. Links of other types will be ignored.

Link Direction
Defines which side of the link is the parent issue and which is the sub-issue.

Parent Issue Filter and Sub-Issue Filter
If set, these filters determine which issues and links can be affected by the synchronizer:

If a link's parent issue or sub-issue (as determined by) doesn't pass the Link Direction

corresponding filter, then the link is ignored by the synchronizer, as if it didn't exist.

In particular, if there are two issues that belong to the structure and pass the corresponding filters,

and one of them falls out of its corresponding filter, the link will not be deleted.

If there is a parent issue and a sub-issue in the structure, and either of them doesn't pass the

corresponding filter, the synchronizer will not create a link between them.

You can use saved filters or JQL queries.

Scope
Defines which issues are affected by the synchronizer, based on whether they are in the structure or not.

Synchronize issues that are already in the structure means that the synchronizer will affect only

those issues that are already in the structure or reachable from it via issue links. Use this option

when you need manual control over which of the linked issues appear in the structure.

If is selected, the synchronizer will add sub-issues to the structure if Expand to sub-issues

their parent issue is in the structure.

If is selected, the synchronizer will add a parent issue to the Expand to parent issues

structure if any of its sub-issues is in the structure.

Synchronize all issues that have links of selected type means that the synchronizer will affect all

issues that have matching issue links and pass the . For example, you can use this Issue Filters

option to import all issue relationships represented by links into an empty structure.

Structure Plugin for JIRA

Page of 166 370

This setting also controls which issue links can be deleted during export, manual resync structure, or from

incremental synchronization. For example, when you remove a sub-issue from the structure, the

synchronizer will remove the corresponding link only if it could have added this sub-issue back, that is, when

either or is selected.Expand to sub-issues Synchronize all issues

CAREFUL! Please be careful when using this synchronizer with option Synchronize all issues

selected, because Exporting or Resyncing Structure would delete all the existing links of the from

selected type between issues that are not in the corresponding positions in the structure.

Removal
Defines how the synchronizer treats a sub-issue that doesn't have a link to justify its position in the structure

(for example, when a user deletes the link from its parent issue):

When is selected, the synchronizer will move such an issue up the hierarchy until it's Move upwards

either at the top level of the structure or in a position that doesn't contradict the settings (for example,

under an issue that does not pass the).Parent Issue Filter

When is selected, the synchronizer will remove such an issue from the structure, together Remove

with all its sub-issues.

Primacy
By default, when a synchronizer is installed and enabled, it tracks changes made by users and applies them

to the "other side":

When a user creates or deletes issue links, the synchronizer adjusts the structure accordingly.

When a user changes the structure, the synchronizer creates or removes the corresponding links.

You can use the option to override this behavior and specify the primary Reverse contradicting changes

place where issue relationships are stored:

With , when a user creates or deletes a link that is within the scope of the Structure primacy

synchronizer, but contradicts the structure, that change will be reverted. One needs to change the

structure to adjust issue relationships.

With , the synchronizer reverts changes to the structure that contradict issue links. Links primacy

One needs to change the links to adjust an issue's position within the structure. Note that this does

not apply to reordering issues without changing their parents.

Please note that this option does not apply during Export, Import or manual Resync.

Links Synchronizer Preserves Links Between Added List of Issues
There is a special case: when a list of 2 or more issues is added to the structure, links between these issues

are preserved, and they form a hierarchy according to these links. Such a situation may arise, for example,

when searching outside the structure and moving a bunch of issues into the structure.

Structure Plugin for JIRA

Page of 167 370

This differs from the default behaviour when option is not selected: Reverse contradicting changes

normally, if an issue is added to the structure as a sub-issue , and both of them pass the Issue Filters, A B

Links synchronizer would establish a link between and and remove all other links of the corresponding A B

type where is on the sub-issue end of the link. When a list of issues is added, however, the synchronizer B

behaves as if was selected.Links primacy

Links Synchronizer Rules

When synchronizer is enabled:

Changes in the structure will be reflected by creating and removing links of the selected type.

Links created or removed by the user will be automatically reflected in the structure.

Links created and removed by the synchronizer are not recorded in the issue history, and issue

update time is not changed (due to performance reasons).

Use Resync (Structure to Links) or Export to update the links according to the structure.from

If is selected, all other links of the selected type will be deleted.Synchronize all issues

Otherwise, the links that are reachable from the structure considering options, Expand to...

but not represented in the structure, will be deleted.

Use Resync (from Links Structure) or Import to add and rearrange the issues in the structure into

according to the existing links.

If is selected, all issues with matching issue links will be added to the Synchronize all issues

structure.

Otherwise, only the issues reachable from the structure considering options will Expand to...

be added.

Links that violate hierarchy restrictions are treated as follows:

If a sub issue has more than one parent issue, the most recent issue link is used.

If there is a sub-issue cycle, the oldest issue link is not used.

There is an exception to the two preceding rules: Links synchronizer prefers to use links

, even if they are older than others.between added list of issues (see page 166)

Unused links are deleted during incremental synchronization, and ignored during Import or

manual Resync.

JIRA Agile (GreenHopper) Synchronizer
JIRA Agile (GreenHopper) Synchronizer lets you synchronize the position of issues in the structure and on

an Agile board (such as a Scrum or Kanban board) using Rank synchronization, and synchronize an Epic

field with the position of stories under epics in the structure.

Structure Plugin for JIRA

Page of 168 370

JIRA Agile Synchronizer Parameters

Synchronize Choose mode of operation :(GreenHopper/JIRA Agile 6.1+ only)

Use Agile Board configuration (this feature is available only with JIRA Agile

/Greenhopper 6.1+)

Use custom projects and fields configuration

 Agile Board mode parameters:(GreenHopper/JIRA Agile 6.1+ only)

Agile Board JIRA Agile board to synchronize with. The issues matching Board query will be

synchronized. The structure may contain other issues, they will not be affected. If

Ranking is turned on by ORDER BY clause in the query, it can be used for

synchronization.

Synchronize

Epics

If checked, epics will be synchronized with JIRA Agile epics.

Synchronize

Rank

If checked, and Ranking is enabled for Agile Board, it will be synchronized with Structure.

 Custom issue set mode and GreenHopper 6.0 and earlier parameters:

Project A project that JIRA Agile is used in. The structure may contain issues from other projects,

they will not be affected.

 Multiple projects may be selected. The issues from all GreenHopper 5.8 or later:

selected projects will be synchronized using the same Global Rank field.

Rank Field The field of type "Rank" (managed by JIRA Agile) that holds the rank (backlog order) for

the selected Project. If you do not wish to synchronize rank, select .Don't synchronize

Epic Field The field holding the Epic that the story belongs to.

If you use epics on the Scrum boards in GreenHopper 6.1 and up, select "Scrum

Board Epics" as the Epic field to synchronize them.

If you use the Classic Planning Board, pick the appropriate custom field of type

"Labels", which is typically named "Epic/Theme".

The synchronizer allows to select an Epic/Theme field even if it is

applicable only to some of the available issue types. When the

synchronizer should set a value to an Epic/Theme field, it will not make a

change if the field is not applicable to the issue type of the changed

issue.

If you do not wish to synchronize Epics content, select .Don't synchronize

Structure Plugin for JIRA

Page of 169 370

Epic Type Relevant only if an Epic Field is selected. Defines an issue type that is treated as Epic -

typically named "Epic". All issues placed under an issue of this type in the structure will be

updated to have Epic Field point to that issue.

Auto-add

Subtasks

When turned on, sub-tasks will be automatically added to the structure and forced to stay

under their respective parent issues. This works similarly to Sub-Tasks Synchronizer (see

.page 160)

This synchronizer supports both Import and Export / Resync into/from Structure (more about resync (see

). Incremental synchronization watches both structure changes and JIRA Agile's changes and page 157)

applies the change to the other side.

CAREFUL! Please be careful when using this synchronizer, especially when you add multiple

issues to the Structure, as this may lead to massive updates in the Agile ranks without undo.

On Fix Versions
Earlier GreenHopper versions relied on values in the field - if a version has been released, Fix in Version/s

the issues assigned to that version won't appear on the Classic GreenHopper boards. GreenHopper

synchronizer in Structure reflected that behavior and ignored such issues.

With the introduction of new Boards (known initially as Rapid Boards, then as Agile Boards), this

dependency on Fix Version field has become optional. In some cases, Fix Version field is completely

disabled and the teams use Agile Sprints. To address that, the JIRA Agile synchronizer no longer filters

issues by Fix Version, unless you're using an old GreenHopper version.

JIRA Agile Synchronizer Rules
Common Rules:

Issues that do not belong to the synchronized project(s) are not affected. If you've got GreenHopper

earlier than 5.8 and not using Global Rank field, then issues that are assigned to Fix Versions that

have been released are also not affected.

This synchronizer does not add issues to the structure (with two exceptions, explained below). You

can use Saved Filter synchronizer together with JIRA Agile synchronizer to automatically add and

position issues.

Sub-Tasks Synchronization:

With mode on, sub-tasks are added to the structure if their parent is there in the Auto-Add Subtasks

structure.

The sub-tasks are forced to stay under their parent, so if you move a subtask somewhere else, it will

jump back under the parent again. You can rearrange the order of the sub-tasks, which will be

sync'ed to the Agile Rank if the Rank Field is configured.

Rank Synchronization:

Structure Plugin for JIRA

Page of 170 370

Repositioning issues in the structure causes Rank change and the repositioning issues on the

Planning Board.

Rearranging issues on the GreenHopper's Planning Board causes the issues to be rearranged in the

structure.

When issues are repositioned in the structure according to Rank, they are never moved under a

different parent issue.

This restricts the possible rank changes in JIRA Agile - you can only move an issue to the

position of another issue that is under the same parent issue in the structure, otherwise the

issue will "jump back" later.

Epic Synchronization:

Placing an issue under an Epic in the structure will cause its Epic field to change to that Epic.

It does not matter at what level of depth is the sub-issue. A sub-sub-sub-issue of an Epic issue

will also have its Epic field updated.

If you move an issue in the structure so that it's not under any epic, its Epic field will be cleared.

If you manually change Epic field (using JIRA Agile UI or otherwise) to point to a different Epic, the

issue will be repositioned under that Epic in the structure.

An issue that has the Epic field pointing to an Epic in the structure will be automatically added

to the structure.

If you clear Epic field or change it to point to an epic that is not in the structure, the issue will be

moved up in the structure until it is no longer under any epic.

How to Add Issues to Structure Sync'ed with JIRA Agile
When JIRA Agile synchronizer is enabled, it automatically updates Agile order in background when any

Structure change happens. So if you carelessly add issues from the sync'ed project to the structure in some

random order, their ranks will be updated according to that order.

To add issues to the structure without breaking the existing backlog order:

If adding manually on the Structure Widget, use JQL search and add clause at the end order by Rank

of the query. Use the rank field that is used by the synchronizer.

Select the position of the added issues carefully (best with drag-and-drop or copy/paste) - the order is

likely to change unless you place issues under another issue without any other sub-issues (see

 below).Syncing Partial Orders

If using Saved Filter synchronizer to add issues, add clause to the Saved Filter's order by Rank

query. However, the new issues that are added with the Saved Filter synchronizer will appear at the

end of the structure and so will have the latemost ranking.

Syncing Partial Orders
JIRA Agile's Board is flat (except for sub-tasks), and the Structure is hierarchical - so it is not possible to

precisely rearrange Structure to have all issues come in the same order as they do on the Planning Board,

without changing issue parents or making the Structure also flat.

Structure Plugin for JIRA

Page of 171 370

Henceforth, the Structure syncs subsets of the issues in the hierarchy with Agile Rank. For example,

consider the following Structure:

A

 B

 C

D

 E

 F

It is not possible to rearrange the sub-issues so that they come in the following order: B, E, C, F - although

this is possible on the Planning Board. Instead, the structure will synchronize sub-sets of the issues in the

Structure with JIRA Agile. The following sub-sets will be synchronized separately:

A, D - top-level issues: A must come before D on the Planning Board

B, C - sub-issues of A are sync'ed separately, so B must come before C on the Planning Board

E, F - ditto for the sub-issues of D

In JIRA Agile version 6.1 and later, the Epics are treated by JIRA Agile as a separate set of issues,

different from Stories and other non-Epics. To accommodate this change, Structure updates the

rank of issues also using "partial order" approach, syncing Epics and non-Epics separately. This

means that, starting with JIRA Agile 6.1, if an Epic comes before a Story on the Structure Board, it

is not required that they come in the same order on the Scrum Board.

Status Rollup Synchronizer
Status Rollup synchronizer automatically aggregates statuses of the sub-issues and updates the status of

the parent issue. For example, it can make parent issue if all sub-issues are .Resolved Resolved

Structure Plugin for JIRA

Page of 172 370

Status Rollup Synchronizer Parameters

Enabled

Projects

Only issues belonging to the selected projects are . It does not matter what project changed

sub-issues belong to, as long as their parent belongs to the enabled project — every sub-

issue counts with its status.

Enabled

Issue

Types

Same with types — you can select issues of which types may be changed by the

synchronizer, and like with the enabled projects, only the parent issue type is checked.

Statuses

Rolled Up

The selection and order of statuses that are used to calculate parent issue status. Parent

issue status is set to the status among its sub-issues. If a sub-issue has a status earliest

not selected in this parameter, the parent issue is not changed.

Allowed

Transitions

For every status, you can select which transitions the synchronizer can make to move an

issue to that status.

Resolution Value to set to the field when workflow transition requires it. By default, a current Resolution

or default value for Resolution is used.

The synchronizer is normally installed, resynced and used in the Incremental mode, tracking changes to

issues and structure and updating issues. The synchronizer supports Exporting from Structure, changing

statuses of the issues in the structure on one-time basis.

How Status Rollup Synchronizer Works
The synchronizer tracks updates to issues and to structure, and tries to make sure that the status of the

parent issue corresponds to the aggregate status of its direct children.

When you configure Status Rollup, the most important parameter is the selected Statuses and their order:

Statuses that are not selected in the parameters are not recognized by the synchronizer. If a sub-

issue has one of the unselected statuses, the synchronizer does not change the parent issue.

The order of the selected statuses should correspond to order of phases of the workflow. earliest-to-latest

For example, the screenshot above shows configuration where is followed by , which is Open Resolved

followed by . With that configuration, once all sub-issues of an issue are , the synchronizer Closed Resolved

will try to make the issue too. Once all sub-issues are , the issue will be made . But Resolved Closed Closed

if at least one sub-issue happens to be , the issue status will be set to — because it is the Open Open

earliest status in the specified order.

Structure Plugin for JIRA

Page of 173 370

On the screenshot above:

All and do not have sub-issues of their own, so the synchronizer does sub-sub-issues sub-issue 1

not change their status.

Sub-issue 3 has a single sub-issue, which has status — so since all of its sub-issues are Closed

closed, it should be too.Closed

Sub-issue 2 has one sub-issue and one sub-issue — it should be because Open Resolved Open

Open status comes before Resolved in the order specified earlier.

Parent Issue has sub-issues that have statuses , and — so it should be Open Resolved Closed

 for the same reason. Once all sub-issues are , Parent Issue will be automatically Open Resolved

. Once all sub-issues are , Parent Issue will automatically be .Resolved Closed Closed

Remember, that whenever one of the sub-issues gets a status not listed in the synchronizer

configuration, the synchronizer just skips the issue. For example, if we change the status of Sub-

 above to , will not be updated. If we then change the status of issue 2 In Progress Parent Issue

 to , status will be updated to .Sub-issue 2 Resolved Parent Issue Resolved

How Status is Changed
JIRA allows status to be changed only through a workflow transition, so the only way Status Rollup

synchronizer can set the desired status on an issue is to apply a workflow transition. Therefore, when you

select a status, you also need to select which transitions is synchronizer allowed to make.

Structure Plugin for JIRA

Page of 174 370

1.

2.

3.

4.

5.

So what the synchronizer does is:

See what status the issue currently has;

Calculate what status it should have, based on the statuses of sub-issues;

Find workflow transitions that can transfer the issue from the current status to the required status;

Check which of those transitions are allowed by the configuration;

Try to apply matching transition number one, if it fails — try the next one, and so on.

Note that all transitions are done under the account of the user who has installed the synchronizer.

Why Can a Workflow Transition Fail
It's not guaranteed that the synchronizer will be able to change the Status, because workflows are too

flexible and there are many reasons that a given transition, which you have allowed in the configuration, can

fail to execute. Here are some of the possible causes:

You (the user who has installed the synchronizer) do not have the required permissions to make the

transition;

You are not the Assignee of the issue — required for In Progress status;

Some other pre-condition defined in the workflow fails;

Workflow transition requires a field to be set on an issue that has no default value.

As described above, it's possible that there are several possible transitions from one status to another. The

synchronizer will try all of them unless one of them succeeds.

If the synchronizer fails to update the status, a warning message will be written into the server logs

(subject to logging configuration).

Changing Resolution
You can set up a specific value to be set whenever a transition involves changing the resolution. Resolution

If you don't specify this parameter, the default resolution or already existing resolution will be used.

Structure Plugin for JIRA

Page of 175 370

In order to tell which issues have been automatically moved to a status like Resolved or Closed,

you can set up a special resolution like .Auto-Resolved

Manually Changing Status of an Issue That Has Sub-Issues
Even if an issue has sub-issues and is subject to Status Rollup, you can manually change its status.

Although the synchronizer will be forced to recalculate the status of that issue immediately, it will not

recalculate the status if any of the sub-issues change – probably reversing your change, if it finds an

allowed transition.

If you'd like the synchronizer to only move issues , that is, from to , but not forward Open Resolved

vice versa, you can configure the allowed transitions accordingly.

1.11 Structure Activity Stream

JIRA's dashboard gadget lets you see recent activity in JIRA and other connected Activity Stream

systems. The activity stream can be filtered (for example, by project) to show you only the changes that

concern you or your team. In addition, tab on the issue page displays recent activity that has Activity

affected the viewed issue.

With the Structure plugin installed, Activity Stream gadget may be configured to include changes made to

structures. The activity stream on the issue page automatically includes all changes to all structures that

affect the position of the viewed issue.

To activate the Structure stream, select the Structure option in the Available Streams section of the Activity

Stream gadget configuration.

1.11.1 Available Filters

The following filters are available for the Structure activity stream:

Structure

Use it to see changes only in a specific structure or structures, or to exclude specific structures from

the stream. If this filter is not used, changes to all structures are shown.

Ancestor Issue Key

This filter can be used together with the filter if you are interested in changes within a Structure

specific part of a specific structure, located "under" the specified issue (if the changed issue is not

located under the specified issue, the change will not be shown). You can enter several issue keys

separated by spaces.

Synchronizer

You can include or exclude changes made by a synchronizer (either by any synchronizer or by

specific synchronizers). Since synchronizers might make a lot of changes, this might be useful to

filter out their "noise". Vice versa, you could verify that a synchronizer works as expected with an

activity stream and this filter.

Structure Plugin for JIRA

Page of 176 370

Activity

All changes to a structure fall into three categories: adding issues to structure, removing issues from

structure and moving issues within structure. This filter lets you include or exclude the particular

types of changes.

All Global Filters are supported by Structure Stream as well – you can filter structure changes by

 and .Project, Issue Key, Update Date Username

1.11.2 Reading Activity Stream

Changes in the Structure activity stream are ordered chronologically, newest first. For each change a short

summary is displayed, containing:

the full name of the user who made the change;

for changes made by a synchronizer, the name of the synchronizer;

the number of affected issues, and whether they were they added, removed or moved;

if filter is used, the number of affected issues in each of the selected projects;Project

if filter is used, the affected issues among those selected in the filter;Issue Key

the name of the changed structure.

When viewing activity stream in the Full View, the following is also shown:

the parent path of the affected issues;

the original and the new parent path for the moved issues;

Structure Plugin for JIRA

Page of 177 370

if the issues were moved within the same parent issue, the direction of the move (upwards /

downwards);

when the change was made.

Parent Path is a sequence of issue keys: first, a top-level issue, then its sub-issue, then sub-sub-

issue, and so on until the parent of the affected issue is displayed. Hover mouse over an issue key

to view the issue's summary, or click it to go to that issue.

On this screenshot, items 1, 2 and 3 are Structure activities.

In the Full View, click on the time of the change to open that change on the Structure Board in the

.History View (see page 109)

1.11.3 Activity Streams Performance

Structure's activity stream is optimized to quickly provide data for the most common activity requests from

Dashboard, Issue Activity, User Activity and Project Activity page.

Structure Plugin for JIRA

Page of 178 370

It is possible however, if you use a complex search query on a JIRA instance with large history of structure

changes, that querying database will take longer time than Activity Streams allows and you will not see any

results. (There should be a message that "one of the activity streams providers took long time to provide an

answer".)

If that is the case, try to reduce the amount of conditions you are using or contact support for help.

1.12 Structured JQL

Structure not only displays hierarchy of items, it allows to search items based on their relative positions in

the hierarchy. The language used to express such queries is called or (where JQL Structured JQL S-JQL

stands for JIRA Query Language).Structured JQL queries are available in these places:

inside JQL function — that allows to search for issues in structure on the Issue structure()

Navigator, see ;structure() JQL function (see page 204)

in the Search Area on the Structure Widget — see ;Simple, JQL, and S-JQL Search (see page 64)

in the ;S-JQL Filter generator (see page 118)

in the workflow validator or condition — see .Workflow Integration (see page 239)

To quickly find a solution to a common structure querying problem, consult S-JQL Cookbook (see page 178)

, which contains a number of examples. To build your own query, start off with the closest example and

modify the query as needed.

Consult for a comprehensive description of the language and S-JQL Reference (see page 183)

 JQL function.structure()

1.12.1 S-JQL Cookbook

Here are the most common examples of using S-JQL.

Find issues added to a structure
Goal: Suppose that you are using a structure named "My todo list" as a collection of issues, and you want to

see in the Issue Navigator all issues added to this structure.

How to achieve: In the Issue Navigator, switch to and run the following query:Advanced Searching

issue in structure("My todo list")

If you want to find issues added to the , you can omit the structure name:Default Structure (see page 10)

issue in structure()

http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Structure Plugin for JIRA

Page of 179 370

^ up to the list of examples (see page 178)

Quick Filter for JIRA Agile's (GreenHopper) Scrum Board to display

only low-level issues in a structure
Setup: Suppose that you are using a structure named "Project work breakdown" to organize tasks under

higher-level "container" issues that provide an overview of your team's work. In this setting, the actual tasks

are at the bottom level of the hierarchy. Also, suppose you are using JIRA Agile's Scrum Board to manage

your sprints.

Goal: You want to see only the actual tasks in backlog, hiding the container issues.

How to achieve: Add a to your JIRA Agile (GreenHopper) board with the following JQL:Quick Filter

issue in structure("Project work breakdown", leaf)

If your structure is organized such that lower levels matter to you on the JIRA Agile board, you'll search two

for leaf issues and their parents with this JQL:

issue in structure("Project work breakdown", "leaf or parent of leaf")

^ up to the list of examples (see page 178)

Retrieve all Epics in a certain status and all of their children
Setup: You have a structure named "Enterprise Portfolio" with Epics on the top level, Stories beneath them,

and Tasks with their Sub-Tasks occupying the lower levels of the hierarchy.

Goal: You need to see Epics in status with all of their children.Assigned

How to achieve: In the Issue Navigator, switch to and run the following query:Advanced Searching

issue in structure("Enterprise Portfolio", "issueOrAncestor in [type = Epic and status =

Assigned]")

If you want to see these issues in the structure, go to and type this query in Structure Board (see page 12)

the in the JQL mode.Search Area (see page 63)

Also, you can type only the last part of the query if you use :S-JQL search mode (see page 66)

issueOrAncestor in [type = Epic and status = Assigned]

^ up to the list of examples (see page 178)

https://confluence.atlassian.com/display/GH/Configuring+Quick+Filters
http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Structure Plugin for JIRA

Page of 180 370

Find Test Cases associated with Stories in an active sprint
Setup: Suppose that you have a structure named "Enterprise Portfolio Testing", where you have Epics on

the top level, Stories on the second level, then come Test Sub-Tasks, and finally Test Cases.

You are also using JIRA Agile (Greenhopper) to manage your sprints, which contain Stories. The fact that a

Test Case is associated with an Story is recorded only in the structure.

Goal: You need to find those Test Cases that are associated with Stories in an active sprint.

How to achieve: You can use Issue Navigator's capability or open the structure on Advanced Searching

the and use its in the JQL mode to run this Structure Board (see page 12) Search Area (see page 63)

query:

issue in structure("Enterprise Portfolio Testing", "[type = 'Test Case'] and ancestor in [type

= Story and sprint in openSprints()]")

Or, you can type only the last part of the query if you use on the S-JQL search mode (see page 66)

Structure Board:

[type = 'Test Case'] and ancestor in [type = Story and sprint in openSprints()]

^ up to the list of examples (see page 178)

Find all issues that are blocking critical issues
Setup: Suppose that you have a structure named "Dependency structure" where parent-child relationship

corresponds to dependency: each child blocks its parent. (You might have configured a Links Synchronizer

 to synchronize this structure with the "Dependency" JIRA issue link.)(see page 164)

Let's also suppose that you consider critical those issues that have priority .Critical

Goal: You want to see all issues that are blocking critical issues, according to the structure.

How to achieve: You'll need to find children of critical issues. You can use Issue Navigator's Advanced

 capability or open the structure on the and use its Searching Structure Board (see page 12) Search Area

 in the JQL mode to run this query:(see page 63)

issue in structure("Dependency structure", "child of [priority = Critical]")

Or, you can type only the last part of the query if you use on the S-JQL search mode (see page 66)

Structure Board:

child of [priority = Critical]

^ up to the list of examples (see page 178)

http://confluence.atlassian.com/display/JIRA/Advanced+Searching
http://confluence.atlassian.com/display/JIRA/Advanced+Searching
http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Structure Plugin for JIRA

Page of 181 370

Find all unassigned issues in a part of a project
Setup: Suppose that you use a structure named "Project work breakdown" to break down your project into

smaller pieces, so that if you have an issue somewhere in the structure, all of its children at all levels

constitute a separate part of a project.

Goal: You are focusing on a part of a project under the issue with key , and you want to see PROJ-123

unassigned issues in that part of the project.

How to achieve: Use this JQL query to find all unassigned descendants of :PROJ-123

issue in structure("Project work breakdown", "[assignee is empty] and descendant of PROJ-123")

^ up to the list of examples (see page 178)

Top-level view on unfinished parts of a project
Setup: Let's continue with the "Project work breakdown" structure from the previous example. Suppose that

there are several top-level issues representing different parts of the project.

Goal: You want to have a view on the parts of the project that are yet unfinished.

How to achieve: In the Structure terms, you need to see the root issues that have unresolved descendants.

To have a persistent view, create a with the following JQL:Saved Filter

issue in structure("Project work breakdown", "root and descendants in [resolution is empty]")

^ up to the list of examples (see page 178)

Find violations of the rule "Tasks must be under Epics or Stories"
Setup: You have a structure named "Planning" where you put issues of types Epic, Story, and Task. Your

team follows the convention that Tasks are always put under Epics or Stories. However, as humans are

fallible, sometimes a Task ends up being in a wrong place — either on the top level, or under another Task.

Goal: You need to find Tasks that violate the rule, so that you can put them in the right place.

How to achieve: In the on the , run the Search Area (see page 63) Structure Board (see page 12)

following :JQL search (see page 66)

issue in structure("Planning", "[type = Task] and parent not in [type in (Epic, Story)]")

^ up to the list of examples (see page 178)

https://confluence.atlassian.com/display/JIRA/Using+Filters

Structure Plugin for JIRA

Page of 182 370

Find violations of the rule "An issue cannot be resolved if it has

unresolved children"
Setup: Suppose that "Planning" is a work breakdown structure. Your team follows the convention that an

issue cannot be resolved unless all of its children are resolved.

Goal: You need to find the issues violating this rule.

How to achieve: In the on the , run the Search Area (see page 63) Structure Board (see page 12)

following :S-JQL search (see page 66)

[resolution is not empty] and child in [resolution is empty]

^ up to the list of examples (see page 178)

Find issues that can be resolved because all their children are resolved
Setup: Suppose that "Planning" is a work breakdown structure. Your team follows the convention that once

all children of an issue are resolved, the issue can be resolved as well.

The best solution for this would be to use a , but suppose that for Status Rollup Synchronizer (see page 171)

some reason you want to do it manually.

Goal: You need a way to manually resolve those issues that have all of their children resolved.

How to achieve: Open the structure on the . When you paste the query Structure Board (see page 12)

given below into the (ensure that the is selected), Search Area (see page 63) JQL mode (see page 65)

the issues that you can resolve will be shown. You can resolve them one by one. Here's the query you

need:

issue in structure("Planning", "[resolution is empty] and not(child is empty or child in

[resolution is empty])")

^ up to the list of examples (see page 178)

Get a view of a second (third, ...) level of the hierarchy
Setup: There is a large structure named "Joint Effort" where different users track their issues on several

levels: Customer Relations department works with the top-level issues, Project Managers break them down

in several issues on the second level, Team Members work with issues under second-level issues.

Goal: Each user wants to see only the relevant part of the structure. Customer Relations department wants

to filter out lower-level issues to focus on the top-level ones, and Project Managers sometimes want to focus

on just the second-level issues in the context of their parent requests.

Structure Plugin for JIRA

Page of 183 370

How to achieve: use the on the to run the Search Area (see page 63) Structure Board (see page 12)

specific queries (ensure that the is selected.) Toggle the S-JQL mode (see page 66) Filter (see page)

button to hide the issues on the lower levels.

To see top-level issues, run this query:

root

To see second-level issues (top-level issues will be still displayed, but greyed out), run this query:

child of root

If you would need to dig even deeper, to see the third level but not the lower ones, you'd use this query:

child of (child of root)

^ up to the list of examples (see page 178)

Get the contents of a folder
Setup: There is a structure with a folder named "Next Release". Issues are placed there manually and then

queried via S-JQL for planning purposes (as an Agile board filter, for example).

Goal: The users want to see all issues that are located under the specified folder.

How to achieve: In the Issue Navigator, switch to and run the following query:Advanced Searching

issue in structure("My Structure", "descendant of folder('next release')")

Note that the folder name is case-insensitive.

^ up to the list of examples (see page 178)

1.12.2 S-JQL Reference

Structure query is a hierarchical condition on the items added to the structure. Structure query is expressed

in the Structured JQL language (S-JQL), described in this article.

Parts of this article assume that you are familiar with capability of JIRA.Advanced Searching

List of Structured JQL topics:

http://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://confluence.atlassian.com/display/JIRA/Advanced+Searching

Structure Plugin for JIRA

Page of 184 370

Multiple instances of items
If there are multiple instances of an item in the structure, some of these instances might match the query,

and some might not.

Consider the following structure:

TS-239

 TS-42

TS-123

 TS-239

Here, issue TS-239 is present two times — one at the root position, and another under another issue. Query

 will match the first instance but not the second one.root

This difference is visible when you are filtering in the Structure Widget (see). Filtering (see page 66)

However, matches an issue if of its instances in the structure() JQL function (see page 204) at least one

structure matches the S-JQL query. In this example, will return issue in structure(root) TS-239,

TS-123.

Constraints
Structure query consists of . A constraint matches items in the structure. In the simplest case, the constraints

whole structure query consists of a single constraint; for now, we will consider only this case.

There are two types of constraints: and constraints.basic relational

^ up to the list of S-JQL topics (see page 183)

Basic constraint
A basic constraint matches items that satisfy a condition — regardless of their relative positions to other

items.

JQL constraint
JQL constraint matches all issues in the structure that satisfy a JQL query. To specify it, specify the JQL

query enclosed in square brackets:

[status = Open]

leaf and root
This basic constraint matches items that are located at special positions within the structure.

leaf

Structure Plugin for JIRA

Page of 185 370

root

The first constraint matches items at the bottom level of the hierarchy, i.e., items that do not have children

(sub-items).

The second constraint matches items at the top level of the hierarchy, i.e., items that do not have a parent.

Specific issue
This kind of basic constraint matches just the referenced issues. If some of the issues are not contained

within the structure, they are ignored. If none of the issues are contained within the structure, the constraint

matches no issues.

You can specify a comma-separated list of issue keys:

TS-129, TS-239

One issue key:

TS-129

Issue ID (or a list of them):

19320

Function constraint (folder, item)
Functions in S-JQL play the same role as in JQL: it is an extension point, so any vendor can develop their

own functions to match items in a custom way.

Structure comes bundled with a few functions: (matching all folders or folders by name) and folder item

(matching all items of the specified type or items by name).

Syntax
A function constraint has a and zero or more , depending on the function you are using:name arguments

folder(Urgent)

In the example above, function name is and its argument is folder Urgent.

You can insert any amount of spaces around the name and arguments:

folder (Urgent)

Multiple function arguments should be separated by commas:

Structure Plugin for JIRA

Page of 186 370

item(Status, In Progress)

If an argument contains commas or parentheses, you need to enclose it in "double quotes" or 'single

quotes':

item(Status, "Done, Sealed, and Delivered")

folder("NU (non-urgent) issues")

The former example matches Status items in structure that are named If this Done, Sealed, and Delivered.

name wasn't enclosed in quotes, the query would mean that function is given four arguments: , item Status

, and .Done Sealed and Delivered

The latter example matches folders named If quotes were not used, the query NU (non-urgent) issues.

would be incorrect because the first closing parenthesis would be understood as the end of 's folder

arguments.

If your argument contains quotes, you need to use another type of quotes to enclose it. Suppose that you

need to match a version named :3.0, 3.0.1 "Armageddon"

item(version, '3.0, 3.0.1 "Armageddon"')

You can also escape the quotes using backslash (\). Suppose that the version is named 3.0 Beta 1

"Armageddon's Near":

item(version, '3.0 Beta 1 "Armageddon\'s Near"')

If you need to use backslash character on its own, you can escape it with another backslash (\\). Suppose

that you need to match a folder named :\ (backslash) and related characters

folder ('\\ (backslash) and related characters')

Note that if you don't need to enclose your argument in quotes, then you don't need to escape quotes or

backslashes contained within it:

folder (Joe's)

folder (\)

Finally, if there's only one argument and the argument doesn't contain spaces (or is enclosed in quotes),

you can omit the parentheses:

folder Urgent

folder "Not urgent"

Structure Plugin for JIRA

Page of 187 370

folder()
This function matches folder items in the structure, optionally filtering them by name.

Without arguments, this function matches all folders:

folder()

With one argument, this function matches folders by name (that you see in the column). A folder Summary

is matched if its name the text specified in the first argument. Difference between capital and starts with

small letters is ignored.

For example, the following queries match folders named , , andMy issues Issues for Carol Non-

; and do not match folders named orissues Is suing Issuance:

folder issue

folder Issue

If you specify several words separated by spaces, will match only folders containing all of these folder

words.

If you're familiar with how works, then it's useful to think Simple Search in structure (see page)

of this argument in the same way as of the simple query. The only difference is that folder

doesn't recognize issue keys.

There's an advanced matching option for those who like to use regular expressions.

To tell that you are specifying a regular expression, enclose it in slashes ():folder /

folder /i.*ue/

If the argument starts with a slash but doesn't end with a slash, regular expression matching doesn't occur,

and it's matched as a simple text. If you need to write a simple text search where a text starts and ends with

a slash, escape the leading slash with a backslash ():\

folder \/???/

The query in the example above matches folder /???/.

Another advanced topic is how to query for the exact word (e.g., match but notissue issues).

Structure Plugin for JIRA

Page of 188 370

This is called . Strict searching is turned on when the starts and ends with a strict searching search text

double quote ("). Note, however, that quotes are stripped off from function arguments, since quoting is also

used to allow specifying spaces or parentheses in the search text. Thus you'll need to enclose the search

text in single quotes ('):

folder '"issue"'

item()
This function matches items of the specified type in the structure, optionally

filtering them by name. It is a generalization of folder() function to other item types.

The function takes two arguments: and (optional). The second argument works in the same item type name

way as the argument for function.folder()

You can reference either standard item types (provided by Structure plugin) or item types provided by third-

party plugins.

If you need to match items of all types, use asterisk (*). The following query finds all items that have the

word “Infrastructure” in their Summary, regardless of their type:

item(*, Infrastructure)

Structure provides the following item types:

issue

project

version

project-component

issuetype

status

resolution

priority

label

user

group

date

cf-option

folder

generator

loop-marker

sprint

missing

Structure.Pages plugin provides the following item types:

page

https://wiki.almworks.com/display/pages/Structure.Pages+Extension

Structure Plugin for JIRA

Page of 189 370

1.

2.

3.

Item types provided by third-party plugins are specified similarly. Here's how function looks up item item()

types:

It tries to interpret argument as referring to an item type provided by Structure and looks it type name

up in the list above.

If not found, it looks at all item types provided by all plugins (including Structure itself) and checks if

the type name the specified text . “As a word” means that will match ends with as a word page

Confluence page item type, but won't. More specifically, the considered word boundaries are age

hyphen (-), underscore (_) and colon (:).

It is an error to specify item type ambiguously, i.e. if there are two item types matching the

description. The following forms of argument allow to specify item type more precisely.item type

Fully qualified item type name, e.g. orcom.almworks.jira.structure:type-issue

.com.almworks.structure.pages:type-confluence-page

More generally, the form is .<plugin key>:<type name>

Shortened form of the fully qualified item type name, e.g., or structure:issue pages:page

.

More generally, the form is .<plugin key part>:<type name part>

When function looks up item type for the argument, and the argument contains colon item()

(:), the function first tries to interpret is as a fully quailified name. Only if nothing is found, it

tries to interpret it as a shortened form.

Don't confuse “ and “matching items of some type” matching issues that have field value equal to

. For example, matches , not that item” item(status, Open) status Open issues with status

. If you need the latter, use JQL constraint: .Open [status = Open]

Empty constraint
An empty constraint matching no items:

empty

This constraint plays the same role as JQL's keyword. It is intended to be used as a EMPTY sub-constraint

 in relational constraints, which are discussed further.(see page 194)

^ up to the list of S-JQL topics (see page 183)

Negation
Any constraint, basic or relational, can be negated using keyword . This produces a constraint that NOT

matches all items that the original constraint doesn't:

not root

Structure Plugin for JIRA

Page of 190 370

matches all items that are not top-level items in the structure.

You can always enclose a constraint in parentheses to ease understanding. So, all items in the structure

except issues and are matched by this structure query:TS-129 TS-239

not (TS-129, TS-239)

^ up to the list of S-JQL topics (see page 183)

Relational constraint
A basic constraint matches items that satisfy a condition. A relational constraint matches items related to

items that satisfy a condition. corresponds to a relationship between positions of items in the Related

structure, like parent-child.

For example,

TS-129

is a basic constraint that matches a single issue ;TS-129

child in TS-129

is a relational constraint matching items that have as a child (sub-item).TS-129

Relational constraint has the form . Here, is a relation operator subConstraint subConstraint

constraint on the relatives of items to be matched; other parts of relational constraint are discussed in the

following sections.

Note that the form of relational constraint is similar to the form of JQL clause, field operator

.value

Indeed, let's describe in English a JQL query : it matches issues type in (Epic, Story)

having that is values .type in Epic, Story

Now, let's describe in English a structure query : it matches items parent in [type = Epic]

having that is constraint " ".parent in type = Epic

As you can see, the form that can be used to describe the structure query is similar to that of JQL.

^ up to the list of S-JQL topics (see page 183)

Relations
S-JQL has the following relations:

child: item is a child (sub-item) of another item in the structure.

Structure Plugin for JIRA

Page of 191 370

1.

parent: item is a parent of another item in the structure.

descendant: item is a descendant (sub- or sub-sub-...-item) of another item in the structure.

ancestor: item is an ancestor (parent, parent-of-parent, or parent-of-parent-...-of-parent) of another

item in the structure.

sibling: item is a sibling of another item in the structure. Two items are considered siblings if they

are under the same parent item.

prevSibling: item is a previous (preceding) sibling of another item in the structure.

item is a preceding sibling of item if it is a sibling of and is higher than (comes before .)A B B A B A B

nextSibling: item is a next (following) sibling of another item in the structure.

item is a following sibling of item if it is a sibling of and is lower than (comes after .)A B B A B A B

self and are relations of an item (or an issue) to itself. Their role is explained later, in the issue

 section, because at first one has to learn how operators and relationself issue (see page 194)

and sub-constraints work.

There are also combinations of and with all other relations, listed for completeness issue self

below:

childOrSelf childOrIssue

parentOrSelf parentOrIssue

descendantOrSelf descendantOrIssue

ancestorOrSelf ancestorOrIssue

siblingOrSelf siblingOrIssue

prevSiblingOrSelf prevSiblingOrIssue

nextSiblingOrSelf nextSiblingOrIssue

Those familiar with XPath may have recognized these relations; indeed, they work like the

corresponding XPath axes.

^ up to the list of S-JQL topics (see page 183)

Operators
These are the operators used in S-JQL:

IN, NOT IN, IS, IS NOT, =, !=, OF

operator specifies how is applied to :subConstraint relation

Structure Plugin for JIRA

Page of 192 370

1.

2.

IN, , and put constraint on the relatives of a matched item.IS =

For example, consider

child in (TS-129, TS-239)

Here, is , so an item's relative in question is its child in the structure. Thus, an item relation child

matches if .at least one of its children is or TS-129 TS-239

There is no difference between these three operators, unlike JQL. Different forms exist to

allow for more natural-looking queries with some sub-constraints.

NOT IN, , and are negated versions of , , and . That is, an item is matched if it IS NOT != IN IS = is

 any item matching .not related to subConstraint

As an important consequence, item that has no relatives is matched.

For example, consider

child not in (TS-129, TS-239)

An item matches if . So, this constraint matches all items that either no child is nor TS-129 TS-239

have no children or do not have any of these two items among their children.

Using one of these operators in a relational constraint is the same as using (or , or) IN IS =

and negating the whole relational constraint. Thus, the constraint above is equivalent to

not (child in (TS-129, TS-239))

But, using one of these operators is the same as using operator and negating very not IN

!subConstraint

First, is not the same as . Think of it as having relatives other than X not having relatives X

of relationships in a human family: having a relative other than brother (e.g., a sister) is not

the same as not having a brother, because one may have both a sister and a brother.

Structure Plugin for JIRA

Page of 193 370

2.

3.

Second, an item with no relatives is not matched by the transformed query.

For example,

child in (not (TS-129, TS-239))

matches all items that have at least one child that is neither nor . That is, TS-129 TS-239

the only items that are not matched are leaves and those that have only or TS-129 TS-239

as children.

OF matches the relatives of items that satisfy .subConstraint

For example, consider

child of (TS-129, TS-239)

An item matches if .it is a child of either or TS-129 TS-239

To have a model of how operators (,) and work and to understand the difference between them, IN IS = OF

consider the table below. Suppose that we take all items in the structure and put each of them, one by one,

in column . For each item, we take all of its relatives and put each of them, one by one, in column item

. Thus we get pairs of items. We examine each pair, and if one of the components satisfies relative

, we add the other component to the result set. Which component is added, depends on the subConstraint

operator:

operator item relative

in add to result set satisfies subConstraint

of satisfies subConstraint add to result set

One may note that for any relation, there is a corresponding "inverse": for example, is the child

inverse of , and vice versa. A relational constraint that uses operator (,) is parent IN IS =

equivalent to a relational constraint that uses an inverse relation with operator . That is,OF

child in (TS-129, TS-239)

is the same as

parent of (TS-129, TS-239)

Structure Plugin for JIRA

Page of 194 370

Again, different forms of expressing the same constraint exist to allow for more natural-looking

queries.

^ up to the list of S-JQL topics (see page 183)

Sub-constraints
Any constraint can be used as a sub-constraint, whether basic, relational, or a combination of those (see

.page 195)

For example,

child of root

selects items on the second level of the hierarchy. To select items on the third level of the hierarchy, you

can once again use relation and the previous query as :child subConstraint

child of (child of root)

There is a special basic constraint, , which matches no items. It is used as a sub-constraint to match empty

items that have no relatives as per .relation

For example, let's take relation and see what the corresponding relational constraints with different child

operators mean.

child is empty matches all items that have no children (equivalent of)leaf

child is not empty matches all items that have at least one child (equivalent of)not leaf

child of empty matches all items that are not children of other items (equivalent of)root

Of course, using or is more convenient, but you can apply to any other relation. For leaf root empty

instance, matches an item if it is the only child of its parent.sibling is empty

^ up to the list of S-JQL topics (see page 183)

self and issues relations: adding sub-constraint matches to the result set
A relational constraint with relation behaves exactly as its sub-constraint, possibly negated if operator self

 (,) is used.NOT IN IS NOT !=

Thus,

self in [status = Open]

is equivalent to

Structure Plugin for JIRA

Page of 195 370

[status = Open]

Similarly,

self not in [status = Open]

is equivalent to

not [status = Open]

When combined with another relation, allows to add the items matched by to the self subConstraint

resulting set. For example,

descendant of TS-129

returns all of the children of at all levels, but does not return itself. To add , use TS-129 TS-129 TS-129

:descendantOrSelf

descendantOrSelf of TS-129

issue relation
issue is a special case of relation that only matches issues. For instance, if on the top level of the self

structure you have folders and issues, and you want to hide all folders, you can write this:

descendantOrIssue of root

This query matches all top-level issues and all their sub-items.

^ up to the list of S-JQL topics (see page 183)

Combining constraints with Boolean operators
We can now define a structure query as a , that is, a structure query Boolean combination of constraints

consists of constraints connected with and . When two constraints are connected with , together AND OR AND

they will match issues that are matched by both constraints. This allows you to limit the results. Likewise,

when two constraints are connected by , together they will match issues that are matched by at least one OR

of the constraints. This allows you to expand the results.

Note that has higher precedence than . That means that the Structure queryAND OR

leaf or (parent of leaf) and [status = Open]

Structure Plugin for JIRA

Page of 196 370

matches all issues that are either leaves, or are parents of leaves in status . In order to also constrain Open

leaf issues to be in the status , you need to use parentheses:Open

(leaf or (parent of leaf)) and [status = Open]

^ up to the list of S-JQL topics (see page 183)

Railroad diagrams
As a final piece of reference, here's the S-JQL syntax in the form of .railroad diagrams

S-JQL keywords are not case-sensitive, and all underscores in keywords are optional.

structure-query

S-JQL admits using and in place of , as well as and in place of .&& & AND || | OR

constraint

http://en.wikipedia.org/wiki/Railroad_diagram

Structure Plugin for JIRA

Page of 197 370

basic-constraint

jql-query is any valid JQL query.

issue-key is any valid JIRA issue key.

issue-id is any valid JIRA issue ID.

constraint-name is the name of the function constraint: either bundled with Structure (, folder

, or) or provided by a Structure extension (plugin).item row_id

constraint-argument is one of the following:

either a sequence of non-whitespace characters

or quoted text (inside "double quotes" or 'single quotes'), where quotes can be escaped via

backslash: , ; backslash itself can be escaped: .\" \' \\

See also .Function constraint - Syntax (see page)

relation

Structure Plugin for JIRA

Page of 198 370

S-JQL admits using and in place of .|| | OR

operator

^ up to the list of S-JQL topics (see page 183)

List of S-JQL keywords
In this article, all S-JQL keywords are listed in all of their spelling variants. This is intended for developers

creating their own S-JQL function, because function name must not coincide with the existing keyword.

!

!=

&

&&

(

Structure Plugin for JIRA

Page of 199 370

)

,

=

[

]

ancestor

ancestor_or_issue

ancestor_or_issues

ancestor_or_self

ancestorOrIssue

ancestorOrIssues

ancestorOrSelf

ancestors

ancestors_or_issue

ancestors_or_issues

ancestors_or_self

ancestorsOrIssue

ancestorsOrIssues

ancestorsOrSelf

and

child

child_or_issue

child_or_issues

child_or_self

childOrIssue

childOrIssues

childOrSelf

children

children_or_issue

children_or_issues

children_or_self

childrenOrIssue

childrenOrIssues

childrenOrSelf

descendant

descendant_or_issue

descendant_or_issues

descendant_or_self

descendantOrIssue

descendantOrIssues

descendantOrSelf

descendants

descendants_or_issue

descendants_or_issues

descendants_or_self

descendantsOrIssue

descendantsOrIssues

descendantsOrSelf

empty

following_sibling

following_sibling_or_issue

following_sibling_or_issues

following_sibling_or_self

following_siblings

following_siblings_or_issue

following_siblings_or_issues

following_siblings_or_self

followingSibling

Structure Plugin for JIRA

Page of 200 370

followingSiblingOrIssue

followingSiblingOrIssues

followingSiblingOrSelf

followingSiblings

followingSiblingsOrIssue

followingSiblingsOrIssues

followingSiblingsOrSelf

in

is

issue

issue_or_ancestor

issue_or_ancestors

issue_or_child

issue_or_children

issue_or_descendant

issue_or_descendants

issue_or_following_sibling

issue_or_following_siblings

issue_or_next_sibling

issue_or_next_siblings

issue_or_parent

issue_or_parents

issue_or_preceding_sibling

issue_or_preceding_siblings

issue_or_prev_sibling

issue_or_prev_siblings

issue_or_previous_sibling

issue_or_previous_siblings

issue_or_sibling

issue_or_siblings

issue_or_sub_issue

issue_or_sub_issues

issueOrAncestor

issueOrAncestors

issueOrChild

issueOrChildren

issueOrDescendant

issueOrDescendants

issueOrFollowingSibling

issueOrFollowingSiblings

issueOrNextSibling

issueOrNextSiblings

issueOrParent

issueOrParents

issueOrPrecedingSibling

issueOrPrecedingSiblings

issueOrPreviousSibling

issueOrPreviousSiblings

issueOrPrevSibling

issueOrPrevSiblings

issueOrSibling

issueOrSiblings

issueOrSubIssue

issueOrSubIssues

issues

issues_or_ancestor

issues_or_ancestors

issues_or_child

Structure Plugin for JIRA

Page of 201 370

issues_or_children

issues_or_descendant

issues_or_descendants

issues_or_following_sibling

issues_or_following_siblings

issues_or_next_sibling

issues_or_next_siblings

issues_or_parent

issues_or_parents

issues_or_preceding_sibling

issues_or_preceding_siblings

issues_or_prev_sibling

issues_or_prev_siblings

issues_or_previous_sibling

issues_or_previous_siblings

issues_or_sibling

issues_or_siblings

issues_or_sub_issue

issues_or_sub_issues

issuesOrAncestor

issuesOrAncestors

issuesOrChild

issuesOrChildren

issuesOrDescendant

issuesOrDescendants

issuesOrFollowingSibling

issuesOrFollowingSiblings

issuesOrNextSibling

issuesOrNextSiblings

issuesOrParent

issuesOrParents

issuesOrPrecedingSibling

issuesOrPrecedingSiblings

issuesOrPreviousSibling

issuesOrPreviousSiblings

issuesOrPrevSibling

issuesOrPrevSiblings

issuesOrSibling

issuesOrSiblings

issuesOrSubIssue

issuesOrSubIssues

leaf

leaves

next_sibling

next_sibling_or_issue

next_sibling_or_issues

next_sibling_or_self

next_siblings

next_siblings_or_issue

next_siblings_or_issues

next_siblings_or_self

nextSibling

nextSiblingOrIssue

nextSiblingOrIssues

nextSiblingOrSelf

nextSiblings

nextSiblingsOrIssue

nextSiblingsOrIssues

Structure Plugin for JIRA

Page of 202 370

nextSiblingsOrSelf

not

null

of

or

parent

parent_or_issue

parent_or_issues

parent_or_self

parentOrIssue

parentOrIssues

parentOrSelf

parents

parents_or_issue

parents_or_issues

parents_or_self

parentsOrIssue

parentsOrIssues

parentsOrSelf

preceding_sibling

preceding_sibling_or_issue

preceding_sibling_or_issues

preceding_sibling_or_self

preceding_siblings

preceding_siblings_or_issue

preceding_siblings_or_issues

preceding_siblings_or_self

precedingSibling

precedingSiblingOrIssue

precedingSiblingOrIssues

precedingSiblingOrSelf

precedingSiblings

precedingSiblingsOrIssue

precedingSiblingsOrIssues

precedingSiblingsOrSelf

prev_sibling

prev_sibling_or_issue

prev_sibling_or_issues

prev_sibling_or_self

prev_siblings

prev_siblings_or_issue

prev_siblings_or_issues

prev_siblings_or_self

previous_sibling

previous_sibling_or_issue

previous_sibling_or_issues

previous_sibling_or_self

previous_siblings

previous_siblings_or_issue

previous_siblings_or_issues

previous_siblings_or_self

previousSibling

previousSiblingOrIssue

previousSiblingOrIssues

previousSiblingOrSelf

previousSiblings

previousSiblingsOrIssue

previousSiblingsOrIssues

Structure Plugin for JIRA

Page of 203 370

previousSiblingsOrSelf

prevSibling

prevSiblingOrIssue

prevSiblingOrIssues

prevSiblingOrSelf

prevSiblings

prevSiblingsOrIssue

prevSiblingsOrIssues

prevSiblingsOrSelf

root

roots

self

self_or_ancestor

self_or_ancestors

self_or_child

self_or_children

self_or_descendant

self_or_descendants

self_or_following_sibling

self_or_following_siblings

self_or_next_sibling

self_or_next_siblings

self_or_parent

self_or_parents

self_or_preceding_sibling

self_or_preceding_siblings

self_or_prev_sibling

self_or_prev_siblings

self_or_previous_sibling

self_or_previous_siblings

self_or_sibling

self_or_siblings

self_or_sub_issue

self_or_sub_issues

selfOrAncestor

selfOrAncestors

selfOrChild

selfOrChildren

selfOrDescendant

selfOrDescendants

selfOrFollowingSibling

selfOrFollowingSiblings

selfOrNextSibling

selfOrNextSiblings

selfOrParent

selfOrParents

selfOrPrecedingSibling

selfOrPrecedingSiblings

selfOrPreviousSibling

selfOrPreviousSiblings

selfOrPrevSibling

selfOrPrevSiblings

selfOrSibling

selfOrSiblings

selfOrSubIssue

selfOrSubIssues

sibling

sibling_or_issue

Structure Plugin for JIRA

Page of 204 370

sibling_or_issues

sibling_or_self

siblingOrIssue

siblingOrIssues

siblingOrSelf

siblings

siblings_or_issue

siblings_or_issues

siblings_or_self

siblingsOrIssue

siblingsOrIssues

siblingsOrSelf

sub_issue

sub_issue_or_issue

sub_issue_or_issues

sub_issue_or_self

sub_issues

sub_issues_or_issue

sub_issues_or_issues

sub_issues_or_self

subIssue

subIssueOrIssue

subIssueOrIssues

subIssueOrSelf

subIssues

subIssuesOrIssue

subIssuesOrIssues

subIssuesOrSelf

|

||

1.12.3 structure() JQL function

Structure adds JQL function that lets you search for issues that are added to a structure, structure()

with the possibility to add constraints on their relationships.You can use this function in any place in JIRA

where you can use JQL: in the Issue Navigator, in a Saved Filter, as an Agile Board query etc. For more

information, see JIRA documentation on and .Advanced Searching Advanced Searching Functions

If a user does not have , they will not be able to create new access to structure (see page 226)

queries with the function and existing queries will have function structure() structure()

return an empty set. However, the user will still see function offered in the JQL structure()

completion drop-down.

To specify a structure condition in JQL, use the following format:

issue in structure(structureNameopt, structureQueryopt)

https://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://confluence.atlassian.com/display/JIRA/Advanced+Searching+Functions

Structure Plugin for JIRA

Page of 205 370

Function arguments:

structureName Optional The name of the structure. If you omit the structure name, system-wide

 will be searched.Default Structure (see page 10)

structureQuery Optional Use this parameter to select only a part of the structure. This parameter

specifies a in a language similar to JQL, Structure Query Structured JQL

(see page 178).

You can use structure ID instead of the structure name. You can see structure ID in the URL of the

Structure Board if you open page and click structure name.Manage Structure

Function arguments need to be quoted if they contain spaces or non-

letters
As dictated by the syntax of JQL, you'll need to enclose structure name or structure query in 'single quotes'

or "double quotes" if they contain spaces or non-letters.

What if structure name or structure query itself contains quotes?
If structure name or structure query contains quotes of one kind, you need to enclose them with a different

kind of quotes. That is, if structure query contains double quote, you'll need to enclose it in single quotes.

Alternatively, you can escape quote with a backslash: .\"

Example 1
Suppose you need to find all issues that are directly under issues in status Awaiting Deployment.

In plain JQL, issues in this status can be found via this query: . Status = "Awaiting Deployment"

Note that since status name contains spaces, JQL requires us to enclose it in quotes.

According to , the corresponding Structure query would be S-JQL Reference (see page 183) child of

[Status = "Awaiting Deployment"].

That means that you need to enclose this Structure query with single quotes:

issue in structure("My personal structure", 'child of [Status = "Awaiting Deployment"]')

Note that the following will work:not

issue in structure("My personal structure", "child of [Status = "Awaiting Deployment"]"

)

Structure Plugin for JIRA

Page of 206 370

Example 2: escaping with backslash
In the following example, the query returns issues that are directly under issues assigned to fix version

named .3.0 "Armageddon"

issue in structure("My personal structure", "child of [fixVersion = '3.0 \"Armageddon\"']")

Backward compatibility with structure() JQL function prior to Structure

2.4
Prior to Structure 2.4, JQL function did not take structure query as an argument; you could structure()

specify only one issue key or ID, and you would get the referenced issue along with all of its children at all

levels. As you might have noticed, this old-style usage can be interpreted as a structure query, but

according to the rules of S-JQL, it would return just the referenced issue without its children. To maintain

backward compatibility, any structure query in Structure 2.4 that consists of a single basic constraint that

references issues by their keys or IDs matches not only these issues, but all of their children as well.

That means that if you were using JQL of the form

issue in structure("My personal structure", TS-129)

then in Structure 2.4 this query will still return and all of its children at all levels (provided that TS-129 TS-

 is added to the structure.)129

If this backward compatibility bites you (if, say, you need to check whether an issue is added to a structure),

prepend the structure query with :issue in

issue in structure("My personal structure", "issue in TS-129")

This JQL will match only if it is in the structure.TS-129

1.13 Keyboard Shortcuts

Structure provides a number of keyboard shortcuts that you can use to speed up your work. These

reference cards describe the shortcuts for Mac OS X and PC keyboards.

1.13.1 Keyboard Shortcuts (PC)

Navigation

Action Shortcut

Select Issue Left-Click

Structure Plugin for JIRA

Page of 207 370

Action Shortcut

Show/Hide Issue Details o

Previous Issue or k

Next Issue or j

Expand Sub-Issues

Collapse Sub-Issues

For Large Structure PgUp PgDn Home End

Add Column tt

Expand All ++

Collapse All --

Structure Views

Action Shortcut

Switch View vv

Save View vs

Save View As vss

Revert Changes to View vr

Searching & Adding to Structure

Action Shortcut

Search Alt+/

JQL On/Off Alt+j

Filter On/Off Alt+f

Add More On/Off Alt+m

Next Matching Ctrl+Alt+]

Previous Matching Ctrl+Alt+[

Add Issue Ctrl+Enter

Add as Sub-Issue Ctrl+ +Shift Enter

Structure Plugin for JIRA

Page of 208 370

Standard JIRA Actions

Action Shortcut

Operations Dialog .

Edit Issue e

Comment on Issue m

Assign Issue a

Assign to Me i

Edit Issue Labels l

Actions Drop-Down Alt+

Changing Structure

Action Shortcut

Move Up Ctrl+

Move Down Ctrl+

Indent Ctrl+

Outdent Ctrl+

Drag and Drop Shift+Drag

New Issue Enter

New Sub-Issue Insert +or Shift Enter

Remove from Structure Delete

Changing Issues

Action Shortcut

Edit Field Double-Click

Edit Summary Tab or F2 or ss

Finish & Save Enter +or Ctrl Enter

Cancel Field Changes Esc

Edit Next Field Tab + +or Ctrl Alt

Structure Plugin for JIRA

Page of 209 370

Action Shortcut

Edit Previous Field Shift+ + +Tab or Ctrl Alt

Edit Next Issue Ctrl+ +Alt

Edit Previous Issue Ctrl+ +Alt

Selecting Issues

Action Shortcut

Toggle Selection Space

Select All Ctrl+a

Select All Sub-Issues Shift+

Deselect All Sub-Issues Shift+

Expand Selection Down (Up) Shift+ (+)Shift

Bulk Selection Shift+PgUp

+Shift PgDn

+Shift Home

+Shift End

Clear Selection Escape

Advanced

Action Shortcut

Hide/Show Resolved rr

Cut (Prepare to Move) Ctrl+x

Paste (Move) Ctrl+v

Paste Sub-Issue (Move) Ctrl+ +Shift v

Fix/Unfix View on Issue Ctrl+.

Switch Panel \

Show Extra Actions on the Toolbar xx

View Full-Size Image (see page 61) ii

Show/Hide Issue Details without

Switching Panel

Shift+o

Structure Plugin for JIRA

Page of 210 370

1.13.2 Keyboard Shortcuts (Mac)

Navigation

Action Shortcut

Select Issue Left-Click

Show/Hide Issue Details o

Previous Issue or k

Next Issue or j

Expand Sub-Issues

Collapse Sub-Issues

For Large Structure

Add Column tt

Expand All ++

Collapse All –

Structure Views

Action Shortcut

Switch View vv

Save View vs

Save View As vss

Revert Changes to View vr

Searching & Adding to Structure

Action Shortcut

Search /

JQL On/Off j

Filter On/Off f

Add More On/Off m

Structure Plugin for JIRA

Page of 211 370

Action Shortcut

Next Matching]

Previous Matching [

Add Issue

Add as Sub-Issue

Standard JIRA Actions

Action Shortcut

Operations Dialog .

Edit Issue e

Comment on Issue m

Assign Issue a

Assign Issue to Me i

Edit Issue Labels l

Actions Drop-Down

Changing Structure

Action Shortcut

Move Up

Move Down

Indent

Outdent

Drag and Drop Drag

New Issue

New Sub-Issue

Remove from Structure

Structure Plugin for JIRA

Page of 212 370

Changing Issues

Action Shortcut

Edit Field Double-Click

Edit Summary tab or ss

Finish & Save or

Cancel Field Changes esc

Edit Next Field tab or

Edit Previous Field tab or

Edit Next Issue

Edit Previous Issue

Selecting Issues

Action Shortcut

Toggle Selection space

Select All a

Select All Sub-Issues

Deselect All Sub-Issues

Expand Selection Down (Up) ()

Bulk Selection

Cancel Selection esc

Advanced

Action Shortcut

Hide/Show Resolved rr

Cut (Prepare to Move) x

Paste (Move) v

Paste Sub-Issue (Move) v

Structure Plugin for JIRA

Page of 213 370

Action Shortcut

Fix/Unfix View on Issue .

Switch Panel \

Show Extra Actions on the Toolbar xx

View Full-Size Image (see page 61) ii

Show/Hide Issue Details without

Switching Panel

o

1.13.3 Quick Action Lookup

You can use a special keyboard combination – – to pull up the "Action Lookup" input box. In that input s,q

box you can start typing what you need to do and it will suggest available "actions" that match the

description.

It also shows keyboard shortcut associated with the action.

1.14 Getting Help

Click link at the bottom right corner of the Structure Widget to bring up Structure Information panel. It Info

contains information about Structure version and useful links.

Structure Plugin for JIRA

Page of 214 370

Feel free to write back to ALM Works if you have any questions, feature requests or problems:

Post support request and have us resolve it as soon as possible.

Suggest an idea on our UserVoice forum.

Write to developers just to say hi or with any comments or questions.

http://almworks.com/structure/support-request
http://almworks.com/structure/suggest-idea

Structure Plugin for JIRA

Page of 215 370

1.

2.

3.

1.

2.

3.

2 Structure Administrator's Guide
This section contains information for JIRA administrators about installing and configuring Structure plugin.

Quick steps to get Structure working:

Installing Structure (see page 215)

Setting Up Structure License (see page 220)

Getting Started with Structure (see page 225)

Contents:

2.1 Installing Structure

Structure is installed like most other plugins.

Before installing Structure in production, make sure your JIRA meets the Memory Guidelines (see

.page 217)

Open Plugin Manager, search for "Structure" by ALM Works on the Atlassian Marketplace and install

from there.

Alternatively, you can download the plugin JAR manually from and either download page

place it into subdirectory under your JIRA home (then restart JIRA) plugins/installed-plugins

or use "Upload Plugin" link in the Plugin Manager.

Press button to finish the installation by .Get Started installing a license key (see page 220)

Congratulations! You can now spread the word and help users get started with Structure – see Getting

.Started with Structure (see page 225)

If Structure Plugin Remains Disabled

It is possible that after you install Structure or enable it from the Plugin Manager, the plugin

remains disabled. An error may or may not be shown. If you refresh Plugin Manager page within 5-

10 seconds and Structure is disabled, you've got this problem.

See article for possible causes and solutions.Structure plugin won't start (see page 346)

Next: Set up Structure license key (see page 220)

https://wiki.almworks.com/display/structure/Download

Structure Plugin for JIRA

Page of 216 370

1.

2.

1.

2.

3.

2.1.1 Migrating Data from Structure 2 to Structure 3

Unlike previous versions, Structure 3.0 uses the main JIRA database to store its data. You need to migrate

the data from Structure 2 in order to continue working with it in Structure 3. Additionally, this feature can be

used to restore structures from a backup made with Structure 2.

Structure 2 had a separate Backup / Restore functionality, because Structure data was kept

separately. With Structure 3, all data is backed up with the usual JIRA backup.

However, we plan to reinstate Backup / Restore / Migrate feature in the future versions of

Structure 3.

Creating a Backup of Structure 2.x Data

If you still have Structure 2.x installed, create backup of current Structure data. You can either use

 menu or do a cold backup by copying the whole Administration | Structure | Structure Backup

 sub-directory under JIRA home while Structure plugin is disabled. See structure/ Backing Up

 for details.Structure (see page 233)

If you already have Structure 3.x installed, use Administration | Structure | Export Structure 2.x

 page. It allows you to create a backup zip with all Structure 2.x data, and then opens Data Restore

 page, allowing you to immediately import the backup into Structure 3.x database.Structure

Restoring Structure Data from 2.x Backup

Use menu and use any Structure 2.x backup made Administration | Structure | Restore Structure

earlier. Note that it should be placed in the directory on your server.import/

If you used "Export Structure 2.x Data" menu, you will be taken to the restore automatically.

After Data Migration

Upgrade Testy
If you have Structure.Testy installed, download and install the latest version of Structure.Testy, compatible

with Structure.

Upgrading "Global Structure"
If you're using "Global Structure" structure, which was created by default in Structure 2.x, you need to make

sure that there's an "owner" of that structure. Otherwise, will not work there.Automation (see page 115)

Open .Structure | Manage Structure

Find Global Structure and check if it has non-empty Owner.

If it doesn't have an owner, click , and set yourself as the owner.Configure

Structure Plugin for JIRA

Page of 217 370

1.

2.

3.

4.

2.1.2 Memory Guidelines

On a production system, it is a good idea to check if you have enough free memory in JIRA's Java process

before installing Structure (any other plugin too).

Assessing Available Memory

Open menu and scroll down to Administration | Troubleshooting and Support | System Info Java

.VM Memory Statistics

Click Force Garbage Collection

Note the free % number of the (heap memory).Memory Graph

Note the absolute amount of (non-heap memory for Java classes).Free PermGen Memory

Memory Statistic Recommended

Value

Parameter in / setenv.sh setenv.bat

% of Free Heap Memory 25% – 50% JVM_MAXIMUM_MEMORY

Free PermGen Memory (prior to Java

8)

100 – 200 MB JIRA_MAX_PERM_SIZE

If you run JIRA on Java 8, PermGen memory is not a factor.

All recommendations are for a general case and do not guarantee that you don't get

. Individual cases may vary.OutOfMemoryError

Heap Memory Requirements
It is recommended that % of free heap memory is from 25% to 50%.

Structure requires about additional 100 MB of heap memory. You can take your current statistic of Used

 and , add 100 MB to the and calculate the recommended value for Memory Total Memory Used Memory

the .Total Memory

Structure Plugin for JIRA

Page of 218 370

If you already have recommended % of free memory, you can just increase total heap memory by

200 MB.

PermGen Memory Requirements
This section applies to JIRA running on Sun/Oracle Hotspot Java VM only.

PermGen space is used for Java classes and may be depleted if you uninstall, install or upgrade plugins

frequently, or if you don't restart JIRA over a long period of time. Due to technical reasons PermGen space

might not get cleaned up from the obsolete classes and you may end up with OutOfMemoryError:

 error.PermGen space

Structure classes use only about 10 MB of PermGen space. But for the reasons just mentioned, it is good to

have a safety margin with a free PermGen space of at least 100 MB.

Changing Memory Parameters
To change memory parameters, edit (on Windows,).setenv.sh setenv.bat

To change maximum amount of Heap space, edit parameter near the top of JVM_MAXIMUM_MEMORY

the script.

JVM_MAXIMUM_MEMORY="2000m"

To change maximum amount of PermGen space, edit line. JIRA_MAX_PERM_SIZE=256m

Alternatively, you can add parameter to , for MaxPermSize JVM_SUPPORT_RECOMMENDED_ARGS

example:

JVM_SUPPORT_RECOMMENDED_ARGS="-XX:MaxPermSize=400m"

You need to restart JIRA for these settings to take effect.

Use 64-Bit Java
It is imperative to use 64-bit Java when allocating large amount of memory to it (1 GB and more). To check

if you're running 64-bit Java, look up parameter on the System Info page.Java VM

Physical Memory Requirements

Avoid swapping at all costs!

Structure Plugin for JIRA

Page of 219 370

1.

2.

The amount of physical memory should be enough to accommodate the whole heap and non-heap memory.

If you have other Java or memory-intensive applications running on the same host, they all should fit in

physical memory, plus you need to reserve at least 1 GB for operating system, services and file cache.

Do not allocate more memory to JIRA if it cannot fit into physical memory! If Java running JIRA starts

swapping actively used memory, it will be a performance disaster.

Sample calculations for a host running JIRA and Confluence, with Apache and MySQL:

JIRA Heap: 2 GB

Non-heap: 500 MB

Confluence Heap: 2 GB

Non-heap: 500 MB

Operating system

Apache HTTPD

MySQL

1 GB

Free memory margin / File buffers 2 GB

Total Physical Memory Required 8 GB

2.1.3 Uninstalling and Reinstalling Structure

Uninstalling Structure
You can uninstall Structure from Plugin Manager the same way you uninstall other plugins. You can also

manually remove structure JAR from directory when JIRA is not running.plugins/installed-plugins

When you uninstall Structure plugin, Structure data is . It remains in the JIRA's database.not removed

Reinstalling Structure
It is perfectly safe to uninstall Structure plugin, then install it back again. (This happens, for example, when

you upgrade to a newer version.)

All Structure data will be there unless you manually remove it.

2.1.4 Upgrading and Downgrading

Upgrading
General upgrade procedure is simple:

Create backup of Structure data. Use . See Administration | Structure | Backup Structure Backing

 for details.Up Structure (see page 233)

Structure Plugin for JIRA

Page of 220 370

2.

3.

1.

2.

3.

4.

5.

6.

7.

8.

a.

b.

1.

2.

3.

Install the new version of the plugin.

Monitor or for warnings or errors.catalina.out jira-application.log

For more specific instructions, please check the for the version to which you wish to Release Notes

upgrade.

Downgrading
Reverting the plugin to an older version is not always possible because newer versions can modify the

database so it becomes incompatible with older versions. If you need to revert to an older version, the most

reliable way is as follows:

Choose a structure backup file that was made before upgrading to a newer version.

If possible, create backup of your current Structure data in the new version. Use Administration |

. See for details.Structure | Backup Structure Backing Up Structure (see page 233)

Uninstall the plugin via the Universal Plugin Manager.

If Structure backup on step 2 was not possible, create a backup copy of the folder in your structure

JIRA home directory.

Remove the folder from your JIRA home directory. (You can move it away to a backup structure

location.)

Install the older version of the plugin.

If no significant changes were made while the new version was running, restore from the previously

chosen backup file. See for details.Restoring Structure from Backup (see page 233)

If you'd like to keep changes that were made during the time that the new version was running, and

you have the backup file from step 2:

Try restoring from the backup taken at step 2.

If that fails, try restore from the older backup, and then try using Administration | Structure |

 to additionally restore the structures that were changed since the old Migrate Structure

backup was made.

2.2 Setting Up Structure License

Unless your JIRA runs on one of the , Structure requires a license key to work. free licenses (see page 223)

You can get a free no-obligation 30-day evaluation license key for your JIRA server in a few seconds.

2.2.1 Setting Up Evaluation License

Navigate to .Administration | Structure | License Details

Look at the section - if there's no license there or if the license is expired, then you Current License

need to get an evaluation license or purchase a commercial license.

If section says that you have a , then your JIRA must be Current License Free License

qualifying for automatic free license and no further action is needed from you. See When

.Structure is Available for Free (see page 223)

https://wiki.almworks.com/display/structure/Release+Notes

Structure Plugin for JIRA

Page of 221 370

3.

1.

2.

3.

1.

2.

3.

1.

2.

1.

2.

3.

To get a free 30-day unlimited-users evaluation license, follow link on the Get Evaluation License

structure license page, or open directly. In latter case please enter evaluation license request page

your JIRA Server ID to get a correct license.

You can also get evaluation license from Atlassian in the by clicking a button Plugin Manager

named or .Try Free Trial

If you have installed a license from ALM Works, Plugin Manager may show that Structure is

 or , because it's not aware of ALM Works license. You can check true Unlicensed Action Required

license status on page — if it shows you that the Administration | Structure | License Details

license is OK, you can safely ignore the status of the license in Plugin Manager.

2.2.2 Licenses from ALM Works and from Atlassian

Structure support two kinds of licenses — issued by ALM Works and issued by Atlassian. These licenses

are functionally equal — you can use either kind to get the same functionality in Structure. The prices are

also the same.

The following table summarizes the differences and provides instructions for both kinds.

 License from ALM Works License from Atlassian

Purchased at ALM Works website Atlassian Marketplace

Managed at The license key is sent to you by email Manage with other Atlassian licenses at my.atlassian.com

License key

looks like

this:

-----BEGIN CERTIFICATE-----

MIIEYTCCAkmgAwIBAgIGAT2oPFqOMA0GCSqGSIb3DQE...

... at least 20 lines of symbols ... -----END

CERTIFICATE-----

AAABEA0ODAoPeNp9UE1Pg0AUvO+v2MSbCc0uQZO...

... at least 4 lines of symbols ...

Installation

Instructions If you have a license from Atlassian installed, first

remove it in the .Plugin Manager

Open .Administration | Structure | License Details

Copy and paste the key to the section Install License

and click .Install License

Open .Plugin Manager

Locate and open Structure plugin section.

Copy the license key into the box and License

click .Update

Uninstallation

Instructions Open .Administration | Structure | License Details

See the details of installed license and click .Uninstall

Open .Plugin Manager

Locate and open Structure plugin section.

Clear the license key from the box and License

click .Update

http://almworks.com/structure/evaluate.html
http://almworks.com/structure/purchase.html
http://almworks.com/structure/marketplace.html
https://my.atlassian.com

Structure Plugin for JIRA

Page of 222 370

 License from ALM Works License from Atlassian

Purchasing

differences Besides advance payments with credit card, wire

transfer or other payment methods supported by our

payment processor, we can also accepts purchase

orders on Net 30 terms.

VAT and taxes may be handled differently from

Atlassian, as our payment processors are located in

USA and Germany. ALM Works is based in Russia, and

for direct purchases using Wire Transfer we do not

charge VAT or any other taxes.

Purchasing from Atlassian is not available in

.certain countries

2.2.3 Purchasing a Commercial License

Structure license can be purchased from ALM Works, from Atlassian, or through resellers and Atlassian

Experts.

Purchasing from ALM Works
Commercial license from ALM Works can be purchased at .http://almworks.com/structure/purchase.html

To generate a license, JIRA Server ID is required. JIRA Server ID is a 16-digit code, which JIRA

Administrator can look up in JIRA menu or in Administration | System Info Administration | Structure |

.License Details

Purchasing from Atlassian
You can purchase a license via Atlassian on the .Atlassian Marketplace

After purchase is completed, the license key will be available on .https://my.atlassian.com

Purchasing from Resellers or Atlassian Experts
You can purchase through a reseller of your choice. can also provide you with additional Atlassian Experts

services and advice.

When you purchase through a reseller, you can get either kind of license (issued by ALM Works or by

Atlassian), depending on the reseller's actions. If you prefer one kind of license over another, please don't

forget to tell that to the reseller.

2.2.4 Migrating Licenses

You can convert a license of one kind into a license of another kind. Please contact sales@almworks.com

for assistance.

http://www.atlassian.com/licensing/marketplace#generalmarketplacequestions-11
http://almworks.com/structure/purchase.html
http://almworks.com/structure/marketplace.html
https://my.atlassian.com
http://www.atlassian.com/resources/experts

Structure Plugin for JIRA

Page of 223 370

Next: Select which projects are enabled for Structure (see page 225)

2.2.5 Structure License Parameters

The following parameters are displayed in the section when you install a Structure license.Current License

Parameter Meaning

License

Type

Commercial or Evaluation, may be others

Licensee Organization authorized to use the license

Serial

Number

A unique number assigned to the license

Expires If present, the license is not perpetual: it will expire at the specified date. After that date

passes, the Structure plugin will not be available unless the license key is changed.

Maintenance

Expires

If present, the license key can only work with the versions of the Structure plugin

released prior to the specified date. If you need to use a newer version of the Structure,

you need to renew maintenance.

User Limit This is the maximum number of users allowed by JIRA that are supported by this license

key. The license that JIRA runs on must allow this number or fewer users.

Server ID Although not shown in the license table, most licenses are tied to a specific JIRA server

ID and would not install on a server with a different ID. If you need to move a license key

to a different server, please contact support.

2.2.6 When Structure is Available for Free

Structure plugin automatically installs a free license in case your JIRA runs on one of the following free

licenses:

Free license for projects;open-source

Free license for a organization;non-profit

Free license;community

Free license;demonstration

Free license.developer

The clauses from the Atlassian EULA that govern the use of those free licenses also apply to using

Structure on JIRA servers where these licenses are installed.

Structure Plugin for JIRA

Page of 224 370

2.2.7 License Maintenance and Expiration

Commercial License
Your commercial license for the Structure plugin (including Starter licenses) typically has no expiration date,

so it's good to use forever. However, it has which limits which versions of the Maintenance Expiration Date

plugin can be used with that license – you can only use the versions released prior to that date.

To use versions released later, you need to purchase maintenance renewal, which extends your

maintenance expiration date one year forward – independently of the date of purchase.

Example:

Date license purchased 2012-01-01

License expiration date None

Maintenance expiration date 2013-01-01

Products and terms allowed by the

license

All versions released prior to 2013-01-01 can be used

indefinitely

Maintenance renewal purchased 2012-12-10 (doesn't matter)

Renewed license maintenance expiration

date

2014-01-01

Renewed terms All versions released prior to 2014-01-01 can be used

indefinitely

Evaluation License
Evaluation and temporary licenses have expiration date, after which they just stop working – they allow to

use the product before the specified date.

Make sure you renew evaluation or get another license key before expiration.

License expiration and maintenance expiration warnings
If the currently used license becomes invalid (for example, because it is expired, or because you've

upgraded to a version of Structure that's not covered by the current license's maintenance), then Structure

plugin will function in read-only mode.

The users will be able to view structures, but they won't be able to make any changes until a valid license is

installed.

Structure Plugin for JIRA

Page of 225 370

1.

2.

3.

4.

2.3 Getting Started with Structure

Structure comes with a short tutorial that is recommended for everyone who starts working with Structure

and for those who have previous experience with Structure 2.11 or earlier. The tutorial is available under

 menu.Structure | Get Started

As it takes some (reasonable) effort to learn Structure before starting to use it efficiently, consider sending

out a link to this page to every user in your company who might have use for Structure.

2.4 Selecting Structure-Enabled Projects

Structure can be enabled for any selection of the JIRA projects, or for none of them. (In the latter case no

one can use Structure.)

By default, Structure is enabled for all projects. To limit users' exposure to Structure, pick specific

projects to be enabled for Structure.

To select which projects are enabled for Structure:

Navigate to .Administration | Structure | Configuration

Click .Enable/Disable Structure in Projects

Select whether Structure should be available for or for .all projects selected projects

Structure Plugin for JIRA

Page of 226 370

4.

5.

6.

a.

b.

1.

2.

3.

In the latter case, change the projects list in the list by selecting one or more Selected Projects

projects and using and buttons.Enable Disable

Click when done.Apply

In case you have disabled some projects that are already used in a structure (a structure contains

issues from that project), you'll be given a warning. You can opt to or cancel.Proceed with Changes

If you proceed and disable a project that has issues in some structures, those structures will

appear to the users without those issues.

If you later enable that project back - the issues will reappear where they were (all structure

changes taken into account).

Which projects are enabled for the Structure affects Who Has Access to the Structure (see page

226)

2.5 Global Permissions

2.5.1 Who Has Access to the Structure

Structure is visible only to specific users. Those users who do not have access to the Structure, will not see

 menu and other user interface elements, provided by the Structure plugin.Structure

A user has access to Structure if all of the following conditions are met:

The user has permission on at least one of the projects that are Browse enabled for Structure (see

.page 225)

Structure is :enabled for this user (see page 226)

Either Structure is enabled for everyone,

Or the user belongs to at least one of the enabled groups.

Or the user belongs to at least one of the enabled role in specified project; if role is enabled for

"Any" project, the user must be in this role in any of the projects that are enabled for Structure

.(see page 225)

Users who have global permission always have access to Structure.JIRA Administrators

2.5.2 Restricting User Access to Structure

By default, Structure is accessible to anyone who has permission on Browse structure-enabled projects

. You can further restrict this access level to one or more user groups.(see page 225)

To select who can use Structure:

Navigate to .Administration | Structure | Configuration

Click .Select Structure Users

Structure Plugin for JIRA

Page of 227 370

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

Select whether Structure should be available to or to .Everyone Users in selected groups/roles

In the latter case, change the list by selecting second radio button and use selected groups/roles

 section to add one or more required user groups or project roles. To set up Add Group/Role

required property, use drop-down selectors to choose either or option, then choose Group Project

required group name or project/role combination and press button to add it to the list. If Add project

is set to "Any", this means that user should be in specified role for any of structure-enabled projects

.(see page 225)

You can remove permission option by clicking trash can icon on the right of the option.

Click when done or to dismiss your changes.Apply Cancel

Which projects are enabled for the Structure also affects Who Has Access to the Structure (see

.page 226)

When Structure is enabled for , even anonymous visitors will have access to Structure. To anyone

make Structure accessible to only logged in users, restrict access to group.jira-users

Structure plugin maintains a cache of users permissions with regards to each structure. In most

cases, the cache is recalculated automatically, but in some cases Structure plugin may miss a

change in a user's groups or roles. The result could be that the changed permissions take effect

several minutes later (but only with regards to). A user can Structure Permissions (see page 130)

force the cache to be recalculated by doing from the browser. Typically, it's done by hard refresh

holding or or both and clicking the button.Ctrl Shift Refresh

2.5.3 Changing Permission to Create New Structures

By default, any logged-in user with can create new structures of their access to Structure (see page 226)

own. However, you can restrict this ability to one or more user groups.

To select who can create new structures:

Navigate to .Administration | Structure | Configuration

Click .Select Who Can Create Structures

Select whether new structures can be created by or by Anyone with access to Structure Users in

.selected groups/roles

In the latter case, change the list by selecting second radio button and use selected groups/roles

 section to add one or more required user groups or project roles. To set up Add Group/Role

required property, use drop-down selectors to choose either or option, then choose Group Project

required group name or project/role combination and press button to add it to the list. If Add project

is set to "Any", this means that user should be in specified role for any of structure-enabled projects

.(see page 225)

You can remove permission option by clicking trash can icon on the right of the option.

Structure Plugin for JIRA

Page of 228 370

6.

1.

2.

3.

4.

5.

6.

Click when done or to dismiss your changes.Apply Cancel

The user also needs to be able to create new general access to Structure (see page 226)

structures.

Users who have global permission are always allowed to create new JIRA Administrators

structures.

Structure plugin maintains a cache of users permissions with regards to each structure. In most

cases, the cache is recalculated automatically, but in some cases Structure plugin may miss a

change in a user's groups or roles. The result could be that the changed permissions take effect

several minutes later (but only with regards to). A user can Structure Permissions (see page 130)

force the cache to be recalculated by doing from the browser. Typically, it's done by hard refresh

holding or or both and clicking the button.Ctrl Shift Refresh

2.5.4 Changing Permission to Manage Synchronizers

By default, any logged-in user with Control for a structure can manage that access level (see page 130)

structure's . However, you can restrict this ability to one or more user groups.Synchronizers (see page 151)

To select who can manage synchronizers:

Navigate to .Administration | Structure | Configuration

Click .Select Who Can Control Synchronizers

Select whether synchronizers can be managed by or Anyone with control access to the structure

by .Users in selected groups/roles

In the latter case, change the list by selecting the second radio button and selected groups/roles

use section to add one or more required user groups or project roles. To set up the Add Group/Role

required property, use drop-down selectors to choose either the or option, then Group Project

choose the required group name or project/role combination and press the button to add it to the Add

list. If is set to "Any", this means that the user should be in the specified role for any of the project

.structure-enabled projects (see page 225)

You can remove a permission option by clicking the trash can icon on the right of the option.

Click when done or to dismiss your changes.Apply Cancel

The user also needs Control access level for a structure to be able to manage its synchronizers.

Users who have global permission are always allowed to manage JIRA Administrators

synchronizers.

Structure Plugin for JIRA

Page of 229 370

1.

2.

3.

4.

5.

6.

2.5.5 Changing Permission to Access Automation

By default, any user with Edit Generators for a structure can add and configure access level (see page 130)

. You can restrict this ability to one or more user groups or project roles.generators (see page 115)

To select who can edit generators:

Navigate to .Administration | Structure | Configuration

Click .Select Who Can Access Automation

Select whether generators can be changed by or by Anyone with Edit Generators permission U

.sers in selected groups/roles

In the latter case, change the list by selecting the second radio button and selected groups/roles

use section to add one or more required user groups or project roles. To set up the Add Group/Role

required property, use drop-down selectors to choose either the or option, then Group Project

choose the required group name or project/role combination and press the button to add it to the Add

list. If is set to "Any", this means that the user should be in the specified role for any of the project

.structure-enabled projects (see page 225)

You can remove a permission option by clicking the trash can icon on the right of the option.

Click when done or to dismiss your changes.Apply Cancel

The user also needs Edit Generators access level for a structure to be able to add or change

generators in it.

Users who have global permission are always allowed to change generators.JIRA Administrators

2.6 Changing Structure Defaults

JIRA administrator can adjust a number of Structure "defaults", settings that apply when the user does not

specify a more specific request or option.

2.6.1 Initial Configuration

When Structure plugin is installed, the defaults are configured as follows:

System Default Structure None

Project Default Structure None

Default Views Menu Preinstalled views , , , , (on all Basic Planning Tracking Triage Entry

pages)

Structure Plugin for JIRA

Page of 230 370

1.

2.

3.

1.

2.

3.

4.

Default View Basic View

Auto-switch (Issue Page) Structure with the displayed issue.

Auto-switch (Project Page) Off - show the last viewed structure.

Keep structure when

navigating

On - When going from structure widget to an issue page, show the same

structure.

Auto-minimize Structure

Panel

On - Structure panel initially minimized if issue is not in structure.

2.6.2 Changing Default Structure

Default structure (see page 10) is selected when the user opens for the Structure Board (see page 12)

first time, or when the is set to . You can change the Auto-switch option (see page 17) default structure

default structure for the JIRA instance and for a specific project.

Changing system-level default structure

Open menu.Administration | Structure | Defaults

In the section, click .System Default Structure Change

Select the default structure and click .Apply

The new system-level default structure will be also default for all structure-enabled projects that don't have

this setting overridden.

Make sure that default structure has correct . If the structure is permissions (see page 130)

selected for the user by default, but the user does not have access to it, the user will see an VIEW

error.

Changing project-level default structure

Open menu.Administration | Structure | Defaults

Locate the project in the section. Un-check Project Default Structures Show only projects with

 checkbox if needed. Click in the corresponding row.overridden default structure Change

Select a structure and click .Change

or, select to remove the project-level default.Use system default

Project administrator can also change project-level structure from the tab on the project Structure

administration page, or from the options pop-up window on the tab on the user's project page.Structure

Structure Plugin for JIRA

Page of 231 370

1.

2.

3.

4.

1.

2.

3.

2.6.3 Changing Default View Settings

View settings determine which views are offered to the users in the Views Menu (on the Structure Board

and other pages with Structure widget). Default view settings apply to all structures that don't have view

settings customized, configured by a structure administrator (someone who has permission for that Control

structure) via link on the page.Views Manage Structures

To change default view settings:

Open menu.Administration | Structure | Defaults

In the section, click .Default View Settings Change

Modify the default settings - for details, see .Customizing View Settings (see page 132)

Click Apply

2.6.4 Changing Default Options for the Issue and Project Pages

A number of options define how Structure Panel behaves on the and on the issue page (see page 17)

. When the user opens those pages for the first time, project, component and version pages (see page 26)

the default settings apply. These settings are adjustable by JIRA administrator.

If the user changes some of the options, those changes are preserved and are applied instead of defaults

for that specific user.

To change the defaults:

Open menu.Administration | Structure | Defaults

Scroll down to and click .Structure User Interface Defaults Change

Make the changes and click again.Change

Option Description See Also

Auto-switch

(Issue Page)

Lets you automatically select structure displayed on the Issue

page.

Structure Options for

the Issue Page (see

page 17)

Auto-switch

(Project Page)

Lets you automatically select structure displayed on the

Project, Component and Version pages.

Structure on the

Project Page (see

page 26)

Keep Structure

Selection When

Navigating

When turned on, clicking an issue in the Structure Widget (see

 opens that issue's page and shows the same page 12)

structure on that page initially.

Structure Options for

the Issue Page (see

page 17)

Auto-minimize

Structure Panel

If turned on, the Structure Panel on the issue page will be

initially minimized in case the selected structure does not

contain the displayed issue.

Structure Options for

the Issue Page (see

page 17)

Structure Plugin for JIRA

Page of 232 370

2.7 Structure Backup, Restore and Migration

Structure data can be backed up and restored separately from other JIRA data. Structure data includes

structures, hierarchies (forests), synchronizers, generators, folders - everything added to JIRA by the

Structure add-on. Structure backup does not include issue or other items data (except for some attributes

that are added to enable migration.)

You need the global permission to back up, restore or migrate Structure data.JIRA System Administrators

Starting with Structure 3, when you fully back up JIRA, Structure data is also backed up – it is

stored in the same database with JIRA data. However, you can use the separate backup:

To be able to restore only Structure data, not changing JIRA data

To be able to migrate structures to other servers (following Project Import in JIRA, for

example)

To export Structure data to some other tool by parsing the backup XML

2.7.1 Using Structure Backup

Structure add-on can use a backup file in two ways:

Full structure restore. This operation replaces all existing structure data (if any) with the data stored

in the backup file. This operation refers to issues and other items by their numeric IDs (issue not

keys!), so the issues must be present in JIRA before this operation is run, and issue IDs must be the

same as they were at the time the Structure backup file was created.

Issue IDs are preserved if JIRA instance is fully restored from backup with Restore System

command. Issue IDs are preserved if the issues are moved to another JIRA instance not

with JIRA's feature – use structure migration in this case.Project Import

Migration / partial import. This operation lets you restore one or more structures backed up at a

different JIRA instance (assuming that the issues have been moved over with the JIRA's Project

 command). It also allows you to merge the backed up structure data with the structure data Import

already existing on your JIRA.

A structure in a backup file cannot be restored if it refers to issues in a project that is not

present in the JIRA instance.

Structure Plugin for JIRA

Page of 233 370

1.

2.

3.

4.

5.

1.

2.7.2 Backing Up Structure

Backing up Structure saves the existing structures, their configuration, hierarchies and other Structure data.

Structure backup does not save the issues themselves or other JIRA data - see Structure Backup, Restore

.and Migration (see page 232)

To back up Structure:

Navigate to .Administration | Structure | Backup Structure

Enter the name for the backup file. If you omit file extension, either will be added to it..zip

You cannot specify directory for the backup file. Backup is always done to the sub-export

directory under JIRA home.

Click Backup

If the file already exists, you will be given an option to overwrite the file or cancel the operation.

You will see the page where you can track if the backup is going on or is finished. Process Status

Once it's finished, click to see the full name of the backup file.Show Results

2.7.3 Restoring Structure from Backup

Restoring structure from backup brings back the structures, synchronizers, views and other data created at

the moment of backup.

Restoring structure will not affect issues in any way or restore them. The issues that make up the

hierarchy should already exist in JIRA. If you do full restore, then you need to run the standard

JIRA data restore first - see .Structure Backup, Restore and Migration (see page 232)

The issues and other items in the structures are identified by their internal numeric ID. If you have

transferred issues via JIRA's Project Import, issue IDs have changed and so you need to use

.Structure Migration (see page 234)

Use Restore Structure when:

the backup was made on this JIRA instance or on its predecessor,

and, you need to fully restore structure data,

and, you can lose the current structure data stored on this JIRA instance (issues are not affected,

only their organization into structures).

To restore the structure from backup:

Structure Plugin for JIRA

Page of 234 370

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Navigate to .Administration | Structure | Restore Structure

Enter the full path to the structure backup file (either or)..xml .zip

Click .Restore

If Structure currently has any data, it will ask you to confirm the restore operation. Restoring from

backup clears all Structure data, and it cannot be undone! If you have data that you're overwriting,

you might want to perform Backup first.

You will see the Process Status page that will tell you if Restore is going on or is finished. Once it's

finished, you'll be able to see the result and possibly some warning messages.

After the structure has been restored, open page to see if the structures are Structure | Manage Structure

there.

You also can restore structure data from backup files made with the earlier versions of the

Structure plugin, including Structure 2.

2.7.4 Migrating Structures

Migrating structure data lets you import one or more structures from a different JIRA instance after you have

imported projects with the JIRA's Project Import operation. Also, you can add some structures from a

backup file to those that are already present in JIRA.

Migrating structure will not affect issues in any way. The issues that make up the hierarchy should

already exist in JIRA. You may need to run JIRA project import or the standard JIRA data restore

first - see .Structure Backup, Restore and Migration (see page 232)

During migration the issues in the structures are located in JIRA by their issue keys and a possibly

new numeric ID is being used to construct the structure. A structure cannot be migrated if it refers

to issues from a project that is missing in JIRA.

When migrating a structure and there's already an existing structure with the same ID or name, you will

have an option to either replace the existing structure with the structure from the backup, or restore the

structure from backup as a separate structure, or skip this structure.

To migrate structures from backup:

Navigate to .Administration | Structure | Migrate Structure

Enter the full path to the structure backup file (either or)..xml .zip

Click .Select Structures To Restore

Select structures that should be restored. If there's an existing structure with same ID or name, select

 to replace the existing structure with the one from backup, otherwise the Overwrite Existing

structure will be restored as a new structure, leaving the existing one unaltered.

Under the list of structures there's a list of additional restore options:

Structure Plugin for JIRA

Page of 235 370

5.

6.

7.

Restore

Structure

Permissions

If selected, the plugin will attempt to restore the access permissions for the

imported structures. This attempt may fail, for example, if the permission rules

refer to users or groups not present in JIRA. If you don't select this option, or if

the attempt to restore permissions fails, then the restored structure will have no

permission rules, letting JIRA administrators further configure them through

 page.Manage Structures (see page 127)

Restore

Synchronizers

If selected, the synchronizers for selected structures are restored.

Synchronizers configuration is imported as-is, and might not make

sense on a new JIRA instance. After you have restored synchronizers,

please visit page to check if Synchronization Settings (see page 151)

the synchronizers are configured correctly.

Restore

Structure

History

If selected, structures are imported along with their history (if it is present in the

backup file). If not selected, structures will have no history.

Restore User

Favorites

If selected, the plugin will try to restore "favorite" marks made by users for the

selected structures.

Restore Views If selected, all views from the backup files will be restored. If there's a conflict and

a view with a given ID already exists, Structure will first verify if the view being

restored is different from the one in the system, and if it is, restore it as a new

view with a different ID.

Restore View

Settings for

Structures

If selected, for the selected structures will be view settings (see page 132)

restored.

Click .Restore Selected Structures

You will see the Process Status page that will tell you if migration is going on or is finished. Once it's

finished, you'll be able to see the result and possibly some warning messages.

After structures have been migrated, open page to see if new structures are Structure | Manage Structure

there.

As of version 3.3, Migrate Structure does not support Structure.Testy or Structure.Pages data.

Structure Plugin for JIRA

Page of 236 370

1.

2.

3.

4.

5.

6.

7.

2.8 Automatic Structure Maintenance

2.8.1 Automatic Structure Maintenance

Automatic Structure maintenance runs daily and performs Structure backup and database optimization. The

optimization removes stale data from the database and may improve general JIRA responsiveness.

To configure automatic Structure maintenance:

Navigate to Administration | Structure | Maintenance

Click Configure Scheduled Maintenance

If scheduled maintenance is disabled, click Enable scheduled maintenance

Select time at which maintenance should run every day.

The time is specified in the server's time zone, displayed near the time fields.

Select tasks that scheduled maintenance should run.

Configure additional task parameters, if any.

Click Apply

By default, scheduled maintenance is enabled and set to run daily at 3 AM.

Automatic maintenance can be run only when Structure license is valid.

Structure Plugin for JIRA

Page of 237 370

2.8.2 Maintenance Tasks

Backup

Structure

data

Creates a backup of the Structure database in the sub-directory under JIRA export

home.

Parameters:

Include history – if checked, full structure change history will be included in the

backup. If you have a lot of changes in structures this setting may cause the

backup to take some time and the backup file to be large. If you don't need

history of structure changes, it is advised to turn this option off.

It is advised to have separate Structure backups even though Structure data is

backed up with JIRA's normal backup, because you will be able to Restore

from that data without rolling back changes in JIRA.

Delete old

backups

A backup is considered old if it's not among latest backups (is specified by the first X X

parameter of this task) it was made earlier than days ago (is specified by the and Y Y

second parameter). This task removes all such backups made by the Backup task.

Parameters:

Always keep latest backupsX

Always keep backups made during last daysY

Optimize

favorites

If a user marks a structure as their , Structure plugin will keep favorite (see page 10)

this mark even if the user is later deleted from JIRA. Popularity number of the structure

 will also account for this user. This task removes marks made by users (see page 10)

no longer in JIRA and recounts structure popularity.

Optimize

structures

If an issue is added to a structure and then deleted from JIRA, that structure will still

contain a reference to this issue (although it will not display it). This task removes from

structures references to deleted issues and references to other items that have become

permanently unavailable.

Optimize view

settings

If a is deleted, some may view (see page 143) structure view settings (see page 132)

still reference it, and a blank view named will be shown in its place. ? (Unknown View)

This task removes references to the deleted views.

Optimize

synchronizers

Sometimes Structure add-on may keep data related to synchronizers of a structure

which was already deleted. This task removes such data.

Structure Plugin for JIRA

Page of 238 370

1.

Delete old

synchronizer

audit log

records

This removes old records from , clearing up space in the Synchronizer Audit Log

database.

Parameters:

Keep records for the last days.X

If you set X to 0, maintenance procedure will remove all records.

Reindex

change

history

Currently does nothing.

This task has remained as an option since Structure 2. Its purpose will be

restored later when Structure 3 gets more maintenance options for structure

histories.

Optimize

structure

perspectives

Removes old that haven't been used by anyone for a perspectives (see page 149)

certain amount of time.

Parameters:

Delete perspectives that were not used during the last daysX

Reindex

structures

Clears and recalculates issue-to-structure index, used to define which structures

contain a specific issue. (Issues added with are not Automation (see page 115)

counted.)

Delete old

change

history

The task removes old records from change history. A history record is considered old if

the change was made earlier than X days ago (X is specified by the first parameter)

it is not among Y latest history records for the structure where the change was and

made (is specified by the second parameter).Y

Parameters:

Always keep change history for the last X days

Always keep Y latest changes per structure

2.8.3 Running Maintenance Tasks Manually

You can run specific maintenance tasks at any time.

To run maintenance manually:

Structure Plugin for JIRA

Page of 239 370

1.

2.

3.

4.

5.

1.

2.

3.

Navigate to Administration | Structure | Maintenance

Navigate to sectionRun Maintenance Now

Select tasks to run.

Configure additional task parameters, if any.

Click Run Maintenance Now

Running maintenance manually does not affect automatic maintenance settings or schedule.

2.9 Workflow Integration

2.9.1 Structure Workflow Validator

Structure Plugin adds a new to JIRA. This validator blocks the transition if the workflow transition validator

issue doesn't match an . For example, it can be used to prevent an issue from S-JQL query (see page 178)

being resolved if the issue has some unresolved sub-issues in a structure.

To add the Structure validator to a workflow:

Create a draft of the workflow and open the dialog. (For more Add Validator to Transition

information, please refer to the .)JIRA documentation

Select the validator. A configuration window will open:Issue Matches Structure Query

https://confluence.atlassian.com/display/JIRA/Advanced+workflow+configuration#Advancedworkflowconfiguration-Whatareconditions,validators,andpostfunctions?
https://confluence.atlassian.com/display/JIRA/Advanced+workflow+configuration#Advancedworkflowconfiguration-validatorAddingavalidator

Structure Plugin for JIRA

Page of 240 370

3.

4.

5.

6.

7.

In the field, specify how validator should select the structure to check. It can either be a Structure

manually selected structure, or it may depend on the issue being checked (the default structure of the

issue's project or the structure that contains the issue).

In Structure 3, the option that picks a structure that contains the issue being validated is no

longer available.

In the field, enter the S-JQL query that the issue should match in order to pass the S-JQL Query

transition.

You can use one of the examples provided with the form. Just select an example in the

 selector, and the corresponding query will be copied into the Query Examples S-JQL

 field.Query

In the field, enter an explanation message that users will see if their transitions Validator Message

are blocked by the validator.

In the field, select whether the transition should be If the Issue Is Not Added to the Structure

blocked or allowed if the issue is not contained in the checked structure. (Or if the issue does not

belong to any structure, in case automatic structure selection is chosen.)

In the field, select on behalf of which user the validator should run. It can either be a Run as User

manually selected user, or it may be the lead of the project of the issue that is being checked.

Running on behalf of a user means that the validator will only see issues and structures that

are accessible to the specified user. The result of the validator check will depend on the

permissions of the specified user and will not depend on permissions of the user who

performs the transition.

2.9.2 Structure Workflow Condition

Structure Plugin also comes with the Structure condition that is similar to the Structure validator. Using

Structure condition may significantly increase the load on server, that's why this condition is not available by

default.

To make Structure Workflow Condition available, enable the module of the structure-workflow-condition

Structure plugin via page. For instructions, please see Administration | Add-ons | Manage Add-ons

.Universal Plugin Manager documentation

Checking S-JQL condition may involve querying other issues in the checked structures, and in

case the structure is large this may take considerable time – yet within reason if it is done

occasionally.

https://confluence.atlassian.com/display/UPM/Viewing+installed+add-ons#Viewinginstalledadd-ons-AboutAdd-onModules

Structure Plugin for JIRA

Page of 241 370

1.

2.

1.

2.

3.

However, workflow conditions are checked every time when a user opens an issue details page, in

order to decide which transitions to show. If you have hundreds of active users and thousands of

issues in a structure, this may easily degrade server performance.

Use your own best judgement.

2.10 Anonymous Usage Statistics

Please enable anonymous usage statistics, as is helps the developers better understand how

Structure plugin is used, prioritize improvement requests and build a better product. No JIRA

content or personally identifiable data are collected.

When anonymous usage statistics is enabled, Structure plugin periodically sends some data from the JIRA

instance to ALM Works.

The data consists of anonymized information related to the usage of Structure plugin, for example,

invocation count of each structure widget action (say, structure history is toggled 56.3 times a day on

average, issues are pasted 30.7 times a day on average etc.).

Here's a sample report that is sent to ALM Works: Statistics Sample

2.10.1 Viewing Current Statistics

JIRA administrator can always have a look at the data which is about to be sent. To view the data:

Navigate to Administration | Structure | Support

Click View Current Statistics

2.10.2 Turning Anonymous Usage Statistics On and Off

To enable or disable Anonymous Usage Statistics:

Navigate to Administration | Structure | Support

Check or uncheck checkboxSend anonymous usage statistics

Click Apply

The information is collected in accordance with and .EULA privacy policy

https://wiki.almworks.com/download/attachments/12878169/statisitics.txt?version=8&modificationDate=1484939269000&api=v2
http://almworks.com/EULA-Structure.pdf
http://almworks.com/company/legal/privacy.html

Structure Plugin for JIRA

Page of 242 370

2.11 Structure Files

2.11.1 $JIRA_HOME/structure

Structure keeps most of its data in the sub-directory under the .structure JIRA home directory

On JIRA Data Center, a local filesystem is used.

Cache files
Structure uses file system to temporarily store some of the internal runtime database, involved in

Automation feature. These files may be stored in "rows0", "rows1" and similar directories.

2.12 Dark Features

Dark features are additional features or behavior modifications that are usually hidden from the user.

However, JIRA administrator can turn them on for their instance.

2.12.1 Alternative initial values for project/type when creating

an issue in dialog

Normally, when the user creates new issues through dialog, Structure remembers the selected project and

issue type and offers them next time by default. This dark feature enables a different algorithm, which used

to work in a previous version of Structure: the initial project and issue type are taken from the issue that was

focused when "+Create" or "+Next Issue" was pressed.

System property structure.feature.altInitialValuesInDialog

Options to add in setenv.sh / setenv.

bat

-Dstructure.feature.

altInitialValuesInDialog=true

Internal feature name altInitialValuesInDialog

Introduced in version 2.11.0

2.13 Turning Off Optional Features

Some features in Structure are designed as modules and can be safely turned off. You can do so to remove

unnecessary functionality, or limit the exposure of Structure plugin to the users.

http://confluence.atlassian.com/display/JIRA/JIRA+Home+Directory

Structure Plugin for JIRA

Page of 243 370

1.

2.

3.

4.

5.

If your aim is to limit the exposure of Structure, consider restricting permissions to specific groups

of users - see .Gradual Deployment (see page 251)

While it is easy to disable a Structure module, we don't recommend to touch any modules except

those listed in this article to ensure stability of Structure and your JIRA application.

To turn off a module:

Open Add-on Manager by navigating to | | .Administration Add-ons Manage Add-ons

Locate Structure add-on and expand its row.

Click the link that looks like the following: "309 of 310 modules enabled." (Numbers may vary.)

Use Search feature of your browser to find the module by its name (provided below.)

Click the Disable button to the right of the module name.

You can always turn the feature on later by clicking the Enable button.

Feature Module name Effect of disabling this module

Activity

Streams

Structure

(structure-

activity-

provider)

Activity streams provider and Structure-related updates are

removed from the following places:

Activity Stream gadgets (see page 175),

Activity tab on the issue page,

Activity tab on the user page,

Activity tab on the project page.

Structure on

the Issue

Page (see

page 14)

web-resource:

Issue Page

Decorator

(adjustIssue)

Structure section is removed from the issue page.

Structure on

Agile Boards

(see page 27

)

web-panel:

GreenHopper tab

(greenhopper-

tab)

Structure tab is removed from the issue details panel on the

Agile board.

Synchronizers

(see page 151

)

synchronizer:...

(5 synchronizers are

bundled with

Structure)

Users will not be able to install synchronizers, and installed

synchronizers won't run. You will need to restart the plugin to

have settings make full effect. (Disable plugin, then enable

plugin.)

Structure Plugin for JIRA

Page of 244 370

1.

2.

3.

4.

2.14 Advanced Configuration with System Properties

Certain advanced aspects of Structure's behavior might not have dedicated configuration pages, being

controlled by system properties instead. This page lists Structure-related system properties and describes

how to set them.

2.14.1 Setting System Properties on Startup

You can set a system property using the JIRA startup option, for example:-D

-Dstructure.sync.guard.email.admin.cycles=5

Configuring JIRA startup options is described in . You will need to restart JIRA for the properties this article

to take effect.

2.14.2 Setting System Properties with Script Runner

If you don't want to restart JIRA, you may use the free add-on to set system properties.Script Runner

Install Script Runner.

Go to .Administration | Add-Ons | Script Runner | Script Console

Select as the Script Engine.Groovy

Enter the following code into the Script text box, adjust property name and value as needed, and click

.Run Now

System.setProperty("structure.sync.guard.email.admin.cycles", "5")

The changes take effect immediately, but the properties will be reset to their default values when you restart

JIRA. If you want the changes to be permanent, please use the startup option as described above.-D

2.14.3 Synchronizer Cycle Guard

The is a component that detects conflicting synchronizers and prevents them cycle guard (see page 159)

from cycling forever, overriding each other's changes. The table below describes the system properties that

control the cycle guard.

Property Default Explanation

structure.sync.guard.disable false
Set to to disable true

the cycle guard.

Conflicting

https://confluence.atlassian.com/display/JIRA/Setting+Properties+and+Options+on+Startup
https://marketplace.atlassian.com/plugins/com.onresolve.jira.groovy.groovyrunner

Structure Plugin for JIRA

Page of 245 370

Property Default Explanation

synchronizers will not

be prevented from

running forever. Not

recommended.

structure.sync.guard.maxAutosyncsWithoutUserChanges 10
The maximum number

of times that a

synchronizer is allowed

to run, processing the

changes generated by

another synchronizer. If

this limit is exceeded,

the two synchronizers

are considered to be in

conflict.

structure.sync.guard.stop.disable false
If , conflicting true

synchronizers will not

be disabled

automatically. The

cycling may repeat after

a user-generated

change.

structure.sync.guard.email.owner.disable false
If , the cycle guard true

will never send e-mail

notifications to

synchronizer owners.

structure.sync.guard.email.admin.disable false
If , the cycle guard true

will never send e-mail

notifications to JIRA

administrators.

structure.sync.guard.email.admin.cycles 10
The minimum number

of times a cycle must be

detected for a

synchronizer before an

e-mail notification about

that synchronizer is sent

to JIRA administrators.

The counter is reset

when a synchronizer is

automatically disabled,

so if this number is

Structure Plugin for JIRA

Page of 246 370

Property Default Explanation

greater than 1 and

automatic disabling is

on, the administrators

will not be notified.

2.15 System Requirements

2.15.1 Atlassian Platform

JIRA Versions Supported 6.3 – 7.1

See also: Platforms supported by JIRA

JIRA Agile: versions 6.3 – 6.7

JIRA Editions Supported JIRA Core, JIRA Software, JIRA Service Desk

JIRA Data Center Supported

See Server Requirements below

Confluence Versions

(Structure.Pages)

5.7 – 5.9

2.15.2 Databases

Databases used by JIRA are also supported by Structure. We test the product with the following databases:

Oracle 11G (6.3-6.4, not supported by JIRA 7)

Oracle 12C

MySQL 5.1, 5.5, 5.6

PostreSQL 8.4, 9.0,9.1,9.2,9.3

Microsoft SQL Server 2012, 2008, 2005

HSQL (not for production use)

2.15.3 Browsers

Structure Plugin is compatible with the following browsers:

https://confluence.atlassian.com/adminjiraserver071/supported-platforms-802592168.html

Structure Plugin for JIRA

Page of 247 370

Browser Supported

versions

Versions known to NOT work

Mozilla

Firefox

All recent versions

Chrome All recent versions

Internet

Explorer

11 8

Internet Explorer 9 and 10 are partially supported. There are a couple

of low-impact known issues.

Safari All recent versions

on OS X

Safari for Windows is not supported.

Edge All recent versions

Other

browsers

Unsupported, but

may work

2.15.4 Server Requirements

At least 100MB of free disk space is needed on the server. See Structure Files Location (see page

 for details.242)

On JIRA Data Center, each node must have sufficient free disk space in the local home.

Java process running JIRA needs at least additional 200 MB of heap memory. If running on Java 7 or

earlier, ensuring sufficient free PermGen space is recommended. See Memory Guidelines (see page

 for details.217)

JIRA process must have read/write permissions to JIRA (local) home directory to create structure

sub-directory automatically.

2.15.5 Non-Conforming systems

With regards to systems that don't conform to JIRA requirements and Structure requirements: while we

sometimes know that a specific configuration doesn't work, more often it's grey area so feel free to try and

let us know the results.

2.16 Best Practices

We have collected several guidelines for common situations.

If you have your own best practice to suggest, please !let us know

Structure Plugin for JIRA

Page of 248 370

2.16.1 (HIDDEN) Backup Strategy

Page is temporarily suspended and not visible to the users via permissions. When Structure's

backup and restore functionality is reimplemented, edit and publish this section.

Structure data is stored separately from JIRA data and is not included in the general System Backup. To

ensure that your Structure information is safe, it recommended to make Structure backup a part of your

overall backup strategy.

Option 1. Automatic XML Backup + Export Directory Backup
This strategy involves two processes:

Automatic Structure Maintenance (see page 236) lets you automatically create full hot backups of the

Structure data once a day. The backups are stored in the directory under JIRA home.export

Periodic file-level backup of the directory (or the whole JIRA home) to a different storage export

device increases the safety of the backups. This part should be configured manually by the server

administrator.

This is the recommended strategy because it does not require stopping JIRA and can be integrated with

already existing overall backup strategy.

When you install Structure, automatic daily backups are enabled by default. You only need to

make sure that backup files that will appear in the directory are stored safely.export

Option 2. File-Based Backup
Structure stores all its data in sub-directory of the JIRA home directory – see structure/ Structure Files

. You can use your operating system tools to back up the whole Location (see page 242) structure

directory.

So if you already have backup strategy for the whole JIRA home directory, then you are also backing up

Structure.

Hot File-Based Backup
Hot backup can be used only as a complimentary backup strategy to the more reliable automatic XML

backup.

Hot backup (while JIRA and Structure are running) is ! There's a probability that a database unsafe

file will be copied while it's being written, making the copy of the database corrupt. (But you can

verify that the copied database is correct by opening it with Derby tools and reading all tables.)

Structure Plugin for JIRA

Page of 249 370

When running JIRA on Windows, you won't be able to do hot backup by normal file copying,

because the files in directory will be open. You can use tools structure volume shadow copy

from Microsoft to copy a snapshot of the files.

Cold File-Based Backup
Cold backup is safe and sufficient, but it can be done only by disabling Structure plugin, making a backup

and enabling Structure again. (There's no need to stop JIRA.)

Option 3. Manual / API-Triggered XML Backup
You can manually back up structure through menu.Structure Backup (see page 233)

If automatic Structure maintenance does not suit you and you have resources to develop your own mini-

plugin for backup strategy, you can automatically back up Structure data through the Structure API (see

 (use interface).page 253) StructureBackupManager

Restoring from File Backup
In case of failure, you can restore Structure data from file backup by disabling Structure plugin, copying the

whole contents of directory back in place, and enabling Structure again.structure/

Watch the logs - if you see a message that the database is corrupt, it is likely that you are restoring from a

hot file-based backup. In that case, you'll need to find a cold file-based backup or an XML backup.

Restoring from XML Backup
Restoring from XML backup is error-proof but requires a bit more time. See Restoring Structure from Backup

 for instructions.(see page 233)

Incremental and Differential Backups
As Structure database is typically not large, full backup is recommended.

Structure XML backup/restore does not support incremental backup, but you can use your operating system

tools for incremental or differential backup of the files in directory.structure

2.16.2 Backup Strategy

Structure data is stored separately from JIRA data and is not included in the general System Backup. To

ensure that your Structure information is safe, it recommended to make Structure backup a part of your

overall backup strategy.

Option 1. Automatic XML Backup + Export Directory Backup
This strategy involves two processes:

Structure Plugin for JIRA

Page of 250 370

Automatic Structure Maintenance (see page 236) lets you automatically create full hot backups of the

Structure data once a day. The backups are stored in the directory under JIRA home.export

Periodic file-level backup of the directory (or the whole JIRA home) to a different storage export

device increases the safety of the backups. This part should be configured manually by the server

administrator.

This is the recommended strategy because it does not require stopping JIRA and can be integrated with

already existing overall backup strategy.

When you install Structure, automatic daily backups are enabled by default. You only need to

make sure that backup files that will appear in the directory are stored safely.export

Option 2. File-Based Backup
Structure stores all its data in sub-directory of the JIRA home directory – see structure/ Structure Files

. You can use your operating system tools to back up the whole Location (see page 242) structure

directory.

So if you already have backup strategy for the whole JIRA home directory, then you are also backing up

Structure.

Hot File-Based Backup
Hot backup can be used only as a complimentary backup strategy to the more reliable automatic XML

backup.

Hot backup (while JIRA and Structure are running) is ! There's a probability that a database unsafe

file will be copied while it's being written, making the copy of the database corrupt. (But you can

verify that the copied database is correct by opening it with Derby tools and reading all tables.)

When running JIRA on Windows, you won't be able to do hot backup by normal file copying,

because the files in directory will be open. You can use tools structure volume shadow copy

from Microsoft to copy a snapshot of the files.

Cold File-Based Backup
Cold backup is safe and sufficient, but it can be done only by disabling Structure plugin, making a backup

and enabling Structure again. (There's no need to stop JIRA.)

Option 3. Manual / API-Triggered XML Backup
You can manually back up structure through menu.Structure Backup (see page 233)

Structure Plugin for JIRA

Page of 251 370

1.

2.

3.

4.

5.

If automatic Structure maintenance does not suit you and you have resources to develop your own mini-

plugin for backup strategy, you can automatically back up Structure data through the Structure API (see

 (use interface).page 253) StructureBackupManager

Restoring from File Backup
In case of failure, you can restore Structure data from file backup by disabling Structure plugin, copying the

whole contents of directory back in place, and enabling Structure again.structure/

Watch the logs - if you see a message that the database is corrupt, it is likely that you are restoring from a

hot file-based backup. In that case, you'll need to find a cold file-based backup or an XML backup.

Restoring from XML Backup
Restoring from XML backup is error-proof but requires a bit more time. See Restoring Structure from Backup

 for instructions.(see page 233)

Incremental and Differential Backups
As Structure database is typically not large, full backup is recommended.

Structure XML backup/restore does not support incremental backup, but you can use your operating system

tools for incremental or differential backup of the files in directory.structure

2.16.3 Gradual Deployment

In an enterprise with JIRA already in production and being used every day, deploying Structure plugin and

making it available to everyone might be disruptive – in a good sense, since Structure adds a whole layer of

useful functionality to JIRA, but perhaps also in a bad sense, if the users are accustomed to their stable

user interface and don't appreciate changes that they do not expect.

As a JIRA admin, you can deal with that situation quite easily by deploying Structure gradually.

Structure can be limited to a number of users – see . Restricting User Access to Structure (see page 226)

The users who do not have access to Structure don't see Structure's footprint in JIRA in any way (with one

exception, see below).

A common path to gradual deployment is:

Create a group called and restrict access to Structure only to that group.structure-users

Add to the group people who initially championed getting Structure for your company and anybody

who actively wants to use it.

Let them use Structure and spread the word.

Once it is decided that everybody wants to use Structure, remove the restriction.

Don't forget to advise everyone to check the page.Getting Started (see page 225)

In the same way, you can gradually enable Structure project-by-project. See Who Has Access to the

 for details.Structure (see page 226)

Structure Plugin for JIRA

Page of 252 370

Turning Optional Functionality Off
Some Structure features can be turned off – see .Turning Off Optional Features (see page 242)

One notable feature is . For technical reasons, even if a user does not have access to Activity Streams

Structure, they will still see "Structure" as a possible Activity Streams Provider (although they won't see any

events coming out of it). You can turn it off.

Another optional feature to consider is synchronizers. Synchronizers are powerful tools, but they may be

harmful if applied carelessly. You can turn off synchronizer modules, or check who in your JIRA has Bulk

 permission.Edit

Automation (see page 115) is the newest feature that can potentially place considerable load on the server.

You can limit the access to it by .changing permission to access Automation (see page 229)

Structure Plugin for JIRA

Page of 253 370

3 Structure Developer's Guide

3.1 Structure Developer Documentation

Structure for Developers

Structure add-on provides APIs that allow you to access structures, integrate your add-on with

Structure and extend Structure functionality. Here are the typical use cases:

Custom Development
You customize JIRA for your customer or employer, and you need to integrate Structure with some

other in-house system – see and section about integrating plugins (see page 254) Java API reference

.(see page 289)

Plugin Integration
You have your own great JIRA plugin, or plan to create one, and you'd like to use the issue hierarchy

provided by Structure – see .Accessing Structure from JIRA Plugin (see page 254)

Extending Structure
You'd like to extend Structure, adding functionality to the plugin itself – read documentation about

.extending Structure functionality with additional plugins (see page 270)

Remote Access
You need to get or change issue hierarchy remotely from some automated scripts or a client

application – read about and Accessing Structure Data Remotely (see page 289) Structure REST API

.(see page 297)

3.2 Structure Concepts, Developer's Perspective

This article provides an introduction to the main concepts used in Structure. Before starting your

work on integration with Structure, please familiarize yourself with these concepts.

3.2.1 Basic Concepts Overview

Concept Short Definition API Classes to Check

Structure A named container for a hierarchical list. Structure, StructureManager

Forest A hierarchical list. Forest, ForestService

Structure Plugin for JIRA

Page of 254 370

Concept Short Definition API Classes to Check

Row A row is a unique, atomic element of a forest. StructureRow, RowManager

Item An item is a user-level object (like Issue) that is

displayed in a row.

ItemIdentity,

CoreIdentities

Attribute An attribute provides values of a certain type and

meaning for forest rows.

AttributeSpec,

StructureAttributeService

Column A column loads one or more attributes and displays

information about forest rows.

ViewSpecification

View A view is a named collection of columns. StructureView,

StructureViewManager

Important points:

Structures are the main entities provided by Structure add-on. A structure has name and other

attributes, like description, and it also has content, represented by a forest.
A forest represents a structure's content. But it can also represent a result of a query or a hierarchical

list received or stored somewhere else.

Forest contains . Forest content is actually a list of pairs ().rows row ID, depth

A row has a numeric ID that uniquely identifies it in a forest. A forest may not contain the same row

twice. (Although a row may be present in different forests.)

When users look at a structure, they see a grid – each row in that grid is represented by a Structure's

row.

A row refers to an . An item is an abstraction for everything that can be placed into a forest – item

issues, folders, projects, users are all items, from Structure's perspective.

An item has – something that uniquely identifies that item on a JIRA instance.item identity

An item also has – some values with associated meaning, which Structure and its attributes

extensions can provide and that can be shown to the user.

3.2.2 A Note on Extensibility

Structure is built with extensibility in mind. It is possible for a separate add-on to add new item types,

attributes, columns and other extensible elements to Structure, at runtime.

3.3 Accessing Structure from JIRA Plugin

Structure provides a Java API that lets other plugins interact with the Structure data. The API is accessed

through a few services that you can have injected into your components.

Check out the articles below for details.

Structure Plugin for JIRA

Page of 255 370

3.3.1 Setting Up the Integration

To start using Structure in your plugin:

Add dependency to your pom.xml
Figure out the that you need – it may depend on your JIRA and Structure version of the API (see page 290)

plugin version.

To use API classes, add the following dependency:

<dependency>

 <groupId>com.almworks.jira.structure</groupId>

 <artifactId>structure-api</artifactId>

 <version>16.0.0</version>

 <scope>provided</scope>

</dependency>

Note that there are Additional Libraries Used in Structure API (see page 256)

Import StructureComponents
In your , use module to import atlassian-plugin.xml <component-import> StructureComponents

service. This service provides access to all other Structure services.

Alternatively, you can import specific services.

<component-import key="structure-components" interface="com.almworks.jira.structure.api.

StructureComponents"/>

Have Structure API service injected into your component

public class MyClass {

 private final StructureManager structureManager;

 public MyClass(StructureComponents structureComponents) {

 structureManager = structureComponents.getStructureManager();

 }

 ...

}

This is it! Continue to the list of to see which service you need to work Structure Services (see page 259)

with. Other articles in this section provide examples for specific use cases.

Structure Plugin for JIRA

Page of 256 370

For a production plugin, consider . For a standalone Controlling Compatibility (see page 256)

plugin, which can work without Structure, read about Making Structure Dependency Optional (see

.page 257)

Additional Libraries Used in Structure API
Structure API has dependencies on a few open-source libraries that are transitively included in your project

when you add a dependency on Structure API.

You don't need to explicitly add dependencies on these libraries.

Integers and HPPC
The open source library provides collections of primitive types with -like interfaces. Integers java.util

When working with , you will typically use and (an implementation of Forest LongList LongArray

).LongList

It comes with another primitive type collection library, , which provides specific implementations of HPPC

these collections.

See to get the idea how to work with those interfaces.API Usage Samples (see page 335)

JetBrains Annotations
Annotations library from JetBrains provides and annotations, used throughout the @Nullable @NotNull

API.

Controlling Compatibility

Why Declare Compatible Versions
Structure Java API will change with time, and it is a good practice to ensure that your plugin uses the

correct version of the API.

Structure API Versions (see page 290) page explains how version numbers change based on how

compatibility is affected. Say, you develop your code using Structure API version 16.2.0 – your code will

work with any version of the API starting from 16.2.0 and up to, but not including version 17.0.0.

So what happens if your code is run on JIRA with Structure that provides an incompatible API? It may

break, or it may work. The exact answer depends on which parts of the API you use and what are the

differences. But if the code breaks, it may not break outright – it may seem to work at first, until it tries to use

a method that's not there, for example.

To make your code fail fast, you can declare dependency on a specific range of versions of the Structure

API. In that case, if the version of the API is different, your plugin will fail to load and the user will

immediately know that there's a problem.

http://code.google.com/p/integers/
http://labs.carrotsearch.com/hppc.html

Structure Plugin for JIRA

Page of 257 370

Importing Specific Range of API Versions
You can declare dependency on the specific range of the API versions via OSGi bundle instructions added

to your or . Figure out the compatible OSGi versions range from the pom.xml atlassian-plugin.xml

 table and modify your to contain the following:API versions (see page 290) pom.xml

<plugin>

 <groupId>com.atlassian.maven.plugins</groupId>

 <artifactId>maven-jira-plugin</artifactId>

 ...

 <configuration>

 <instructions>

 <Import-Package>

 com.almworks.jira.structure.api*;version="[16,17)",

 com.almworks.integers*;version="0",

 org.jetbrains.annotations;version="0"

 </Import-Package>

 </instructions>

 </configuration>

</plugin>

Here we are declaring the acceptable range of versions for the Structure classes, taken from the example

above. We don't much care about the versions of Integers and Annotations libraries, so will version="0"

match any version of those packages.

You may have other instructions to declare dependency rules for other Import-Package

packages, and you may have other instructions besides as well. See the Import-Package API

 for a more complete example.Usage Samples (see page 335)

Next: Making Structure Dependency Optional (see page 257)

Making Structure Dependency Optional
If you are integrating your plugin with Structure, or when you generally write code that uses Structure API

but also should work when Structure Plugin is not present, you need to declare that dependencies are

optional and isolate dependencies in the code.

Declare Optional Dependency
Since your plugin must first be loaded as an OSGi bundle, it should declare dependencies from the

Structure API packages as optional.

Modify declaration in your or and add <Import-Package> pom.xml atlassian-plugin.xml

 classifier. (if you resoltion:=optional Add Import-Package to control API compatibility (see page 256)

don't have this declaration yet.)

<Import-Package>

Structure Plugin for JIRA

Page of 258 370

 com.almworks.jira.structure*;version="[16,17)";resolution:=optional,

 com.almworks.integers*;version="0";resolution:=optional,

 org.jetbrains.annotations;version="0";resolution:=optional

</Import-Package>

Isolate Dependencies in the Code
So once you have declared the optional resolution of the Structure API classes, your bundle will load - but if

your code tries to access a class from the Structure API, you'll get a . To avoid NoClassDefFoundError

that, you need to isolate the dependency on Structure API classes - typically in some wrapper classes.

This is also a point to make design decisions. So your code can use Structure when it's present,

and can work independently when Structure is not there. Are there any abstractions that address

both of these situation? What are the concepts that are realized through Structure API and through

some other means when Structure is not avialable?

Here's a sample wrapper for the Structure API that provides wrapper (whatever it does) ForestAccessor

when Structure is available and otherwise.null

public class StructureAccessor {

 public static boolean isStructurePresent() {

 if (!ComponentAccessor.getPluginAccessor().isPluginEnabled("com.almworks.jira.structure")) {

 return false;

 }

 try {

 Class.forName("com.almworks.jira.structure.api.StructureComponents");

 } catch (Exception e) {

 return false;

 }

 return true;

 }

 public static ForestAccessor getForest(long structureId) {

 if (!isStructurePresent()) return null;

 StructureComponents structureComponents;

 try {

 structureComponents = ComponentAccessor.getOSGiComponentInstanceOfType

(StructureComponents.class);

 } catch (Exception e) {

 return null;

 }

 try {

 return new ForestAccessor(structureComponents.getForestService().getForestSource

(ForestSpec.structure(structureId)));

 } catch (StructureException e) {

 return null;

 }

 }

}

Structure Plugin for JIRA

Page of 259 370

3.3.2 Structure Services

This page lists public services provided by Structure API. All these services are available from

 instance.StructureComponents

Services to Start With

Use ... to ...

StructureManager Create and delete structures, modify structure properties such as name or

permissions. (But not to work with the structure's content.)

ForestService Access forests for reading or changing.

StructureAttributeService Retrieve attribute values for given rows in a given forest.

RowManager Extract item information for rows read from a Forest.

FolderManager Create folders or change folder properties.

GeneratorManager Create generators or change generator properties.

More Power

Use ... to ...

StructureConfiguration Change global Structure add-on configuration.

StructureViewManager Create and manipulate views.

StructureSyncManager Manage synchronizers.

StructureBackupManager Backup complete Structure data to a file or restore it back.

StructureFavoriteManager Read or change which structures are favorite of which users.

PropertyService Store arbitrary properties.

StructurePropertyService Store arbitrary per-structure properties.

Extreme Power

Use ... to ...

ItemTracker Track recorded changes that happened to items (in JIRA Data Center –

on all nodes of the cluster).

ItemResolver Convert into an object representing that item.ItemIdentity

IssueEventBridge Listen for or report issue events.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/StructureComponents.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/structure/StructureManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/forest/ForestService.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/StructureAttributeService.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/row/RowManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/folder/FolderManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/generator/GeneratorManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/settings/StructureConfiguration.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/view/StructureViewManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/StructureSyncManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/backup/StructureBackupManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/structure/favorite/StructureFavoriteManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/property/PropertyService.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/property/StructurePropertyService.html

Structure Plugin for JIRA

Page of 260 370

Use ... to ...

StructureQueryParser Parse an S-JQL query.

StructureQueryBuilderFactory Build an S-JQL query via Builder pattern.

ProcessHandleManager Manage feedback page for asynchronous processes.

SyncAuditLog Access or manage Synchronization Audit log.

StructureJobManager Run a job asynchronously.

ScheduledJobManager Schedule a periodical job to run asynchronously (only on a single node in

a cluster).

3.3.3 Building Forest Specification

A forest specification, or , is a way for your code to identify the forest that you'd like to access. ForestSpec

The forest may come from different sources – it could be a structure, it could be a transformed (see page

 structure, it could be a result of query or some other types of forest source.73)

So the first step before you read or update a forest is to create an instance of ForestSpec. Here are some

examples of how you can do that.

Desired forest ForestSpec expression

Base Content

Structure #123

ForestSpec.structure(123)

Result of a JQL query

ForestSpec.sQuery("jql", "priority = Blocker")

Result of a text query

ForestSpec.sQuery("text", "text to find")

Adjusted Content

Structure #123, sorted by Priority

ForestSpec.structure(123).transform(

 CoreStructureGenerators.SORTER_ATTRIBUTE,

ImmutableMap.of(

Structure Plugin for JIRA

Page of 261 370

Desired forest ForestSpec expression

 "attribute", (Object) ImmutableMap.of("i

d", IssueFieldConstants.PRIORITY, "format", "ord

er")

 "desc", true

)

);

Structure #123, skeleton only (without dynamic

content) ForestSpec.skeleton(123)

Structure #123, with title row

ForestSpec.skeleton(123).withTitle()

More details are available in .Javadocs for ForestSpec

3.3.4 Reading Structure Content

Let's say you need to access a structure's content and export the hierarchy into your custom format or use

for displaying the hierarchy in your way. This scenario walks you through from having just a structure name

to iterating through the forest and learning which items are there.

We assume that your code has instance injected into StructureComponents myStructureComponents

field.

Figure out Structure ID
To address a structure, you need to know its ID. If you just have a name you can do the following:

List<Structure> structures = myStructureComponents.getStructureManager().getStructuresByName("My

Structure", PermissionLevel.VIEW);

long structureId;

if (structures.size() == 1) {

 structureId = structures.get(0).getId();

} else {

 // no structures or too many structures -- error?

}

Now you have or an error situation where the name does not uniquely identify your structureId

structure.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/forest/ForestSpec.html

Structure Plugin for JIRA

Page of 262 370

Create a ForestSpec
You need a forest specification to get a ForestSource. You can read more about this in the section about

.Building Forest Specification (see page 260)

ForestSpec forestSpec = ForestSpec.structure(structureId);

Note that this forest spec is going to be "secured" for the current user, which means that the

resulting forest will exclude the sub-trees that only contain items not visible to the user.

Retrieve ForestSource
A is an interface that produces some specific forest and that provides versioning for it.ForestSource

ForestSource forestSource = myStructureComponents.getForestService().getForestSource

(forestSpec);

Note that this call may produce in case a structure cannot be found and in some StructureException

other cases. A robust code would have some exception handling.

Do not store a in memory for a long time, longer than a single user request. ForestSource

Structure has internal caching engine that efficiently manages forest sources and their

dependencies. Request forest source from in every new request.ForestService

Retrieve Forest and its version
Forest source can provide you with the latest version of the forest, or with an incremental update, based on

the version you already have.

To get the latest forest:

VersionedForest versionedForest = forestSource.getLatest();

DataVersion latestVersion = versionedForest.getVersion();

Forest forest = versionedForest.getForest();

Note that variable contains the version of the forest that you got. You can later use it to latestVersion

call and receive only information about how did the forest forestSource.getUpdate(latestVersion)

change since the last time you've seen it.

Structure Plugin for JIRA

Page of 263 370

You cannot really use for anything else besides getting updates later. The latestVersion

numbers in that version bear no meaning regarding structure's history. For history queries, you'll

need to use .HistoryService

Iterate through Forest and get StructureRow instances
A is just two parallel arrays, one containing row IDs, the other containing depths. (Or, one can say Forest

that it is a list of pairs .) You can iterate through it via simple cycle.(rowId, depth)

For each row, you'll need more information than just row ID. We use to retrieve other RowManager

properties of a row.

RowManager rowManager = myStructureComponents.getRowManager();

for (int i = 0; i < forest.size(); i++) {

 long rowId = forest.getRow(i);

 int depth = forest.getDepth(i);

 StructureRow row = rowManager.getRow(rowId);

 ...

}

Note that is never , because Row Manager would through an unchecked exception if a row is not row null

found – this situation is considered a developer's error.

Analyze the row and process data
Finally, you get from the row to understand which item does the row show. The items could ItemIdentity

be anything – issues, folders, users. So even if your structure only contains issues, it is advised to do an

extra check.

 ItemIdentity itemId = row.getItemId();

 if (CoreIdentities.isIssue(itemId)) {

 long issueId = itemId.getLongId();

 // process the row!

 ...

 }

A structure with dynamic content will also contain generators. If you take all the rows, regardless of

the item type and use them somewhere, you might stumble upon a generator. To eliminate them

from the analyzed forest, add a condition. The same is usually done for "loop markers", which are

special items added by extenders to indicate that there's a loop (like cyclic issue links).

 ItemIdentity itemId = row.getItemId();

 if (!CoreIdentities.isGenerator(itemId) && !CoreIdentities.isLoopMarker(itemId)) {

 ...

 }

Structure Plugin for JIRA

Page of 264 370

Congratulations! You've successfully implemented forest read-out.

You can adjust this walkthrough for your needs – for example, read a query result, or read only a

portion of a forest.

3.3.5 Changing Structure Content

Updating a structure can be done through the same interface that was used for ForestSource Reading

. In this article, we're assuming that you've got local Structure Content (see page 261) forestSource

variable that you've created according to instructions in the previous article.

Forest Coordinates
To make a change to a forest, you need to be able to point to a specific part of a forest. This is done by

using row IDs, which uniquely identify forest rows.

To point to a specific row in the forest, which you'd like to move or delete, you just use this row's ID.

To point to a specific position in the forest, where you'd like to insert or move rows to, you need to

use row IDs of its neighbors, or :coordinates

"Under" coordinate is the row ID of the future parent of the inserted row, or zero if the row is

placed at the top level.

"After" coordinate is the row ID of the future preceding sibling of the inserted row under the

same parent, or zero if the row is placed as the first child.

"Before" coordinate is the row ID of the future succeeding sibling of the inserted row under the

same parent, or zero if the row is placed as the last child.

Applying Forest Action
To make a change, you need to call method, passing a specific forestSource.apply() ForestAction

that you want to apply.

Adding a single row
To add a single row to the forest, use constructed with the of the ForestAction.Add ItemIdentity

item associated with that row.

forestSource.apply(new ForestAction.Add(CoreIdentities.issue(10000), under, after, before))

Adding a sub-forest
To add multiple rows in one action, use that receives an .ForestAction.Add ItemForest

Structure Plugin for JIRA

Page of 265 370

ItemForest is a special container that is used to build a temporary forest with temporary rows, having

negative row IDs. The class provides information both about the hierarchy of inserted temporary rows (via

) and a mapping from the temporary row ID to the inserted .Forest ItemIdentity

To create an , you need to use either or ItemForest ImmutableItemForest ItemForestBuilderImpl

.

ItemForest itemForest = new ItemForestBuilderImpl()

 .nextRow(CoreIdentities.textFolder("My Issues"))

 .nextLevel()

 .nextRow(CoreIdentities.issue(10000))

 .nextRow(CoreIdentities.issue(10001))

 .build();

forestSource.apply(new ForestAction.Add(itemForest, under, after, before));

Removing a sub-tree
To remove a row, use and pass the row ID being removed.ForestAction.Remove

forestSource.apply(new ForestAction.Remove(LongArray.create(100, 101, 102)));

All sub-rows of the removed rows will be removed as well. If you need to keep them, apply

 on them first.ForestMove

Moving a sub-tree
To move a row with its sub-rows, use .ForestAction.Move

You can specify one or more row IDs, which can be from the different parts of the forest. Those rows will be

placed one after another at the specified position.

forestSource.apply(new ForestAction.Move(LongArray.create(100, 101, 102), under, after,

before));

Inspecting the Results
A call to will finish successfully if the operation has been completed and throw a ForestSource.apply()

 otherwise.StructureException

You can inspect the returned to get information about the of the action (more on ActionResult effects

effects below).

You can also use – it is a mapping from the temporary row ActionResult.getRowIdReplacements()

IDs, used when adding rows, to the newly assigned real row IDs, which are now part of the structure.

Structure Plugin for JIRA

Page of 266 370

Effects and Changing Dynamic Structures
You may have noticed that you can apply actions to any forest source, not necessarily a simple structure. It

can be a transformed structure, or even a transformed query. A structure can also contain dynamic parts,

created or adjusted by generators, and you can try to apply the actions that would affect these parts.

A successful action would produce one or more (represented in the as Effects ActionResult

). In simple case of changing a non-dynamic structure, it would be, unsurprisingly, a AppliedEffect

structure change. In case the action involves dynamic content, the effects may differ – but the general

concept is that, after the effect takes place, the updated (re-generated) structure will reflect the desired

action's result.

Here are some examples of the possible effects.

Action Effect

Adding rows to a static structure Structure is modified

Moving item X from group A to group B, where groups are

provided by a grouper by field F
 The value of F for X is changed from

A to B

Removing issue X from under issue Y, when previously X

was added automatically by a Links Extender using link type

L

 Link L: YX is deleted

Moving issue upwards when structure is sorted by Agile

Rank
 Issue's Rank is changed

Adding an issue to an arbitrary JQL query result StructureException is thrown – no way

to force an issue to be part of a JQL

result

Adding issue X under issue Y within the scope of a Links

Extender and when issue Y is "static" (not added by the

extender)

 StructureInteractionException is

thrown – there are two ways to interpret

this action

As generators are extensible and can be added by other plugins, the range of possible effects is not limited.

Note that in the last two examples the action is not successful. In the last example, you need to use

 with parameters, which would define whether a generator should process the ForestSource.apply()

action or if the issue should be inserted into the static structure.

Concurrency and Atomicity
Each can be viewed as a separate transaction. It is atomic, meaning that it is either fully ForestAction

successful or fully failed.

There's no way to make a transaction larger. In other words, if you apply two actions to a forest source, it is

possible that a concurrent action, done from another thread, is executed in between your two actions.

Structure Plugin for JIRA

Page of 267 370

Permissions
All actions are executed under the "current" user and with all necessary permission checks. Updating a

structure requires permission on the structure. Other effects, like changing issue fields, would require EDIT

 permission on the subject issues.EDIT_ISSUE

When permissions are insufficient, the action will not succeed and a will be thrown.StructureException

When it comes to effects applied by generators, it is a generator's responsibility to check

permissions before applying an action. All generators bundled with Structure have strict

permission checks.

The current user is generally managed by JIRA and is the same as the user who makes the request.

However, you can use class to "sudo" to another user or to bypass permission checks StructureAuth

altogether.

3.3.6 Loading Attribute Values

You may need to load the same values that Structure shows on the Structure Board, especially if it's a total

value, progress value or other Structure-specific value. This is done via .StructureAttributeService

About Attributes
One of the core concepts in Structure is the Attribute abstraction. An attribute is something that can provide

a value of specific type and meaning for any row in a forest.

For example, a "Summary" attribute would produce the value of Summary field for issues, the name of a

folder for folders and a person's full name for users. Some attributes may be applicable only to certain item

types and would provide empty value for all other items.

Besides item-based attributes, which provide values that depend only on the item in the forest, there are

forest-based attributes – aggregates and "propagates", which are calculated based on the whole forest and

items in it.

Forests and Attributes are two main concepts that make up the Structure grid. Looking at the

Structure Board, you see Forest in the vertical direction – rows and hierarchy are taken from

Forest, and you see Attributes in the horizontal direction – all columns load Attributes from the

server and display those values.

Structure Plugin for JIRA

Page of 268 370

General Approach to Loading Values
Let's assume that, after , you have Reading Structure Content (see page 261) StructureComponents

instance and an instance of for a forest. We can read a number of attributes for a number of ForestSpec

rows by going to StructureAttributeService.

Figure out which Attributes do you need
The service accepts multiple attribute specs in one request. If you need several attributes calculated – it's

better to do that in one request.

List<AttributeSpec<?>> attributeSet = new ArrayList<>();

attributeSet.add(CoreAttributeSpecs.KEY);

attributeSet.add(CoreAttributeSpecs.SUMMARY);

attributeSet.add(CoreAttributeSpecs.TOTAL_REMAINING_ESTIMATE);

CoreAttributeSpecs class contains some of the most popular attributes. However, it's likely that you'll

need to build you own attribute specification. For example, to address a numeric JIRA custom field and

calculate total of that field based on sub-issues, you'll need the following.

AttributeSpec<Number> customField =

 AttributeSpecBuilder.create("customfield", ValueFormat.NUMBER).params().set("fieldId", 10000).

build();

AttributeSpec<Number> customFieldTotal =

 AttributeSpecBuilder.create(CoreAttributeSpecs.Id.SUM, ValueFormat.NUMBER).params().

setAttribute(customField).build();

attributeSet.add(customFieldTotal);

Figure out which Rows do you need to calculate the Attributes for
For example, this could be all rows in that structure.

LongList rows = myStructureComponents.getForestService().getForestSource(forestSpec).

getLatest().getForest().getRows();

If you need to create a manually, use implementation.LongList LongArray

Call StructureAttributeService
This service calculates a matrix of values for each row and attribute you specify.

VersionedRowValues values = myStructureComponents.getAttributeService().getAttributeValues

(forestSpec, rows, attributeSet);

Structure Plugin for JIRA

Page of 269 370

There is a variation of method that accepts a , rather than getAttributeValues() Forest

. It is recommended to use the variant that accepts whenever possible, ForestSpec ForestSpec

because that variant uses caching.

Read out the result
The returned object contains values for all pairs of requested row and requested attribute.

for (LongIterator ii : rows) {

 String key = values.get(ii.value(), CoreAttributeSpecs.KEY);

 Number total = values.get(ii.value(), customFieldTotal);

 ...

}

3.3.7 Creating and Adding Folders

You may need to create a new folder and add it to a structure.

Folders and generators are items that are managed entirely by Structure add-on, so you'll need to use

Structure's services to create the item first, giving you the item identify, and then insert a row into a forest.

Read more about for general ideas about updating a structure.Changing Structure Content (see page 264)

Create the Folder entity

long folderId = myStructureComponents.getFolderManager().createFolder(Folder.named("My Stuff").

build());

The folder is now stored in the database.

Define folder's identity

ItemIdentity itemId = CoreIdentities.folder(folderId);

Add folder to structure

forestSource.apply(new ForestAction.Add(itemId, 0, 0, 0));

3.3.8 Creating Dynamic Structures

Structures may have dynamic content, produced by generators.

Structure Plugin for JIRA

Page of 270 370

Generators can be added to structure and moved around in the same way other items are added, as

described in . A generator will have effect on the whole sub-tree Changing Structure Content (see page 264)

under its parent.

Generators are a separate entities, managed by Structure add-on. So to create a dynamic structure, we

need to create a generator first and then insert it into the structure.

Create generator instance
You create a generator instance by calling .GeneratorManager

long generatorId = myStructureComponents.getGeneratorManager().createGenerator(

 CoreStructureGenerators.SORTER_AGILE_RANK,

 ImmutableMap.of(CoreGeneratorParameters.SORT_DESCENDING, false),

 structureId);

Note the third parameter – the generator is "owned" by a structure, so we should pass the ID of the owning

structure.

Insert generator into the forest
Find parent row under which you'd like the forest to be automated. To apply generator to the whole forest

insert generator at the top level by making "under" coordinate zero.

Do not use "after" and "before" coordinates unless you are adding an Inserter.

forestSource.apply(new ForestAction.Add(CoreIdentities.generator(generatorId), under, 0, 0));

This is it! Next time you read the contents of this forest source, it will have the results of this

generator applied.

3.4 Extending Structure Functionality

You can extend Structure add-on's functionality with your own add-on by using one of the available

extension points.

Structure plugin has a lot of extension points. More extensive documentation is coming with the

future versions. It will cover the following topics:

Adding new item types, which can be used in a structure

Adding new generators, which can build dynamic structures (Inserters, Extenders, Filters,

Groupers and Sorters)

Adding new attributes, displaying them in the Structure grid or using for sorting or grouping

Adding new structure templates

Structure Plugin for JIRA

Page of 271 370

Adding new constraint function to S-JQL

Adding actions to Manage Structure page

Adding toolbar elements to the Structure Board

If you're interested in these topics but cannot find documentation or need help, please write to

 and we'll provide advice.support@almworks.com

3.4.1 Creating a New Column Type

In this tutorial we will develop the Status Bar column type, which shows a progress-like bar filled with color

stripes, each stripe's color representing a particular issue status, and each stripe's width being proportional

to the number of issues having that status in the current issue's subtree.

You can download both the compiled plugin and its source code from API Usage Samples (see

.page 335)

The Plan
A column type consists of several components. The client-side components are written in JavaScript and

have two responsibilities:

Rendering the cells in the Structure widget.

Providing the column configuration UI.

The server-side components are written in Java and responsible for:

Structure Plugin for JIRA

Page of 272 370

Providing the attributes needed by the client-side part to render the cells.

Exporting the column into printable HTML and Microsoft Excel formats.

For the Status Bar column we'll need to write code to cover all of the above responsibilities.

In general, however, only the client-side part is strictly necessary. If the attributes provided by Structure (see

 are enough for your column, you can skip the server-side attribute provider. You can also skip page)

the components related to export, if this functionality is not critical. In that case, you can jump straight to the

, consulting the other chapters as necessary. For the complete treatment, client-side part (see page 275)

please continue reading from top to bottom.

The Attributes
Before we begin, let's decide which attributes we need to pass from the server side to render a status bar.

Obviously, the status bar depends on the statuses of all the issues in the given issue's subtree. This

suggests that we need to use an "aggregate" attribute, and because Structure does not provide such an

aggregate out of the box, we'll need to write our own.

Secondly, the colors and the order of statuses in the status bar are only a presentational matter. If we had a

map from status IDs to sub-issue counts in the given issue's subtree, we could count the total number of

sub-issues, scale the colored stripes so that they'd fill the whole status bar, and render them in any given

order.

Thirdly, the "Include itself" option is somewhat trickier. When it's on, the current issue's status is shown in its

status bar, as if there is one more sub-issue. When it's off, the current issue is excluded, and the status bar

shows only its sub-issues (on all levels). We could try to implement this on the server side as a separate

aggregate, however, this approach has a couple of drawbacks:

When the user toggles the checkbox, Structure will have to calculate a new aggregate and transfer

the results. Because the aggregate values are cached on the server side, and issue data values are

cached on the client side, on both sides we'll have increased memory consumption.

Because of the way the aggregates are calculated and cached on the server side, the aggregate for

the option turned off will be somewhat more difficult to write, and use a more complex data structure.

So, we'll do things differently, and use a single, simpler, aggregate, calculating the data with the "Include

itself" option turned on. If it's off, we'll adjust the data on the client side. To do that, we'll need another piece

of data – the status ID for the current issue, but that can be provided by Structure itself, and the overhead of

requiring it is less than that of a separate aggregate.

AttributeSpec for Status Bar
Once we understood which attributes will our JavaScript code need, we have to define or find the

appropriate attribute specifications for it.

Our status bar is going to be a new attribute, so we need to create an . The ID for this spec AttributeSpec

should be something unique to our add-on. And the format should be a generic , because JSON_OBJECT

we're going to transfer a bunch of data back to the client rather than just a single value.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/AttributeSpec.html

Structure Plugin for JIRA

Page of 273 370

public static final AttributeSpec<Map<String, Integer>> STATUS_BAR

 = new AttributeSpec("com.almworks.statusbar", ValueFormat.JSON_OBJECT);

We don't need any parameters for this attribute specification – regardless of column configuration, we'll

always load the same attribute.

The value will be the map from the Status ID to the number of cases that status is encountered in the sub-

tree, including the parent issue.

As for the status ID of the current row, we'll use .CoreAttributeSpecs.STATUS_ID

Status Bar Attribute
Now that we know which attribute we need to implement, let's write a loader of that attribute. A loader is an

instance of that loads specific attributes for a specific request.AttributeLoader

We need to start by looking for the most convenient base class for our loader. It seems that

 is the best, because:AbstractDistinctAggregateLoader

It is already a loader for an aggregate,

It addresses the problem of having multiple issues in the same sub-tree more than once – obviously,

we don't want to count such issue's Status twice.

As the loader does not have any other parameters, we'll only need a single instance, which we'll keep in a

 field.static final

private static final AttributeLoader<Map<String, Integer>> LOADER = new StatusBarLoader();

Our loader will have a dependency on the attribute. Structure will CoreAttributeSpecs.STATUS

guarantee that the dependency attributes are loaded before our loader is asked to do its calculation.

It is recommended that aggregates and propagates did not access items directly, but rather

declared dependency on other attributes. In this way, if another developer extends the applicability

of those dependency attributes to a new type of items, they will immediately get a working

aggregate attribute that you wrote, even though you didn't know about the new item type at

development time.

The calculation of the result is pretty straightforward. The base class,

, defines two methods for building recursive value: AbstractDistinctAggregateLoader

 provides a single value for a single row and accumulates the provided getRowValue() combine()

values.

As a result for a single row, we create a map with just one record: the issue's status is mapped to 1.

If status is missing (as would be the case for non-issues), we just return null.

As a combination function we will implement map merge that combines counters.

Finally, we return an immutable copy of the map.result

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/loader/AttributeLoader.html

Structure Plugin for JIRA

Page of 274 370

StatusBarAggregate.java

 private static class StatusBarLoader extends AbstractDistinctAggregateLoader<Map<String,

Integer>> {

 public StatusBarLoader() {

 super(STATUS_BAR);

 }

 public Set<? extends AttributeSpec<?>> getAttributeDependencies() {

 return Collections.singleton(STATUS);

 }

 protected Map<String, Integer> getRowValue(AggregateContext<Map<String, Integer>> context) {

 Status value = context.getValue(STATUS);

 return value == null ? null : Collections.singletonMap(value.getId(), 1);

 }

 protected Map<String, Integer> combine(Collection<Map<String, Integer>> values,

AggregateContext<Map<String, Integer>> context) {

 HashMap<String, Integer> r = new HashMap<>();

 for (Map<String, Integer> map : values) {

 if (map != null) {

 for (Map.Entry<String, Integer> e : map.entrySet()) {

 Integer count = r.get(e.getKey());

 if (count == null) {

 count = 0;

 }

 r.put(e.getKey(), count + e.getValue());

 }

 }

 }

 return r;

 }

 }

Attribute Provider
Attribute providers are registered as modules in the plugin descriptor, and their instances are created by the

JIRA module system. If the attribute provider "recognizes" the attribute specification and can serve it, it must

return a non-null instance. Because our implementation is AttributeLoader StatusBarLoader

stateless and has no parameters, we can reuse the single instance, but a configurable data static final

provider could create and return new loaders for each call. The returned loader will then be called once for

each item needed to display the Structure grid (or its visible part).

StatusBarDataProvider.java

public class StatusBarAttributeProvider implements AttributeLoaderProvider {

 private static final AttributeSpec<Map<String, Integer>> STATUS_BAR = new AttributeSpec("com.

almworks.statusbar", ValueFormat.JSON_OBJECT);

 private static final AttributeLoader<Map<String, Integer>> LOADER = new StatusBarLoader();

 public AttributeLoader<?> createAttributeLoader(AttributeSpec<?> attributeSpec, @NotNull

AttributeContext context)

Structure Plugin for JIRA

Page of 275 370

 throws StructureProviderException

 {

 if (STATUS_BAR.getId().equals(attributeSpec.getId())) {

 return LOADER;

 }

 return null;

 }

}

When the data provider is ready, we register it in the plugin descriptor.

atlassian-plugin.xml

<structure-attribute-loader-provider key="alp-sbcolumn" name="attribute-loader:Status Bar

Column"

 class="com.almworks.jira.structure.sbcolumn.

StatusBarAttributeProvider"/>

Client-Side Column
We now come to the most visible part of the column – the client-side JavaScript code, responsible for

rendering the cells of the Structure grid and showing the column configuration UI. Having almost 400 lines

of JavaScript, the code is too long to be reproduced in its entirety. We advise you to download the API

examples source code from the page and open from API Usage Samples (see page 335) sbcolumn.js

the sample plugin in your favorite editor.status-bar-column

First, we'll take a high-level overview of the API and look at a few common concepts – column

specifications, column context, and the metadata. After that we'll discuss each of the API classes and their

implementations.

API Overview
The whole API is accessible through the global window.almworks.structure.api (see page 323)

object. There are a few utility functions and four main classes that the developer needs to extend (by using

the function) in order to create a fully-functional column. These classes are linked api.subClass()

together by the , which is a JSON object representing all of the column's parameters. column specification

Column specifications are discussed in detail in the following section. Now let's overview the classes and

functions.

Class or Function Description

api.ColumnType (see

page 333)

The is the gateway between Structure and your code. The column type

column type is registered with Structure and has the following responsibilities:

creating column presets for the "Add Column" menu;

creating the column preset used when switching to your column type

from a different type;

creating and instances for given Column ColumnConfigurator

column specifications.

Structure Plugin for JIRA

Page of 276 370

api.Column (see page

325)

The is responsible for value rendering. It creates the HTML for the column

widget cells and controls the column's name and width. It can require one or

more attributes to be downloaded from the server for the rendered rows.

api.

ColumnConfigurator

(see page 330)

The is responsible for the column configuration panel as a configurator

whole. Its most important task is to create instances.ColumnOption

api.ColumnOption

(see page 331)

The is the workhorse of the configuration UI, corresponding to a single option

"row" of the configuration panel. It is responsible for creating the input

elements and routing changes between them and the specification.

api.

registerColumnType

(columnType,

columnKey)

Registers a column type with the Structure, making it responsible for handling

the given column key (see below).

api.

registerColumnGroup

(parameters)

Registers a new group in the Add Column menu.

Column Specifications
A is a JSON object representing the complete configuration of a Structure widget column specification

column. Column specifications are stored as parts of view specifications. Each , Column

 and instance has its own current specification, accessed via ColumnConfigurator ColumnOption

. A is given a column specification when Structure wants it to create a or this.spec ColumnType Column

a . also creates column specifications for column presets. Finally, ColumnConfigurator ColumnType

column specifications are passed to the export renderer providers on the server side (see below).

Do not confuse column specifications with attribute specifications. A column is a higher-level

concept and may require multiple attributes (as is the case with our Status Bar column).

Here is an example of a Status Bar column specification.

{ "csid": "7",

 "key": "com.almworks.jira.structure.sbcolumn",

 "name": "Status Bar",

 "params": {

 "statuses": ["1", "3", "4", "5", "6", "10000"],

 "colors": ["#fcaf3e", "#fce94f", "#ef2929", "#8ae234", "#ad7fa8", "#729fcf"],

 "includeItself": true }}

Structure Plugin for JIRA

Page of 277 370

Key Description

csid The ("column sequential ID") is a string that uniquely identifies a column within a view. CSID

CSIDs are assigned and managed by Structure, and should not bother you as a column

developer. Do not change a column's CSID!

key The is a string identifying the column type. Structure uses the key to decide which key

 or to use for a particular column. The key is ColumnType ExportRendererProvider

required.

name The column is shown in the column header. The name is often omitted from the name

specification, in which case a default name is generated for the column.

params This is a JSON object containing the column's parameters. The layout of this object is up to the

column developer. In the example we see two parallel arrays for the selected status IDs and

their colors, and a for the "Include itself" option.boolean

The Column Context
A is a JavaScript object providing various kinds of information about the environment, in column context

which columns and their configurators operate. It is not to be confused with the somewhat similar in

purpose, but unrelated on the server side. When Structure makes requests to the AttributeContext

, it passes the context as a parameter. Each , or ColumnType Column ColumnConfigurator

 instance has its own current context, accessed via . The table below ColumnOption this.context

describes the methods of the column context.

Method Description

structure.

isPrimaryPanel()

Returns if the column belongs (or will belong, for presets) to the primary true

panel of the Structure widget.

structure.

isSecondaryPanel()

Returns if the column belongs (or will belong, for presets) to a true

 of the Structure widget.secondary panel (see page 78)

structure.

isStructureBoard()

Returns if the current widget is on the Structure Board page.true

structure.

isIssuePage()

Returns if the current widget is in the Structure section of an issue true

page.

structure.

isGadget()

Returns if the current widget is embedded in a Structure gadget.true

structure.

isLocalGadget()

Returns if the current widget is embedded in a Structure gadget (i.true local

e. a gadget provided and rendered by the same server).

structure.

isRemoteGadget()

Returns if the current widget is embedded in a Structure gadget true remote

(i.e. a gadget provided and rendered by different servers).

Structure Plugin for JIRA

Page of 278 370

Method Description

structure.

isGreenHopperTab()

Returns if the current gadget is in the Structure section of an Agile true

(GreenHopper) board.

structure.

isProjectPage()

Returns if the current gadget is in the Structure tab of a project page.true

jira.

getAllIssueFields()

Returns an array of JSON objects representing available JIRA issue fields.

jira.

getIssueFieldById

(fieldId)

Returns a JSON object representing the JIRA issue field with the given ID, or

 if there is no such field.undefined

getMetadata(key) Returns the metadata object associated with the given . See the section key

below for the description of metadata.

In our column we'll use .context.getMetadata()

Requesting and Using Metadata
Metadata, in the context of the column API, is any data needed by column types, columns, and

configurators to to do their duties, except for attributes. For example, the Status Bar column needs to know

the IDs and names of all the issue statuses in order to render tooltips and create presets – this is metadata.

Structure provides some metadata by default – the and getAllIssueFields() getIssueFieldById()

methods of the column context are examples, but you can load more via AJAX by issuing metadata

.requests

Metadata is requested by overriding one or more of the methods in , , and ColumnType Column

 classes. Let's look at an example from the Status Bar column type:ColumnConfigurator

sbcolumn.js

getMetadataRequests: function() {

 return {

 status: {

 url: baseUrl + '/rest/api/2/status',

 cacheable: true,

 extract: function(response) {

 var result = { order: [], names: {} };

 if ($.isArray(response)) {

 response.forEach(function(status) {

 result.order.push(status.id);

 result.names[status.id] = status.name;

 });

 }

 return result;

 }

 }

 };

}

Structure Plugin for JIRA

Page of 279 370

The method is supposed to return a JavaScript object. Each key in that object will become a metadata key

for obtaining the corresponding result from the column context. In this example, the status-related metadata

object will be obtained by calling .context.getMetadata('status')

The values in the returned object are request specifications. Let's look at the request properties:

The property is the URL to be requested. Here we call a JIRA REST API method that returns all url

available issue statuses. Don't forget the JIRA base URL!

The property is an opt-in mechanism for response caching. If a metadata request is cacheable

cacheable, and this URL has already been requested (e.g. by a different column type), the previous

response will be used instead of making a new AJAX request. You should declare your requests

 to conserve traffic and improve responsiveness.cacheable whenever possible

The property is the function that receives the response and produces the value stored in extract

the metadata map. If omitted, the response is stored unchanged. In the example, we convert the

resulting array of JSON objects into an array of status IDs and a map from status IDs to status

names.

You can add any other properties supported by to the request specification. jQuery.ajax()

Remember, though, that the jQuery success and error handlers will not be called for cacheable

requests if a cached response is used.

Different metadata may be required for different operations. Therefore, there are several methods in the API

that you can override to request metadata:

A column type may request metadata to be able to:

create column presets – ;ColumnType.getPresetMetadataRequests()

create columns from specifications – ;ColumnType.getColumnMetadataRequests()

create configurators from specifications – ;ColumnType.getConfigMetadataRequests()

do all of the above – , the "catch-all" method.ColumnType.getMetadataRequests()

A column may need metadata to render its values – .Column.getMetadataRequests()

A configurator may need metadata to set up the UI – ColumnConfigurator.

.getMetadataRequests()

Please note that the corresponding type-level metadata is also available to the columns and configurators

created by the type. So, for example, there is no need to issue requests in both the same ColumnType.

 and , the former alone will getColumnMetadataRequests() Column.getMetadataRequests()

suffice.

Structure will delay loading the metadata for as long as possible. For example:

the metadata for a column will not be loaded unless there is a column in the widget that needs it;

the metadata for creating column presets will not be loaded until the user clicks "Add Column" or

"Edit Column" icons;

and so on.

Structure Plugin for JIRA

Page of 280 370

Structure guarantees that the metadata request will be completed by the time it calls your type, column, and

configurator methods (obviously, except for the methods themselves). If the getMetadataRequests()

requests succeed, the metadata will be available in the column context. If they fail, the corresponding

metadata will be , but the methods will still be called, and they should not fail in that case.undefined

Column
The class is responsible for rendering the cells of the Structure grid. Please refer to the api.Column

 for the list of methods that you can override. The Column class reference (see page 325)

 class in overrides four methods.StatusBarColumn sbcolumn.js

getDefaultName() simply returns a localized string as the column name when the name is not present in

the column specification. A more involved column could use its specification, context, or metadata to

determine the default column name.

canShrinkWhenNoSpace() allows Structure to make the column narrower than its minimum width when

the widget is very low on horizontal space. Because we do not override any other sizing-related methods,

the column will be resizable, with the default and minimum width of 120 and 27 pixels, respectively.

Autosizing will not be applied to it, because there is no variable-size content, so autosizing makes no sense.

collectRequiredAttributes() always requests the status bar aggregate data from

. If the "Include itself" option is off, it additionally requests the status ID of StatusBarAttributeProvider

the current issue, which is provided by Structure as { . The main attributes id:'status',format:'id'}

are also available from object.require('structure/widget/attributes/Attributes')

getSortAttribute() is used to specify the attribute for sorting when the user clicks on the column

header.

getCellViewHtml() returns the actual HTML for the cells. It obtains the serialized status bar map from

the , deserializes it, adjusts for the "Include itself" option, if necessary, distributes the renderParameters

full status bar width of 100% among the selected statuses according to their issue counts, and finally

generates and returns the status bar HTML code as a string. Please refer to the source code for the

implementation details.

Please note, that for simple columns, displaying textual information, we advise you to override

 instead, and let Structure take care of the boilerplate HTML surrounding your getCellValueHtml()

value. However, since we want the Status Bar to look similar to Structure's Progress Bar, we need to

override a higher-level method and mimic the Progress Bar HTML layout.

ColumnConfigurator
The class is responsible for the column configuration UI. api.ColumnConfigurator (see page 330)

Because most of the work is delegated to instances (see below), the configurators ColumnOption

themselves are usually quite simple. Let's look at in its entirety.StatusBarConfigurator

sbcolumn.js

var StatusBarConfigurator = api.subClass('StatusBarConfigurator', api.ColumnConfigurator, {

 init: function() {

 this.spec.key = COLUMN_KEY;

Structure Plugin for JIRA

Page of 281 370

 this.spec.params || (this.spec.params = {});

 },

 getColumnTypeName: function() {

 return AJS.I18n.getText("sbcolumn.name");

 },

 getGroupKey: function() {

 return GROUP_KEY;

 },

 getOptions: function() {

 return [new StatusesOption({ configurator: this }), new IncludeItselfOption({ configurator:

this })];

 }

});

The constructor, simply sanitizes the current column specification.init()

getColumnTypeName() returns the human-readable name for the column type. This name is used in the

"Type" drop-down of the column configuration panel. You can also override to getDefaultColumnName()

generate column names if the type name cannot always be used as the default column name.

getGroupKey() returns the key of the group in the "Add Column" menu that will contain this preset. See

the sections on and below.ColumnType (see page 282) column groups (see page 284)

getOptions() creates and returns an array of instances that create input controls for the ColumnOption

column configuration panel and route events. Please note how the configurator instance is passed to each

option's constructor – this is crucial. The order of the options in the resulting array is also important – the

rows of the configuration panel will be created in that order.

Although the methods of always return the same values, this is not a StatusBarConfigurator

requirement. The result of any of the methods can depend on the current column specification () this.spec

and metadata.

ColumnOption
Each instance is responsible for editing a single logical "part" of the api.ColumnOption (see page 331)

column specification, and corresponds to a single "row" of the column configuration panel. The option

creates the actual input elements and sets up event handlers to transfer the values between the inputs and

its column specification. An option can hide itself if it's not applicable to the current specification. Also, each

option can prohibit saving the column configuration if it considers the current specification invalid – see

 method in the class reference.isInputValid()

Status Bar column has two options:

StatusesOption is responsible for status selection, colors, and ordering. It "owns" the statuses

and arrays of a Status Bar column specification. This option is somewhat more involved than colors

the next one, but you can still refer to its source code in .sbcolumn.js

IncludeItselfOption is responsible for the "Include itself" checkbox and "owns" the

 specification parameter. This is one of the simplest options imaginable, so we'll includeItself

look at its code in detail.

Structure Plugin for JIRA

Page of 282 370

sbcolumn.js

var IncludeItselfOption = api.subClass('IncludeItselfOption', api.ColumnOption, {

 createInput: function(div$) {

 this.checkbox$ = div$.append(

 AJS.template('<div class="checkbox"><label><input type="checkbox"> {label}</label><

/div>')

 .fill({ label: AJS.I18n.getText("sbcolumn.include-itself") })

 .toString()).find('input');

 var params = this.spec.params;

 this.checkbox$.on('change', function() {

 if ($(this).is(':checked')) {

 params.includeItself = true;

 } else {

 delete params.includeItself;

 }

 div$.trigger('notify');

 });

 },

 notify: function() {

 this.checkbox$.prop('checked', !!this.spec.params.includeItself);

 return true;

 }

});

Because the option class specifies no and doesn't override , there is no label to the title createLabel()

left of the checkbox.

The method creates the checkbox and sets up event handling. It is passed a jQuery createInput()

object to append the input elements to.

Please note that Structure column configuration panels use the HTML layout (with modified CSS AUI Forms

styles). You should use the same layout in your HTML code to make your options look consistent with

Structure's. In the example above, the checkbox is wrapped in a element to <div class="checkbox">

comply with AUI Forms.

Also note how the event handler of the checkbox modifies the current specification parameters and change

always triggers a event on the provided jQuery object. These are the crucial parts of the option notify

contract.

The method is called whenever the current specification changes. Its job is to transfer the data in notify()

the opposite direction – from the specification to the input elements. This method also decides whether the

option is applicable – if it returns a "falsy" value, the option's row on the configuration panel is hidden from

the user.

ColumnType
The class is the main entry point used by the Structure plugin to call api.ColumnType (see page 333)

your client-side column code. A column type instance creates column presets, columns, and configurators.

To find the complete source code for the Status Bar column type, please open from the sbcolumn.js API

 in your favorite editor and scroll to the class definition.example sources (see page 335) StatusBarType

https://developer.atlassian.com/display/AUI/Forms

Structure Plugin for JIRA

Page of 283 370

The method declares the column-level metadata request to load the available getMetadataRequests()

issue statuses from JIRA. See above for details.Requesting and Using Metadata (see page 278)

The method creates a single column specification, which is used as a createSwitchTypePreset()

preset when the user selects our type in the "Type" drop-down on the column configuration panel.

Note the call to the function that checks that the preset is needed for the primary panel isAvailable()

and that the status metadata is indeed available. If that check fails, the method returns , making it null

impossible to switch to the Status Bar column type. You can try it yourself – open the Search Result

secondary panel, add any column to it and try to change its column type. You should see that the Status Bar

type is not available.

The switching preset doesn't have to be fully configured, because the configuration panel is already open

when it's used. However, because the Status Bar column configuration is quite complex, we make an extra

effort and pre-populate the preset with all the known statuses and some default colors for them. This way

the user will quickly see what a status bar looks like without having to configure anything at all. This tactic

can be useful for other columns with a lot of parameters.

The method creates an array of column specifications that will be used as createAddColumnPresets()

presets in the "Add Column" menu. Unlike the "switch" preset above, these presets must be completely

configured. Like , this method calls first, so a Status Bar createSwitchTypePreset() isAvailable()

column cannot be added to a secondary Structure panel.

Because the "Add Column" menu is the first place where the user discovers your column type, it would be

best if your presets are interesting and cover the whole range of the type's functionality. It's not easy to be

creative with the Status Bar column though, unless we know the semantics of statuses, which can be

arbitrary. So, for simplicity adds only a single preset to the "Add Column" menu, reusing StatusBarType

the "switch" preset, which is fully configured.

Besides the usual , , and , the "add" presets can have two special properties:key name params

presetName is a string that specifies the name of the preset in the "Add Column" menu. This name

will be used , the added column will have either the from the specification or only in the menu name

the default name generated for it. If omitted, the column name will be used as the preset name.

shouldOpenConfigurator – if this flag is set to , the column configuration panel will open true

immediately after adding the column with this preset. This can be used to create a "Custom..." kind of

preset that lets the user explore the available options.

The and methods return a or a createColumn() createConfigurator() Column

 for the given specification, respectively. The methods are similar – they check ColumnConfigurator

whether the type is available and the given specification is valid, and if both checks succeed, they

instantiate the appropriate subclass. Please note how the column context and the specification are passed

to the constructors, this is crucial.

Finally, at the end of the script we instantiate and register our column type, making it available to Structure:

sbcolumn.js

api.registerColumnType(new StatusBarType(), COLUMN_KEY);

Structure Plugin for JIRA

Page of 284 370

Structure will use our column type instance to handle the columns with the given key. You can also pass an

array of keys as the second argument, to associate your type with more than one column key.

Column Groups
Column groups are used to organize column presets in the "Add Column" menu. Each group has a string

key and a human-readable name. Column configurator's method should return the getGroupKey()

appropriate group key for its preset specification.

Structure specifies four column groups for its built-in columns – , , , and . fields icons totals progress

For the Status Bar column we will register a separate column group:

sbcolumn.js

api.registerColumnGroup({ groupKey: GROUP_KEY, title: AJS.I18n.getText("sbcolumn.name"), order:

1000 });

The parameter determines the position of the group within the menu. The higher the order, the lower order

the group will be. Structure's predefined groups have order between 100 and 400, inclusive.

Web Resources and Contexts
You need to register your JavaScript and CSS code as a web resource in the plugin descriptor. The Status

Bar column has no CSS of its own, and all of its JavaScript code is in a single file, . Because sbcolumn.js

we use the Structure JavaScript API and the function from the Atlassian API, we need to AJS.template()

declare two dependencies. We also declare a resource transformation to make AJS.I18n.getText()

calls work.

atlassian-plugin.xml

<web-resource key="wr-sbcolumn" name="web-resource:Status Bar Column">

 <dependency>com.atlassian.auiplugin:ajs</dependency>

 <dependency>com.almworks.jira.structure:widget</dependency>

 <transformation extension="js">

 <transformer key="jsI18n"/>

 </transformation>

 <resource type="download" name="sbcolumn.js" location="js/sbcolumn/sbcolumn.js"/>

 <context>structure.widget</context>

</web-resource>

We use web resource context to make our JavaScript (and CSS, if we had any) load structure.widget

on Structure Board. It also works for the Structure's Dashboard Gadget. However, if you'd like your column

to work on other pages – Project page, Issue page or Agile Board page, you need to include other web

contexts too – see .Loading Additional Web Resources For Structure Widget (see page 288)

Export Renderers
Any structure can be exported into printable HTML and Microsoft Excel formats. Exporting is different from

rendering the Structure widget in several aspects:

Structure Plugin for JIRA

Page of 285 370

It is entirely a server-side task, so the code is written in Java.

The data needed for exporting need not be transferred over the network and cached.

The export result need not be updated as the exported issues or structure change.

There are two distinct formats, or media, that are quite different from each other. More formats may

be added in the future.

It is because of these differences, that the exporting architecture and APIs are different from their widget

rendering counterparts, being simpler in some aspects and more complex in others, while quite similar

overall, sometimes making it non-trivial to avoid "repeating yourself".

Please refer to the for an overview of the export API and SPI. In short, to export a column, you javadocs

need to write and register an , that would recognize the column specification and export renderer provider

return an instance for the given column and export format. The returned renderer will then export renderer

be given an instance to configure and instances to render the values. The export column export cell

 and instances will provide all the data, including the required attributes.export context export row

Speaking of the interfaces that must be implemented, is analogous to ExportRendererProvider

, and is a mixture of and the client-AttributeLoaderProvider ExportRenderer AttributeLoader

side .Column (see page 325)

Export Strategies
The main difficulty with export is having different output formats with different features. For example, if you

have a method for converting a value to HTML, you could reuse it for the printable HTML export. But when

exporting to Excel, HTML support is very limited, and if your values correspond to one of Excel's data types,

e.g. date, you need to set an appropriate column style. On the other hand, if you have a simple plain-text

column, the format doesn't matter – you can have a single export renderer that calls on any setText()

type of cell.

The export SPI is flexible, and allows you to use different strategies for different column types. There are

three basic kinds of export renderer providers.

A declares which particular export format it supports in the plugin specific renderer provider

descriptor. It is parameterized with the expected column and cell types, and returns similarly

parameterized renderers, that use format-specific methods.

A does not declare an export format in the plugin descriptor, so its generic renderer provider

priority is lower than that of a specific renderer provider. It returns generic renderers, that only call the

methods of the basic and interfaces. Though limited, such a provider ExportCell ExportColumn

will work for any other export format that may be added in the future.

A either declares no supported formats (like a generic provider), or multi-format renderer provider

declares multiple supported formats. It is not parameterized with specific cell and column types, but it

keeps track of the current export format, and its renderers may call format-specific methods by

casting the given column and cell instances to the appropriate types. Though more difficult to write, a

multi-format provider can combine the benefits of generic and specific providers and help avoid code

duplication.

Exploring the extremes, we will create two export renderer providers for the Status Bar column. The first will

be a generic provider, that will present the data as plain text instead of drawing a progress bar. The second

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/export/package-summary.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/export/ExportRendererProvider.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/export/ExportRenderer.html

Structure Plugin for JIRA

Page of 286 370

one will be an advanced Excel provider that will use the underlying low-level Apache POI API to draw

pseudo-graphic progress bars in Excel cells.

Generic Renderer Provider
The class in the example plugin source contains StatusBarRendererProvider status-bar-column

both the generic provider and its renderer. The code is quite long, but that's mostly due to defensive checks

and the general verbosity of Java. The operation of both the provider and the renderer is quite straight-

forward.

The provider's method does the following:getColumnRenderer()

Checks that the given column specification indeed represents a Status Bar column, just in case.

Obtains the column name form the specification, generating a default name if there is none.

Extracts the array and the flag from the specification parameters. statuses includeItself

These are needed for rendering.

Creates and returns an instance of the inner class, passing it the column StatusBarRenderer

name and parameters.

The renderer has method that lets it specify which attributes it will need loaded to do the prepare()

export. Like in , we request our histogram-based custom attribute and status for the StatusBarColumn

current row.

The renderer's method sets the column name by calling on the given configureColumn() setText()

column's header cell.

The renderer's method does the following:renderCell()

Obtains the attribute values from the context.

Adjusts the data if the the "Include itself" option is off, by decrementing the issue count for the current

issue's status.

Iterates over the selected statuses, adding each non-zero sub-issue count and the corresponding

status name to a .StringBuilder

If the resulting value is not empty, calls on the given cell.setText()

Here is the module declaration for the generic renderer provider. Note that it specifies the column key, but

no export format.

atlassian-plugin.xml

<structure-export-renderer-provider key="erp-sbcolumn" name="export-renderer:Status Bar Column

Provider"

 class="com.almworks.jira.structure.sbcolumn.

StatusBarRendererProvider">

 <column-key>com.almworks.jira.structure.sbcolumn</column-key>

</structure-export-renderer-provider>

Structure Plugin for JIRA

Page of 287 370

Advanced Excel Renderer Provider
The class contains the advanced Excel renderer and the corresponding StatusBarExcelProvider

provider.

The provider's method is very similar to the generic provider's, with two additions:getColumnRenderer()

it checks that the export format is indeed ;MS_EXCEL

it also extracts the array from the specification parameters, as the renderer will use those (or colors

similar) colors for the progress bar.

The renderer's and methods are the same as the generic version. The prepare() configureColumn()

 method begins in a similar way, by extracting the data map and adjusting it for the "Include renderCell()

itself" option, if needed.

The interesting part is the actual rendering. The pseudo-graphic "progress bar" that the renderer creates is

a string of 30 "pipe" characters, split into colored stripes with lengths proportional to issue counts.

 provides no support for rich text formatting (besides , which is not ExcelCell setRichTextFromHtml()

up to the task), but we can access the lower-level API, , by obtaining the underlying POI Apache POI HSSF

objects from using the keys from .ColumnContext.getObject() ColumnContextKeys.Excel

The code that distributes the 30 characters among the stripes is ported from . To completely sbcolumn.js

understand how the rich text part works, you'll need some knowledge of the POI HSSF API, which is quite

complex and outside of the scope of this document. Please refer to the POI documentation and the

 source code for more information.StatusBarExcelProvider

The module declaration for the Excel renderer provider is given below. Note that it specifies both a column

key and an export format, thus overriding the generic provider for the Excel format.

atlassian-plugin.xml

<structure-export-renderer-provider key="erp-sbcolumn-excel" name="export-renderer:Status Bar

Column Excel Provider"

 class="com.almworks.jira.structure.sbcolumn.

StatusBarExcelProvider">

 <column-key>com.almworks.jira.structure.sbcolumn</column-key>

 <export-format>ms-excel</export-format>

</structure-export-renderer-provider>

3.4.2 Creating a New Synchronizer

Structure comes with a number of bundled , but you can add another synchronizers (see page 151)

synchronizer to the system, allowing Structure users to install it on structures and run export / import.

Implement StructureSynchronizer
Create your implementation of interface. Use as the base StructureSynchronizer AbstractSynchronizer

class.

http://poi.apache.org/spreadsheet/index.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/column/ColumnContext.html#getObject(java.lang.Object)
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/column/ColumnContextKeys.Excel.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/StructureSynchronizer.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/AbstractSynchronizer.html

Structure Plugin for JIRA

Page of 288 370

1.

2.

Define structure-synchronizer Module
Add module to your , referring to your structure-synchronizer (see page 291) atlassian-plugin.xml

implementation of the .StructureSynchronizer

Test Thoroughly
Test how your synchronizer works when other synchronizers are also installed onto the same structure.

Sample Project
This project can be used to bootstrap writing your own synchronizer. It compiles into a working plugin, which

does not do anything except writing to console at the times the synchronizer would do some work.

You can download the sources zip with the sample synchronizers at API Usage Samples (see page 335)

page.

3.4.3 Loading Additional Web Resources For Structure Widget

To include a web resource (such as custom CSS or JavaScript file) on the page every time Structure Widget

 is displayed, use web resource context and possibly a few others.Use (see page 12) structure.widget

cases:

You create your own custom field and would like it to be editable in the Structure grid. The field is

powered by additional JavaScript or CSS, which should be loaded on the page that displays

structure.

You create your own . You'll need to use the column type (see page 271) Structure JavaScript API

 and register the web resource with your JavaScript code as a widget extension.(see page 323)

Using Web Resource Contexts
You can add JavaScript or CSS to the Structure widget by adding a web resource to the structure.

 context. Note, however, that due to Atlassian API limitations, context-provided web resources may widget

not be loaded on pages with the Structure widget. The following table lists all web resource contexts all

related to pages where Structure Widget can possibly be shown.

Web Resource Context Used on...

structure.widget Structure Board, Structure Gadget

jira.view.issue Issue Page, Issue Navigator in details view

gh-rapid Scrum and Kanban boards from JIRA Software

jira.browse.project Project page (including Structure tab)

Structure Plugin for JIRA

Page of 289 370

Web Resource Context Used on...

structure.printable Printable Structure page

To have your code present on every page where a Structure widget can possibly be shown, include all

these resources. You usually don't need to include though, unless you have structure.printable

some special rules for printing.

Sample snippet from :atlassian-plugin.xml

<web-resource key="custom-field-resource" name="My Custom Field Web Resource">

 <resource type="download" name="custom-field-resource.js" location="js/myplugin/custom-field-

resource.js"/>

 <context>structure.widget</context>

 <context>jira.view.issue</context>

 <context>gh-rapid</context>

 <context>jira.browse.project</context>

</web-resource>

3.5 Accessing Structure Data Remotely

Structure plugin provides REST API, which is primarily used by the . The structure widget (see page 30)

same API can be used to access the hierarchical data remotely from an automation script or another user

agent application.

See details in the .REST API Reference (see page 297)

3.6 Reference

3.6.1 Structure Developer Reference

3.6.2 Structure Java API Reference

Structure API is work in progress. You will find that some of the packages are documented less

than others, and some are not documented yet.

We're constantly working on the API improvements and documentation and will make the javadocs

and other parts of the documentation more complete with every release.

Structure API Reference for the latest version: http://almworks.com/structure/javadoc/latest

http://almworks.com/structure/javadoc/latest

Structure Plugin for JIRA

Page of 290 370

You can download javadocs from the Maven repositories into your IDE.

Check out information about to select the correct API artifact, and Structure API Versions (see page 290)

you can also download Javadoc JARs there.

Structure API Versions

Current Versions

Version Supported JIRA

Versions

Supported Structure

Versions

OSGi Import

Version

Release

Date

16.1.0

Javadocs

JIRA 7.0+ 3.5.0+ "[16.1,17)" 2017-01-26

16.0.0

Javadocs

JIRA 7.0+ 3.4.0+ "[16,17)" 2016-12-07

Structure API version 16.0.0 is the first public API version for Structure 3.x. For older API versions

compatible with Structure 2.x, see .Previous API Versions

Javadocs for the Latest Version — Java API documentation for the latest API version.

To see how to include the API in your project dependencies, read about Accessing Structure from JIRA

.Plugin (see page 254)

Version Compatibility
Versioning of the API artifact follows these generally accepted rules:

Major version is increased when the client code – your code – might not compile with the new

version.

Minor version is increased when new methods are added to the API (so your code might break if you

downgrade to a lower minor version).

Micro version is changed when there's no impact on the compatibility.

Getting Versions
The API jars can be downloaded from the public Maven repositories. This is the recommended way.

If you can't download API jars from Maven repository for any reason, you can download them from this page

and install into your local Maven repository:

mvn install:install-file -Dfile=structure-api-16.1.0.jar -DpomFile=structure-api-16.1.0.pom

http://almworks.com/structure/javadoc/16.1.0
http://almworks.com/structure/javadoc/16.0.0
https://wiki.almworks.com/display/structure0211/Structure+API+Versions
http://almworks.com/structure/javadoc/latest

Structure Plugin for JIRA

Page of 291 370

Name Version Date

structure-api-16.0.0-javadoc.jar 7 2017-01-20 22:08

structure-api-16.0.0-sources.jar 7 2017-01-20 22:08

structure-api-16.0.0.jar 7 2017-01-20 22:08

structure-api-16.0.0.pom 7 2017-01-20 22:08

structure-api-16.1.0-javadoc.jar 1 2017-01-31 01:30

structure-api-16.1.0-sources.jar 1 2017-01-31 01:30

structure-api-16.1.0.jar 1 2017-01-31 01:30

structure-api-16.1.0.pom 1 2017-01-31 01:30

3.6.3 Structure Plugin Module Types

The following module types are added by the Structure plugin:

structure-synchronizer (see page 291) defines a new synchronizer.

structure-attribute-loader-provider (see page 292) lets you provide the data for new column types in

the Structure widget.

structure-export-renderer-provider (see page 293) lets you export new column types to printable

HTML and Excel files.

structure-item-type (see page 294) lets you define a new type of items, which can be used in

structures.

new-structure-template (see page 294) lets you add templates for new structures.

structure-query-constraint (see page 295) allows adding new functions to S-JQL language.

Generator Modules (see page 295) let you add generators to the Automation subsystem. The

following module types are included:

structure-inserter

structure-extender

structure-filter

structure-grouper

structure-sorter

structure-synchronizer
Synchronizer module allows you to plug additional synchronizers into Structure.

Module description sample
Here's a template of a synchronizer module declaration, and explanation of the parameters follows.

 <structure-synchronizer key="module-key" order="100"

https://wiki.almworks.com/download/attachments/8094114/structure-api-16.0.0-javadoc.jar?version=7&modificationDate=1484939326000&api=v2
https://wiki.almworks.com/download/attachments/8094114/structure-api-16.0.0-sources.jar?version=7&modificationDate=1484939326000&api=v2
https://wiki.almworks.com/download/attachments/8094114/structure-api-16.0.0.jar?version=7&modificationDate=1484939327000&api=v2
https://wiki.almworks.com/download/attachments/8094114/structure-api-16.0.0.pom?version=7&modificationDate=1484939327000&api=v2
https://wiki.almworks.com/download/attachments/8094114/structure-api-16.1.0-javadoc.jar?version=1&modificationDate=1485815446000&api=v2
https://wiki.almworks.com/download/attachments/8094114/structure-api-16.1.0-sources.jar?version=1&modificationDate=1485815446000&api=v2
https://wiki.almworks.com/download/attachments/8094114/structure-api-16.1.0.jar?version=1&modificationDate=1485815446000&api=v2
https://wiki.almworks.com/download/attachments/8094114/structure-api-16.1.0.pom?version=1&modificationDate=1485815446000&api=v2

Structure Plugin for JIRA

Page of 292 370

 class="com.company.your.plugin.sync.SyncClass">

 <label key="label.i18n.key">Name of Synchronizer</label>

 <description key="description.i18n.key">Description of Synchronizer</description>

 <rules key="rules.i18n.key">Large text to be shown at the top of synchronizer's

configuration page.</rules>

 <resource type="velocity" name="form" location="/templates/myplugin/sync-form.vm"/>

 </structure-synchronizer>

Element Required Description

structure-

synchronizer

Yes The module descriptor.

@key Yes Unique module key within the plugin.

@order Yes Order of the synchronizer among other synchronizers, whenever a list of

synchronizers is present.

@class Yes The class that implements the synchronizer. Must implement

. It is recommended to extend StructureSynchronizer

.AbstractSynchronizer

label Yes The name of the synchronizer.

description No Description of the synchronizer.

rules No The text that is shown at the top of the synchronizer configuration page.

Could be a large text.

resource

[@name="

form"]

Yes A velocity template that contains the form for the synchronizer

parameters.

structure-attribute-loader-provider
You can use this module to add your support for attributes, either new or already existing, to Structure. The

attributes are used by Structure Widget columns, by exporters and by generators.

Example

<structure-attribute-loader-provider key="provider-key"

 class="com.company.your.plugin.attribute.MyAttributeProvider"/>

Element Required? Description

structure-attribute-

loader-provider

Yes The module descriptor.

Yes The unique identifier of the plugin module.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/StructureSynchronizer.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/AbstractSynchronizer.html

Structure Plugin for JIRA

Page of 293 370

Element Required? Description

@key

@name No The human-readable name of the plugin module.

@class Yes The class that implements the data provider. Must

implement .AttributeLoaderProvider

structure-export-renderer-provider
Export renderer provider module lets you register the components responsible for exporting Structure

columns to printable HTML and Microsoft Excel formats.

Export renderer provider example

<structure-export-renderer-provider

 key="erp-sbcolumn-excel"

 name="export-renderer:Status Bar Column Excel Provider"

 class="com.almworks.jira.structure.sbcolumn.StatusBarExcelProvider">

 <column-key>com.almworks.jira.structure.sbcolumn</column-key>

 <export-format>ms-excel</export-format>

</structure-export-renderer-provider>

Element Required? Description

structure-

export-

renderer-

provider

Yes The module descriptor.

@key Yes The unique identifier of the plugin module.

@name No The human-readable name of the plugin module.

@class Yes The class that implements the renderer provider. Must implement

.ExportRendererProvider

column-

key

No The column key that this provider is associated with. You can have multiple

 elements in a single descriptor. If no column key is specified, column-key

the renderer provider is considered generic – such a provider will be

consulted for every column not served by a type-specific provider.

export-

format

No The export format that this provider is associated with. The values are

 for the printable HTML format and for the Microsoft printable ms-excel

Excel XLS format. You can have multiple elements in a export-format

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/loader/AttributeLoaderProvider.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/export/ExportRendererProvider.html

Structure Plugin for JIRA

Page of 294 370

Element Required? Description

single descriptor. If no export format is specified, the renderer provider is

considered generic – such a provider will be consulted for every column not

served by a format-specific provider.

structure-item-type
This module type lets you declare a new item type. Items of that type can then be used in structures.

Example

<structure-item-type key="type-book" name="itemtype:Book"

 class="com.mycompany.structure.books.BookItemType"/>

Element Required? Description

@key Yes The unique identifier of the plugin module. Full module key will define the

 part of .itemType ItemIdentity

@name No The human-readable name of the plugin module.

@class Yes The class that implements the support for the item type. Must implement

.StructureItemType

new-structure-template
New Structure Template module allows you to add templates to the Create Structure dialog.

Example:

<new-structure-template key="big-template"

 class="com.mycompany.structure.template.bigtemplate"

 name="New Structure Template: Big Template">

 <label key="com.mycompany.template.big-template.label"/>

 <description key="com.mycompany.template.big-template.description"/>

 <resource type="download" name="icon.png" location="css/structure/templates/big@2x.png"/>

 <resource type="velocity" name="step1" location="templates/structure/big/step1.vm"/>

 <resource type="velocity" name="step2" location="templates/structure/big/step2.vm"/>

</new-structure-template>

Element Required? Description

@key Yes Module key.

@name No The name of the module for JIRA administrators.

@class Yes

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/ItemIdentity.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/StructureItemType.html

Structure Plugin for JIRA

Page of 295 370

Element Required? Description

The class that implements the template, must implement

.NewStructureTemplate

label Yes The name of the template as it appears in the Create Structure

dialog.

description No Description of the template.

resource

[@type=velocity]

No Any number of HTML templates used by your code to render

wizard steps.

resource

[@type=download]

No Any number of downloadable images or other resources used

by your template.

structure-query-constraint
Structure Query Constraint module allows you to define an additional constraint function that can be used in

S-JQL.

For example, function explained in is implemented with a folder() S-JQL Reference (see page 183)

.structure-query-constraint

Example:

<structure-query-constraint key="constraint-foo"

 class="com.mycompany.structure.FooConstraint"

 name="Structure Query Constraint: foo"

 fname="foo"/>

Element Required? Description

key Yes Module key.

name No Module name for the JIRA administrator.

class Yes Class that implements .StructureQueryConstraint

fname Yes Function name, must be unique throughout the system.

Generator Modules
There are five modules, one for each type of generators, that work in the same way:

structure-inserter

structure-extender

structure-filter

structure-grouper

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/template/NewStructureTemplate.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/query/StructureQueryConstraint.html

Structure Plugin for JIRA

Page of 296 370

structure-sorter

Each module allows declaring a generator of a specific type. When a plugin with a generator module is

installed, you get the ability add those generators to structures.

Example

<structure-extender

 key="extender-examples" name="extender:Examples" description="Examples extender"

 class="com.mycompany.structure.examples.ExamplesExtender">

 <label key="com.mycompany.examples.extender.label"/>

 <icon spanClass="s-fa s-fa-link"/>

 <dialog-title key="com.mycompany.examples.extender.dialog-title"/>

 <resource type="velocity" name="form" location="/templates/example/extender-examples.vm"/>

 <resource type="velocity" name="summary" location="/templates/example/extender-examples-

summary.vm"/>

</structure-extender>

Other types of generators are declared in the same way.

Element Required? Description

@key Yes The unique identifier of the generator. Full module key will a part of

generator specification, defining the automation.

@name No The name of the module for the JIRA administrator.

@description No Description of the module for the JIRA administrator.

label Yes The name of the generator as it appears to the user.

icon No The icon for the generator that will be shown whenever the generator

row is displayed. See below for details.

dialog-title No The title of the dialog that is used to edit the generator

resource

[@name=form]

No Form template that will be used for editing the generator's parameters

resource

[@name=summary]

No Form template that will be used to display the generator as a row in a

structure

Generator Icons
The icon for the generator is defined using CSS classes. If you're using your own icons, make sure the

appropriate CSS styles are loaded everywhere Structure can be used (see Loading Additional Web

).Resources For Structure Widget (see page 288)

You can also use the standard icons used by bundled generators:

Structure Plugin for JIRA

Page of 297 370

Generator Type Icon Classes

Inserter s-fa s-fa-plus

Extender s-fa s-fa-link

Filter alm alm-group

Grouper s-fa s-fa-filter

Sorter alm alm-sort-asc

3.6.4 Structure REST API Reference

Structure REST API is under development. The functionality available through REST is sometimes

not complete, but it allows to work with the structures.

API version 2 is also not stable, although we're not seeing major changes coming to the main

resources.

Both version 1 and version 2 of the REST APIs have been driven by the needs of Structure

Widget. We're currently developing a higher-level API specifically for integrations rather than for

the product itself. Let us know at if you'd like to contribute or get support@almworks.com

preliminary access to that API.

General Notes

API Versions
As of Structure version 3.4, there are two versions of the REST API – and . Some of the REST 1.0 2.0

resources are exposed through version 1.0 and some through version 2.0.

Version 1.0 is stable and we don't plan to change it. It comes from Structure 2 and largely remains the same

as in Structure 2.x versions. Some of the resources may become deprecated as we replace them with the

newer versions.

Version 2.0 is not stable and is being developed along with the product. That means that you can use it, but

you need to test your integration every time you upgrade. We are also going to publish API changes in the

release notes.

REST Resource Addresses
Structure REST API resources have the URL

BASEURL/rest/structure/VERSION/NAME

Structure Plugin for JIRA

Page of 298 370

where BASEURL is the base JIRA address (being standard base URL http://localhost:2990/jira

for development environment), VERSION is the version of the API (either 1.0 or 2.0) and NAME is the name

of the resource. For each documented resource there's an indication about its API version.

Authentication
Authentication is done via standard JIRA authentication engine and supported by cookies. When accessing

REST API from a remote application, you may need to set up the session first by calling JIRA authentication

REST resource. (You don't need to do that if you access Structure REST API from a JavaScript on a page

from the same JIRA instance.)

Most read operations are available to non-authenticated access (subject to permission checks for the

anonymous user). Most mutation operations are available to authenticated users only.

REST Resources

Structure Resource (see page 298) is used to create and manage structures (but not the content)

Forest Resource (see page 314) is used to retrieve and update forests (a structure's content)

Item Resource (see page 316) is used to create and update items (issues, folders and, possibly,

items of other types)

Value Resource (see page 320) is used to retrieve attribute values for a given forest

Structure Resource
This page describes resources with which you can , , list (see page 302) create (see page 306) read (see

, , and structures. Structures contain page 308) update (see page 310) delete (see page 313) general

 such as name and permissions, but not the hierarchy itself. Issue hierarchy is information (see page 129)

accessed through the . This page also documents structure Forest Resource (see page 314) shape (see

 and its , and the that may be returned in case of page 299) fields (see page 299) error entity (see page 301)

the REST API user error.

Structure resource belongs to of the API.version 2.0

/structure/ GET list structures

/structure/ POST create a structure

/structure/{id} GET read structure

/structure/{id}/update POST update one or several structure fields

/structure/{id} DELETE delete structure

Quick navigation:

Structure Representations (see page 299)

Structure Fields (see page 299)

Permission Rules (see page 300)

Structure Plugin for JIRA

Page of 299 370

Error Entity (see page 301)

Structure Representations
Structure is represented via JSON. All resources are also capable of producing XML.

{

 "id": 103,

 "name": "Structure with all fields",

 "description": "Voilà! This structure exhibits all fields.",

 "readOnly": "true",

 "editRequiresParentIssuePermission": true,

 "permissions": [

 {

 "rule": "apply",

 "structureId": 102

 },

 {

 "rule": "set",

 "subject": "group",

 "groupId": "jira-developers",

 "level": "edit"

 },

 {

 "rule": "set",

 "subject": "projectRole",

 "projectId": 10010,

 "roleId": 10020,

 "level": "admin"

 },

 {

 "rule": "set",

 "subject": "anyone",

 "level": "view"

 },

 {

 "rule": "set",

 "subject": "user",

 "username": "agentk",

 "level": "none"

 }

],

 "owner": "user:admin"

}

Top (see page 298)

Structure Fields
Structure objects accessible through these resources have the following fields, most of which represent

structure details as outlined in the :Structure User's Guide (see page 129)

id The ID of the structure (integer, .)1..2^63 - 1

Structure Plugin for JIRA

Page of 300 370

name The name of the structure. A structure must have a non-

empty name, which does not have to be unique.

description The description on the structure. May be absent.

readOnly true if the user has only access View (see page 130)

level to the structure, otherwise absent.

editRequiresParentIssuePermission true if the Require Edit Issue Permission on Parent Issue

 flag is set on this structure, otherwise (see page 131)

absent.

permissions The list of structure . permission rules (see page 131)

Present only if the user has access Control (see page 130)

level to the structure. Some resources do not include

permissions unless requested to do so. List order is as

important as the rules themselves.

owner The of the structure. Present only if owner (see page 129)

the user is the owner of this structure or if he has Browse

 permission. A string of the form , Users user:USERNAME

where USERNAME is the JIRA user login name. Example:

.user:jsmith

Please note that structure resources described on this page do not include information about issue

hierarchies. The content of a structure, i.e. its hierarchy of items, can be read or modified using Forest

.Resource (see page 314)

Top (see page 298)

Permission rules
There are two types of permission rules, those that permissions and those that permissions from set apply

another structure. They have different fields depending on the type.

Set rules

rule Must be equal to , case-insensitive.set

subject Identifies the type of the subject to which the rule applies. Must be one of group,

. See below how to identify the subject.projectRole, user, anyone

level Access level to set to the specified subject. Must be equal to one of the names of the

 enum constants, case-insensitive.Permission Level

Please note that Control permission is represented by the enumeration constant.ADMIN

In addition, there are fields to identify the subject.

group

The rule applies to all users within the JIRA group.

https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions
https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html#ADMIN

Structure Plugin for JIRA

Page of 301 370

groupId The name of the JIRA group. Example: .jira-developers

REST API user can create such rule only for a group he belongs to.

projectRole

The rule applies to all users that have a role in a project.

projectId The ID of the project. Example: .10010

roleId The ID of the role. Example: .10010

REST API user can create such rule only for roles in projects where Structure is enabled, and for which he

has permission.Browse Projects

user

The rule applies to the user.

username Name of the user. Example: for user John Smith.jsmith

REST API user can create such rule only if he has permission, and if such user exists.Browse Users

anyone

The rule applies to all users, even anonymous (not authenticated.) The rule shouldn't have any additional

fields.

Apply rules

rule Must be equal to , case-insensitive.apply

structureId The ID of the structure which permissions should be applied. Example: 112

Apply rule creates a dependency on another structure. Circular dependencies are not allowed. Also, a

REST API user can create such rule only if he has access level to the referenced Control (see page 130)

structure.

Top (see page 298)

Error entity

{

 "code": 4005,

 "error": "STRUCTURE_NOT_EXISTS_OR_NOT_ACCESSIBLE[4005]",

 "structureId": 160,

 "message": "Referenced structure [160] does not exist or you don't have Control permissions

on it.",

 "localizedMessage": "Das Struktur [160] existiert nicht oder sie haben keine Kontrolle

Berechtigungen."

}

In some cases, requests to structure resources result in an error response containing an error entity. Any of

its fields may be absent.

https://confluence.atlassian.com/display/JIRA/Managing+Project+Permissions
https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions

Structure Plugin for JIRA

Page of 302 370

code Integer code of the error

error Brief technical description of the error. Contains a name of the corresponding

 enum constant.StructureError

structureId The ID of the structure involved.

issueId The ID of the JIRA issue involved.

message More detailed message, may contain technical details.

localizedMessage User-displayable message in the REST API user locale or JIRA default locale if

the user is not authenticated.

Top (see page 298)

Structure Resources

GET /structure

GET $baseUrl/rest/structure/2.0/structure

GET $baseUrl/rest/structure/2.0/structure?

name=$name&permission=$permission&withPermission=$withPermission&withOwner=$withOwner&limit=100

A list of all structures visible to the REST API user. Optionally, the result can be filtered by name or user's

access level. By default, permission rules and owners are not included, you should use query parameters if

you want them to be included.

Who can access this resource

All users who have . The returned list contains only access to the Structure Plugin (see page 226)

structures to which the REST API user has at least access level.View (see page 130)

Request

Query parameters:

name If present, the returned list will contain only structures which names contain the

specified string (case insensitive).

permission If present, the returned list will contain only structures to which the REST API user

has the specified . Must be equal to one of the names of access level (see page)

the enum constants, case-insensitive. is treated in the Permission Level NONE

same way as .VIEW

Please note that Control permission is represented by the enumeration ADMIN

constant.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/StructureError.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/permissions/PermissionLevel.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html#NONE
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html#VIEW
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html#ADMIN

Structure Plugin for JIRA

Page of 303 370

withPermission If , permission rules will be included in the response. Default is .true false

withOwner If , owner will be included in the response. Default is .true false

archived
If , the returned list can also contain archived structures. Default is .true false

limit If specified, must be a number. Defines the maximum number of structures to return.

Each of the filter parameters , , or can be specified only once, otherwise the name permission issueId

first is used. Different parameters are combined with AND.

HTTP headers:

Content-Type Should be one of , .application/json application/xml

Accept Should be one of , .application/json application/xml

Response

Success

200

OK

Response entity contains the only field, , which contains structures

the list of the structure objects, sorted by name.

application/json,

application/xml

Example 1: all structures

GET $baseUrl/rest/structure/2.0/structure

{

 "structures": [

 {

 "id": 1,

 "name": "Global Structure",

 "description": "Initial general-purpose structure.",

 "editRequiresParentIssuePermission": true

 },

 {

 "id": 102,

 "name": "Test plan",

 "description": "Test plan #3",

 "readOnly": true

 },

 {

 "id": 100,

 "name": "Test plan",

 "description": "Test plan #1"

 },

 {

 "id": 101,

 "name": "Test plan",

 "description": "Test plan #2"

Structure Plugin for JIRA

Page of 304 370

 }

]

}

Example 2: only "Test plan"

GET $baseUrl/rest/structure/2.0/structure?name=test+plan

{

 "structures": [

 {

 "id": 102,

 "name": "Test plan",

 "description": "Test plan #3",

 "readOnly": true

 },

 {

 "id": 100,

 "name": "Test plan",

 "description": "Test plan #1"

 },

 {

 "id": 101,

 "name": "Test plan",

 "description": "Test plan #2"

 }

]

}

Example 3: structures that the user can edit with permissions and owners shown

GET $baseUrl/rest/structure/1.0/structure?permission=edit&withPermissions=true&withOwner=true

{

 "structures": [

 {

 "id": 1,

 "name": "Global Structure",

 "description": "Initial general-purpose structure.",

 "editRequiresParentIssuePermission": true

 },

 {

 "id": 100,

 "name": "Test plan",

 "description": "Test plan #1",

 "permissions": [

 {

 "rule": "set",

 "subject": "group",

 "groupId": "jira-users",

 "level": "edit"

Structure Plugin for JIRA

Page of 305 370

 },

 {

 "rule": "set",

 "subject": "projectRole",

 "projectId": 10010,

 "roleId": 10010,

 "level": "none"

 },

 {

 "rule": "apply",

 "structureId": 101

 }

],

 "owner": "user:jsmith"

 },

 {

 "id": 101,

 "name": "Test plan",

 "description": "Test plan #2",

 "owner": "user:admin"

 }

]

}

Example 4: require XML representation

Note that the same can be achieved by specifying in the HTTP header.application/xml Accept

GET $baseUrl/rest/structure/1.0/structure.xml?name=test+plan

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<structureList>

 <structures>

 <structure>

 <id>100</id>

 <name>Test plan</name>

 <description>Test plan #1</description>

 </structure>

 </structures>

</structureList>

Error

400 Bad

Request

permission parameter is set to an unknown value, or request is

invalid for other reasons. In the first case, response contains error

entity, in the second it is empty.

application

/json,

application

/xml

403

Forbidden

If Structure Plugin is not accessible to the REST API user, or if issue

with ID does not exist or the REST API user does not have issueId

enough permissions to access it. Response contains error entity.

application

/json,

application

/xml

Structure Plugin for JIRA

Page of 306 370

404 Not

Found

If is not an integer. Response entity contains a standard JIRA issueId

error HTML page.

text/html

500

Internal

Server

Error

If an internal error has occurred while processing this request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For example, the

 operation may be in progress.Restore (see page 232)

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 298)

POST /structure

POST $baseUrl/rest/structure/2.0/structure

Create (see page 130) an empty structure by POSTing to this resource.

Who can access this resource

Only logged in users who have and a access to the Structure Plugin (see page 226) permission to

.create structures (see page 227)

Request

Request entity should contain the new . Structure name, , must be present structure (see page 299) name

and non-empty. Fields , , and are ignored. All rules in are validated id readOnly owner permissions

according to their respective .rule types (see page 300)

Please note that this resource accepts only JSON structure representation.

HTTP headers:

Content-Type Must be .application/json

Accept Should be one of , .application/json application/xml

Response

Success

201

Created

Response entity contains the created structure with fields,

including and .permissions owner

application/json,

application/xml

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Structure Plugin for JIRA

Page of 307 370

Example 1: minimal structure

POST $baseUrl/rest/structure/2.0/structure

Request entity Response entity

{

 "name":"T

est plan"

}

{

 "id": 104,

 "name": "Te

st plan",

 "descriptio

n": "",

 "permission

s": [],

 "owner": "u

ser:admin"

}

Example 2: structure with some permissions

POST $baseUrl/rest/structure/2.0/structure

Request entity Response entity

{

 "name":"Structure with some

permissions",

 "editRequiresParentIssuePermissi

on":"true",

 "permissions":[

 {

 "rule":"apply",

 "structureId":102

 }

]

}

{

 "id": 105,

 "name": "Structure with some

permissions",

 "description": "",

 "editRequiresParentIssuePermissi

on": true,

 "permissions": [

 {

 "rule": "apply",

 "structureId": 102

 }

],

 "owner": "user:admin"

}

Error

400 Bad

Request

Structure data is not well-formed (syntax error) or invalid (semantic

error.)

Not well-formed structure data examples: request JSON is syntactically

Structure Plugin for JIRA

Page of 308 370

incorrect; JSON contains unknown field; is not present or empty; name

 list contains a rule with set to an invalid value.permissions set level

Invalid structure example: list contains a rule that fails permissions

validation.

Response entity contains error. Problems with rule usually have apply

 to indicate the invalid reference.structureId

application

/json,

application

/xml

403

Forbidden

If REST API user is not logged in or does not have permissions to

access Structure Plugin or to create structures. Response contains

error entity.

application

/json,

application

/xml

500

Internal

Server

Error

If an internal error has occurred while processing this request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For example, the

 operation may be in progress.Restore (see page 232)

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 298)

GET /structure/{id}

GET $baseUrl/rest/structure/2.0/structure/$id

GET $baseUrl/rest/structure/2.0/structure/$id?

withPermissions=$withPermissions&withOwner=$withOwner

This resource allows to obtain for the particular structure. By default, structure details (see page 299)

 and are not included, use query parameters to include them.permissions owner

Who can access this resource

All users who have . To access the particular access to the Structure Plugin (see page 226)

structure, the user has to have at least access level.View (see page 130)

Request

Path parameter:

id the ID of the structure

Query parameters:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Structure Plugin for JIRA

Page of 309 370

withPermission If , permission rules will be included in the response. Default is .true false

withOwner If , owner will be included in the response. Default is .true false

HTTP headers:

Content-Type Should be one of , .application/json application/xml

Accept Should be one of , .application/json application/xml

Response

Success

200

OK

Response entity contains the created structure along with all of its

fields.

Field is included if the REST API user has permissions Control

 permission on this structure.(see page 130)

Field is included if the REST API user is either the owner of owner

this structure or has .Browse Users permission

application/json,

application/xml

Example 1: retrieve structure with ID 100 without permissions and owner

GET $baseUrl/rest/structure/2.0/structure/100

{

 "id": 100,

 "name": "Test plan",

 "description": "Test plan #1"

}

Example 2: permissions and owner are requested to be included, but only owner is shown, because the

user has only View access as indicated by readOnly

GET $baseUrl/rest/structure/2.0/structure/102?withOwner=true&withPermissions=true

{

 "id":102,

 "name":"Test plan",

 "description":"Test plan #3",

 "readOnly":true,

 "owner":"user:admin"

}

Example 3: XML representation may be requested in the request URL instead of the Content-Type HTTP

header

https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions

Structure Plugin for JIRA

Page of 310 370

GET $baseUrl/rest/structure/2.0/structure/102.xml

<structure>

 <id>102</id>

 <name>Test plan</name>

 <description>Test plan #3</description>

 <readOnly>true</readOnly>

</structure>

Error

400 Bad

Request

One of the query parameters is too long.

403

Forbidden

If REST API user does not have permissions to access Structure

Plugin or does not have at least permission on View (see page 130)

this structure. Response contains error entity.

application

/json,

application

/xml

404 Not

Found

If is not an integer in . Response entity contains a id 1..2^63-1

standard JIRA error HTML page.

text/html

500

Internal

Server

Error

If an internal error has occurred while processing this request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For example, the

 operation may be in progress.Restore (see page 232)

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 298)

POST /structure/{id}/update

POST $baseUrl/rest/structure/1.0/structure/$id/update

Update one or several fields of a structure by POSTing to this resource.

Who can access this resource

Only logged in users who have and access to the Structure Plugin (see page 226) Control (see

 permission on this structure.page 130)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Structure Plugin for JIRA

Page of 311 370

Request

Request entity should contain those that need to be changed. Non-present structure fields (see page 299)

fields will not be changed (for this user; may change for other users as a result of changing readOnly

.) Fields , , and are ignored.permissions id readOnly owner

Please note that field is modified as a whole, so to add a rule, you have to provide the new permissions

list of rules in the proper order.

If field is present, all rules are validated according to their respective permissions rule types (see page

.300)

Please note that this resource accepts only JSON structure representation.

HTTP headers:

Content-Type Must be .application/json

Accept Should be one of , .application/json application/xml

Response

Success

200

OK

Response entity contains the updated structure with all fields,

including and .permissions owner

application/json,

application/xml

Example 1: change description of the Global Structure

POST $baseUrl/rest/structure/1.0/structure/1/update

Request entity Response entity

{

 "description":"Company-wide structure

providing the Big Picture."

}

{

 "id":1,

 "name":"Global Structure",

 "description":"Company-wide structure

providing the Big Picture.",

 "editRequiresParentIssuePermission":true,

 "permissions":[

 {

 "rule":"set",

 "subject":"anyone",

 "level":"view"

 },

 {

 "rule":"set",

 "subject":"group",

 "groupId":"jira-users",

 "level":"edit"

 },

 {

Structure Plugin for JIRA

Page of 312 370

Request entity Response entity

 "rule":"set",

 "subject":"group",

 "groupId":"jira-administrators",

 "level":"admin"

 }

]

}

Example 2: changing permission rules

POST $baseUrl/rest/structure/1.0/structure

Request entity Response entity

{

 "permissio

ns":[

 {

 "rule"

:"set",

 "subje

ct":"group",

 "group

Id":"jira-

users",

 "level"

:"edit"

 },

 {

 "rule"

:"apply",

 "struc

tureId":101

 }

]

}

{

 "id": 105,

 "name": "Structure with some

permissions",

 "description": "",

 "editRequiresParentIssuePermissi

on": true,

 "permissions": [

 {

 "rule": "set",

 "subject": "group",

 "groupId": "jira-users",

 "level": "edit"

 },

 {

 "rule": "apply",

 "structureId": 101

 }

],

 "owner": "user:admin"

}

Error

400 Bad

Request

Structure data is not well-formed (syntax error) or invalid (semantic

error.)

Not well-formed structure data examples: request JSON is

syntactically incorrect; JSON contains unknown field; permissions

list contains a rule with set to an invalid value.set level

Invalid structure example: list contains a rule that fails permissions

application

/json,

application

./xml

Structure Plugin for JIRA

Page of 313 370

validation.

Response entity contains error. Responses to problems with an apply

rule usually have to indicate the invalid reference.structureId

403

Forbidden

If REST API user is not logged in, does not have permissions to

access Structure Plugin, or does not have Control (see page 130)

access level to this structure. Response contains error entity.

application

/json,

application

/xml

500

Internal

Server

Error

If an internal error has occurred while processing this request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For example, the

 operation may be in progress.Restore (see page 232)

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 298)

DELETE /structure/{id}
Deletes (see page 142) the designated structure.

Who can access this resource

Only logged in users who have and access to the Structure Plugin (see page 226) Control (see

 permission on this structure.page 130)

Request

Path parameter:

id the ID of the structure

HTTP headers:

Content-Type Must be .application/json

Accept Should be absent or equal to one of , .application/json application/xml

Response

Success

200 OK Contains an object with the only field with empty

value .true

application/json, application

/xml

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Structure Plugin for JIRA

Page of 314 370

Note: it should have been instead, but there were reports of some browsers (Firefox) incorrectly processing 204 No content

such results, so it's as it is.

Example

DELETE $baseUrl/rest/structure/1.0/structure/108

{

 "empty": true

}

Error

403

Forbidden

If REST API user is not logged in, does not have permissions to

access Structure Plugin, or does not have Control (see page 130)

access level to this structure. Response contains error entity.

application

/json,

application

/xml

404 Not

Found

If is not an integer in . Response entity contains a id 1..2^63-1

standard JIRA error HTML page.

text/html

404 Not

Found

If is an integer in , but the structure with the specified id 1..2^63-1 id

does not exist or the user does not have access View (see page 130)

level to it.

application

/json,

application

/xml

500

Internal

Server

Error

If an internal error has occurred while processing this request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For example, the

 operation may be in progress.Restore (see page 232)

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 298)

Forest Resource
Forest Resource is responsible for serving forests and forest updates and receiving the forest actions

(change commands) from the client.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Structure Plugin for JIRA

Page of 315 370

Retrieving Forest

Request

GET $baseUrl/rest/structure/2.0/forest/latest?s=$forestSpec

POST $baseUrl/rest/structure/2.0/forest/latest

Returns the hierarchical issue list (forest) of the specified structure.

Parameters:

$forestSpec required The URL-encoded JSON representation of . See also: ForestSpec

.RestForestSpec

POST

content

required While GET method is preferred, POST is more robust because there's no risk of

exceeding URL length with large forest specifications. The content is the same

JSON object (but not URL-encoded, obviously).

Example:

GET /rest/structure/2.0/forest/latest?s={%22structureId%22:113}

Retrieves latest forest for structure #113.

Response

{

 "spec":{"structureId":113},

 "formula":"10394:0:4/356,10332:0:14707,10374:1:5/240,10348:2:14717",

 "itemTypes":{

 "4":"com.almworks.jira.structure:type-generator",

 "5":"com.almworks.jira.structure:type-folder"

 },

 "version":{

 "signature":-1659607419,

 "version":1

 }

}

In this reply, the most important part is "formula", which contains serialized information about the forest.

Each component (delimited by comma) represents a row and looks like this: 10374:1:5/240. In this example,

the numbers are:

10374 is the row ID,

1 is the row depth,

5/240 is the item identity.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/forest/ForestSpec.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/rest/RestForestSpec.html

Structure Plugin for JIRA

Page of 316 370

If the row contains an issue, it’s just issue ID, otherwise it has the format of <item type>/<long item id>, or

<item type>//<string item id>. Item type is a number, which is expanded in the “itemTypes” map in the reply.

Changing Forest
To change a forest, you POST one or more change actions to resource. Each action is a /forest/update

serialized version of – for more information about the actions, see ForestAction Changing Structure

.Content (see page 264)

POST $baseUrl/rest/structure/2.0/forest/update

Parameters:

{

 "spec": { "structureId": <id> }, // use structure ID

 "version": { "signature": <signature>, "version": <version> }, // use last seen signature

and version

 "actions": [

 {

 "action": "add",

 "under": 0, // at the top level

 "after": 123, // after row ID 123 (not issue iD!)

 "before": 456, // before row ID 456

 "forest": "-100:0:10001" // insert issue 10001, -100 is the temporary row ID which

will be mapped into the real row ID when the method returns

 },

 {

 "action": "move", // works like previously, only row IDs instead of issue IDs

 "rowId": 123,

 "under": 456,

 "after": 0,

 "before": 124

 },

 {

 "action": "remove",

 "rowId": 442

 }

]

}

Item Resource
Item resource is used to create new items and update existing items.

Creating a New Item
The following request is used to create a new item (issue, folder or other type) and insert it into a forest.

POST $baseUrl/rest/structure/2.0/item/create

Structure Plugin for JIRA

Page of 317 370

This request should upload a specification of the creation action and coordinates of where to put the result.

Example

{

 "item": {

 "type": "com.almworks.jira.structure:type-folder",

 "values": { "summary": "New folder name" }

 },

 "forest": {

 "spec": { "structureId": 128 },

 "version": {

 "signature": 0,

 "version": 0

 }

 },

 "items": {

 "version": {

 "signature": 0,

 "version": 0

 }

 },

 "rowId": -100,

 "under": 0,

 "after": 0,

 "before": 0,

 "parameters": {}

}

Parameters

Parameter

(see example

above)

Meaning

item Defines the item being created.

item.type Item type (complete key of the module that provides this item's main functionality.)

Use for folders and com.almworks.jira.structure:type-folder com.

 for issues. See also: almworks.jira.structure:type-issue CoreItemTypes

item.values A set of values for the new item. The specific fields depend on the item. For a folder, it

is "summary". For other items, see examples below.

forest.spec Forest specification of the forest that will receive the new item. See and ForestSpec

.RestForestSpec

forest.

version

Last known version of the forest. The reply to this call will contain the update to that

version. Use zero version (as in example) to receive full forest.

items.

version

Last known version of instance items set. The reply to this call will contain an update to

the known items. Use zero version (as in example) to receive full update.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/CoreItemTypes.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/forest/ForestSpec.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/rest/RestForestSpec.html

Structure Plugin for JIRA

Page of 318 370

Parameter

(see example

above)

Meaning

rowId Temporary ID assigned to the created issue. Must be negative. You can use in -100

most cases.

under / after

/ before

Forest coordinates to insert the new item into. See .Forest Resource (see page 314)

Specific parameters for main item types
Folder

This is the example of parameter for a new folder:item

"item": {

 "type": "com.almworks.jira.structure:type-folder",

 "values": { "summary": "New folder name" }

}

The only parameter sent is the folder name.

Issue

This is the example of parameter for a new issue:item

"item": {

 "type": "com.almworks.jira.structure:type-issue",

 "values": {

 "issue": {

 "summary": "issue summary"

 },

 "pid": 10000,

 "issuetype": "3",

 "mode": "new",

 }

}

The above are the minimal fields needed to create a new issue. Note that is a number, but pid issuetype

is a string.

Reply Example
The following is an example of a reply.

{

 "successfulActions": 1,

 "itemId": "com.almworks.jira.structure:type-issue/10100",

 "oldRowIds": [-100],

 "newRowIds": [61],

 "forestUpdates": [...],

 "itemsUpdate": {...}

Structure Plugin for JIRA

Page of 319 370

}

Most important fields are and . More on the return fields:itemId newRowIds

Field Explanation

successfulActions A number of actions successfully performed by the server. In this case, it's either

0 or 1.

itemId The ID of the newly created item. See .ItemIdentity

oldRowIds /

newRowIds

Provides mapping from the temporary row IDs used for uploading the action and

the real row IDs obtained after the item was inserted.

forestUpdates Changes to the forest since the version passed in the request.

itemsUpdate Changes to the items set since the version passed in the request.

Updating an Existing Item
The following request is used to update an existing item (issue, folder or other type).

POST $baseUrl/rest/structure/2.0/item/update

Example of the request:

{

 "item": {

 "itemId": "10000",

 "values": {

 "summary": "New Summary"

 }

 },

 "items": {

 "version": { "signature": 0, "version": 0 }

 },

 "forest": {

 "spec": {

 "type": "clipboard"

 },

 "version": { "signature": 0, "version": 0 }

 }

}

Note that although the update does not depend on the forest, the low-level API in the current

version requires the request to specify a forest spec and known version of items stream. If you

don't need to maintain up-to-date items cache and not interested in updates to a forest where the

item is located, just use empty version in field and "clipboard" forest spec – like in this items

example.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/ItemIdentity.html

Structure Plugin for JIRA

Page of 320 370

Parameters

Parameter

(see example

above)

Meaning

item.itemId The ID of the item.

If it is just a number, like in the example, it is an issue ID. Note that it is still a String

value that contains issue ID.

Instead of a number, it can be a canonical notation of an . For example, to ItemIdentity

update a folder, use "com.almworks.jira.structure:type-folder/123"

where 123 is the folder ID.

item.values A map of values to be updated. The keys are the same as when the item is created.

For updating a folder, use ."summary"

items.

version

Known version of the items stream. The response will contain an update based on that

number. Use zeroes, as in example, when updated is not needed.

forest.spec

and forest.

version

Monitored forest spec and known version of that forest. The response will contain a

forest update based on those values. When not needed, use a simple forest (like

clipboard in this example) and zeroed version.

Reply
The reply is similar to the reply from calling method, defined above. A positive HTTP status tells /create

that the item has been updated. There is no in the response."itemId"

Value Resource
Value Resource is used to retrieve values of attributes for rows in a given forest.

To learn more about attributes, see .Loading Attribute Values (see page 267)

To retrieve values from Structure, you need a few things first:

A forest specification () for the displayed forest – same as the one used in forestSpec Forest

. Forest specification is needed even if the values do not depend on the Resource (see page 314)

forest.

A list of row IDs for which the values should be loaded. Row IDs can be retrieved from Forest

Resource before calling Value Resource.

A list of attribute specifications. Some examples are given below.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/ItemIdentity.html

Structure Plugin for JIRA

Page of 321 370

Loading Values
To load values use the following call

POST $baseUrl/rest/structure/2.0/value

The request should come with JSON payload that specifies which values you are interested in.

Example

{

 "requests": [

 {

 "forestSpec": {

 "structureId": 123

 },

 "rows": [

 1820,

 1842,

 2122

],

 "attributes": [

 {

 "id": "summary",

 "format": "text"

 },

 {

 "id": "key",

 "format": "html"

 },

 {

 "id": "progress",

 "format": "number",

 "params": {

 "basedOn": "timetracking",

 "resolvedComplete": true,

 "weightBy": "equal"

 }

 }

]

 }

]

}

As you see in this example, a request body may contain one or more request, each for a specific matrix of

several rows and several attributes. A value for each pair of a row and an attribute will be calculated.

Parameters

Parameter Meaning

requests[i].forestSpec

Structure Plugin for JIRA

Page of 322 370

1.

2.

3.

4.

Parameter Meaning

Forest specification that produces the forest from which the rows are

taken.

requests[i].rows Array of row IDs for which values should be loaded.

requests[i].attributes Array of attribute specifications that should be loaded for each row.

The example shows three attributes being loaded – plain text Summary, html-formatted Key and Progress

based on time tracking. For more information about available system attributes, see javadocs for

 and .AttributeSpec CoreAttributeSpecs

There is a simple way to learn the attribute spec that you need.

Configure a column that shows the needed value on the Structure Board.

Use your browser's Developer Tools and open Network tab.

Reload structure.

Look for a request to URL and see its input. Use JSON formatters for convenience./value

Response
The response will contain one or more matrices with values for each pair of requested row and attribute. A

list of rows is given separately. Then, for each requested attribute, a list of values is given.

{

 "responses": [

 {

 "forestSpec": {

 "structureId": 123

 },

 "rows": [

 1820,

 1842,

 2122

],

 "data": [

 {

 "attribute": {

 "id": "summary",

 "format": "text"

 },

 "values": [

 "Issue 1",

 "Folder 2",

 "Some Other Item 3"

],

 "trailMode": "INDEPENDENT",

 "trails": ["", "", ""]

 }

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/AttributeSpec.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/CoreAttributeSpecs.html

Structure Plugin for JIRA

Page of 323 370

],

 "forestVersion": {

 "signature": -1385959428,

 "version": 1

 }

 }

],

 "itemTypes": {},

 "itemsVersion": {

 "signature": -558220658,

 "version": 1

 }

}

Parameters

Parameter Meaning

responses[i].

forestSpec

Requested forest spec, from which the rows are taken.

responses[i].rows A list of row IDs for which the values are provided.

responses[i].data[j].

attribute

The attribute specification for which the following values are calculated.

responses[i].data[j].

values

Array of values. The value at -th place corresponds to the row at -th k k

place in .responses[i].rows

If you are receiving value in any format other than , you need to html-escape that value html

before adding it to the web page.

3.6.5 Structure JavaScript API Reference

Structure's JavaScript API provides ways to extend the client-side functionality of the Structure plugin.

JavaScript API Functions
This page lists static functions exposed by the Structure API.

window.almworks.structure.api.subClass(className, superclass, prototype)
Creates a subclass of a specific class. Returns a constructor function that will create the instances of the

class.

This function provides light-weight polymorphism for the purposes of extending Structure's classes (see

.page 325)

Structure Plugin for JIRA

Page of 324 370

Parameters

className string Class name as string (optional, used for friendly instance names in debugger)

superclass Object Superclass reference

prototype Object Subclass prototype

The returned value – class constructor – takes a single optional parameter.options

The prototype may contain a special initializer method, which is called when an instance is being init()

constructed. Superclass' method is called before subclass' method. Options that were passed to init()

the constructor are passed through to the initializer.

Example

var MyClass = window.almworks.structure.api.subClass('MyClass', BaseClass, {

 init: function(options) {

 ...

 },

 someMethod: function() {

 ...

 }

});

var options = { ... };

var instance = new MyClass(options);

window.almworks.structure.api.registerColumnType(type, key)
Registers a new column type. If you're extending Structure by adding a new type of column to the grid, the

type must be registered from your additional JavaScript web resource.

Column types are identified by a unique key, which is recorded in the specification, view (see page 143)

along with the type-specific parameters and column name.

Parameters

type Object A instance, implementing a specific column type – see ColumnType ColumnType Class

(see page 333)

key string Column type key (can also be array of strings if the type can handle multiple variations of

a column specification)

Example

window.almworks.structure.api.registerColumnType(new MyColumnType(), 'com.acme.structure.

awesome-column');

Structure Plugin for JIRA

Page of 325 370

We recommend using a unique key that has low chance of conflicting with column types provided

by other, independent developers. A good approach is to have Java-like package notation for the

keys.

window.almworks.structure.api.registerColumnGroup(options)
Registers a new column type group. Column groups are used in the "Add Column" panel to group column

configuration presets, provided by column types.

Parameters

options.

groupKey

string Group key. The same key should be returned by all 's ColumnConfigurator

 method for all column types which need to appear in this getGroupKey()

particular group.

options.

title

string Group title

options.

order

number Group order is used to sort groups. Order value for groups provided by Structure

are 100, 200, 300 and so on.

Example

window.almworks.structure.api.registerColumnGroup({

 groupKey: 'com.acme.structure.colgroup', title: 'Acme Columns', order: 50

});

JavaScript API Classes

Structure Javascript API provides a number of classes to be used as base for your own column type

implementations. This should be done using method.subClass() (see page)

Column Class

window.almworks.structure.api.Column
A subclass of Column class represents column objects of a specific type.Columns need to be subclassed

for a particular column type implementation. You can override methods while subclassing to modify the

default behavior.

Example

var api = window.almworks.structure.api;

var MyColumn = api.subClass('MyColumn', api.Column, {

 init: function() {

 ...

 },

 getCellViewHtml: function() {

Structure Plugin for JIRA

Page of 326 370

 return '<div> ... </div>';

 }

});

Properties
context

Contains context information about where the column is used. See for The Column Context (see page 277)

more information.

spec

Contains column specification object. Specification object is serialized as a part of the overall view

specification and stored on the server and in the browser's local storage. See Column Specifications (see

 for more information.page 276)

Methods
init(options)

Initializer method.

getCellValueHtml(renderingParameters)

Returns HTML that is displayed in the grid cell for a specific issue. The HTML should contain the value

provided by this column. Structure will also wrap the value in decorative elements – this could be overridden

by providing method.getCellViewHtml()

Parameters

renderingParameters.getAttributeValue() returns current row's attribute value

renderingParameters.getRowId() returns current row's id

renderingParameters.getItemId() return current row's item id

Example

var Template = require('almworks/util/Template');

var cellTemplate = new Template('{awesomefield}');

getCellValueHtml: function(rp) {

 return cellTemplate.renderHtml({ awesomefield: rp.getAttributeFieldValue({id: 'com.acme.

awesome-data', format: 'text'}) });

}

getCellViewHtml(renderingParameters)

Returns customized HTML that is displayed in the grid cell for a specific issue. By default, calls

 and wraps the retrieved value into the default Structure style. Can be overridden to getCellValueHtml()

allow higher degree of control over the cell appearance.

Parameters

renderingParameters.getAttributeValue() returns current row's attribute value

renderingParameters.getRowId() returns current row's id

Structure Plugin for JIRA

Page of 327 370

renderingParameters.getItemId() return current row's item id

collectRequiredAttributes(attributeSet)

Lets column request attributes that are needed for rendering. The attributes are provided on the server side

by .AttributeLoaderProvider

Parameters

attributeSet.requireAttribute

(attributeSpec,forestSpec)

Method for collecting required attributes.

Parameters are:

attributeSpec is the attribute specification object

forestSpec is the forest specification for the forest, from

which attribute should be loaded (optional)

About Attribute Specs

AttributeSpec defines the attribute and format to be loaded. See Loading Attribute Values (see page 267)

for more information on attributes.

Some of the attributes are shown below. You can also define your own attribute, calculate it on the server

side and request from your column.

About Forest Spec

Forest specification is optional. When used, it allows you to get attribute value from a different forest –

however, it must be related to the forest being displayed, otherwise it will not have the same rows.

For example, you can specify a forest specification with some transformation to display values from there in

the untransformed forest. There are also two special values for :forestSpec

'displayed' is the default value, meaning "use the forest that is being displayed"

'unfiltered' means "use the same forest, but remove all filters that are coming at the end of

transformation chain"

Example

collectRequiredAttributes: function(attributeSet) {

 attributeSet.requireAttribute({id: 'key', format: 'text'});

 attributeSet.requireAttribute({

 id: 'sum',

 format: 'number',

 params: {

 id: 'customfield',

 format: 'number',

 params: {

 fieldId: 10010

 }

 }

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/loader/AttributeLoaderProvider.html

Structure Plugin for JIRA

Page of 328 370

 }, 'unfiltered');

 attributeSet.requireAttribute({id: 'com.mycompany.work-stats', format: 'json'});

}

Some of the attributes provided by Structure:

Attribute Spec Example Description

{id: <jira-field-id>,

format: 'html'}

 The HTML representation of a JIRA issue field

value, as seen on the issue page or in the

Issue Navigator. Structure allows non-issue

items also have these values.

<jira-field-id> is the common name for

the JIRA's standard field id.

This attribute does not load custom fields.

{id: 'customfield',

format: 'html', params:

{ fieldId: <field-

numeric-id> }}

 HTML representation of a custom field value.

{id: 'project', format:

'id'}

 Project ID for the issues. The format means id

either a string or a number, depending on what

is being used for identifying the object.

{id: 'editable', format:

'boolean'}

 Boolean value telling whether the item can be

edited by the user.

See also for examples of bundled attributes.CoreAttributeSpecs

getDefaultName()

Must return default column name, assigned when user adds column of specified type to the structure view.

Returns empty string by default.

Example

getDefaultName: function() { return 'My Column'; }

isResizable()

Returns whether the column is resizable or not. Returns by default.true

Example

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/CoreAttributeSpecs.html

Structure Plugin for JIRA

Page of 329 370

isResizable: function() { return false; }

canShrinkWhenNoSpace()

Returns whether column can shrink beyond minimum size if there's not enough space on the screen.

Returns by default.false

Example

canShrinkWhenNoSpace: function() { return true; }

isAutoSizeAllowed()

Returns if the column should be auto-resized to fit its contents. Returns by default.false

Example

isAutoSizeAllowed: function() { return true; }

getMinWidth()

Returns minimum width of the column in pixels. Returns 27 by default.

Example

getMinWidth: function() { return 100; }

getDefaultWidth()

Returns default width of the column in pixels. Returns 120 by default.

Example

getDefaultWidth: function() { return 100; }

getHeaderCellHtml()

Returns HTML that will be used in the grid header. By default returns cell with column name in default

Structure style.

Example

getHeaderCellHtml: function() { return '<div>' + this.name + '</div>'; }

getMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this column to render the values. See

 for more information. By default returns , which Requesting and Using Metadata (see page 278) null

means that no metadata is needed.

Example

Structure Plugin for JIRA

Page of 330 370

getMetadataRequests: function() {

 return {

 status: {

 url: baseUrl + '/rest/api/2/status',

 cacheable: true

 }

 };

}

getSortAttribute()

Returns attribute specification for sorting when the user clicks on the header. If is returned (the null

default), the clicking this column header does not result in added sorting transformation.

isSortDescendingByDefault()

If returns the initial direction of the sorting will be descending.true

ColumnConfigurator Class

window.almworks.structure.api.ColumnConfigurator

ColumnConfigurator class encapculates everything related to column type configuration.

It needs to be subclassed for a particular column type implementation and passed as return value in

 method.ColumnType.createConfigurator() (see page 334)

Example

var api = window.almworks.structure.api;

var MyColumnConfigurator = api.subClass('MyColumnConfigurator, api.ColumnConfigurator, {

 getDefaultColumnName: function() { return 'My Column'; }

 getOptions: function() {

 return [new MyOption1({configurator: this}), new MyOption2({configurator: this})];

 }

});

Required Methods
You have to override the following methods in the subclass.

getColumnTypeName()

Returns column type name, used in the column configuration panel.

getDefaultColumnName()

Returns default column name.

Other Methods
These methods may be optionally overridden.

init(options)

Optional initializer.

Structure Plugin for JIRA

Page of 331 370

getGroupKey()

Return column preset's group key. See for reference.registerColumnGroup() (see page 325)

getMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this configurator to set up the UI. See

 for more information. By default returns , which Requesting and Using Metadata (see page 278) null

means that no metadata is needed.

Example

getMetadataRequests: function() {

 return {

 somedata: { // metadata key

 url: baseUrl + '/some/data/url', // request URL

 cacheable: true, // if the response for this URL can be reused for other

cacheable requests

 extract: function(response) { // response to the AJAX request

 return response.property || 1; // the actual value for context.getMetadata('somedata')

 }

 },

 otherdata: {

 url: baseUrl + '/other/data/url',

 cacheable: true

 }

 };

}

getOptions()

Returns array of column type options. Each option should be a subclass of ColumnOption Class (see page

.331)

Example

getOptions: function() {

 return [new MyOption1({configurator: this}), new MyOption2({configurator: this})];

}

ColumnOption Class

window.almworks.structure.api.ColumnOption

ColumnOption class represents a single column configuration parameter.

It needs to be subclassed for particular column type implementation and passed as return value in

 method.ColumnConfigurator.getOptions() (see page 331)

Options are displayed in column configuration dialog one after another with labels on the left and inputs on

the right.

Example

Structure Plugin for JIRA

Page of 332 370

var api = window.almworks.structure.api;

var MyOption1 = api.subClass('MyOption', api.ColumnOption, {

 title: 'Some option',

 init: function() {

 this.input$ = null;

 },

 createInput: function(div$) {

 this.input$ = div$.append('<input type="text" class="text">').find('input');

 var params = this.spec.params;

 this.input$.on('change', function() {

 if (params.someOptionAvaiable) {

 params.someOption = $(this).val();

 div$.trigger('notify');

 }

 });

 },

 notify: function() {

 var available = this.spec.params.someOptionAvaiable;

 this.input$.val(available ? (this.spec.params.someOption || '42') : '');

 return available;

 }

});

Properties
title

If set, title is displayed as a label to the left of the input controls. Option title representation may be

overridden in method.#createLabel(div$) (see page 333)

Required Methods
You need to override the following methods.

createInput(div$)

Should be overridden to provide custom HTML for the option input. parameter provides parent option div$

element to append your view to. Created input should trigger event on to notify Structure 'notify' div$

of any column parameters change.

Please honor the AUI Forms HTML layout when creating your input controls!

Example

createInput: function(div$) {

 var self = this;

 this.input$ = $('<input type="text" class="text">').appendTo(div$).on('change', function() {

 if (self.spec.params.myOption !== $(this).val()) {

 self.spec.params.myOption = $(this).val();

 div$.trigger('notify');

 }

 });

}

Structure Plugin for JIRA

Page of 333 370

Other Methods
init(options)

Optional initializer.

createLabel(div$)

May be overridden to provide custom HTML view for the input label. parameter provides parent option div$

element to append your view to. By default creates a right-aligned label with text of the #title (see page 332)

property.

Please honor the AUI Forms HTML layout if you override this method!

notify()

This method is called when the column configuration has changed. The implementation may want to update

its controls to reflect those changes. The method should return a indicating whether this option is boolean

available. Unavailable options will not be shown on the configuration panel. The default implementation

does nothing and always returns .true

Example

notify: function() {

 this.input$.val(this.spec.params.myOption);

 return true;

}

isInputValid()

Returns if the current column specification is valid from the point of view of this option. The column true

configuration won't be saved unless all of the options approve the specification. The default implementation

does nothing and returns .true

Example

isInputValid: function() {

 // Check that the "field" specification parameter is present.

 return !!this.spec.params.field;

}

ColumnType Class

window.almworks.structure.api.ColumnType

ColumnType class represents column type.

It needs to be subclassed for particular column type implementation.

Example

var api = window.almworks.structure.api;

var AwesomeColumnType = api.subClass('AwesomeColumnType', api.ColumnType, {

Structure Plugin for JIRA

Page of 334 370

 createSwitchTypePreset: function(context) { return { key: 'com.acme.structure.awesome-column',

params: {} }; },

 createAddColumnPresets: function(context) { return [

 { key: 'com.acme.structure.awesome-column', params: {} },

 { key: 'com.acme.structure.awesome-column', name: 'Awesome Column with a Twist', params: {

twist: true } }

]; },

 createConfigurator: function(context, spec) { return new AwesomeColumnConfigurator({context:

context, spec: spec}); },

 createColumn: function(context, spec) { return new AwesomeColumn({context: context, spec:

spec}); }

});

api.registerColumnType(new AwesomeColumnType(), 'com.acme.structure.awesome-column');

Methods
createSwitchTypePreset(context)

Returns default column specification to use when the user switches to this column type from another column

type in the column configuration panel. May return if the column type is unavailable.null

createAddColumnPresets(context)

Returns an array of column presets (specifications) for this type to be offered to the user in the Add Column

panel. May return an empty array if the column type is unavailable.

createColumn(context, spec)

Returns a new instance of subclass for the specified column specification. May return if the Column null

specification is invalid, the column type is unavailable, etc.

createConfigurator(context, spec)

Returns a new instance of subclass for the specified column specification. May ColumnConfigurator

return if the specification is invalid, the column type is unavailable, etc.null

getPresetMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this column type to create presets. Unless

the AJAX requests fail, the metadata will be available through when context.getMetadata(key)

 or is called. See createSwitchTypePreset() createAddColumnPresets() Requesting and Using

 for more information. By default returns , which means that no metadata is Metadata (see page 278) null

needed.

getColumnMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this column type to create Column

instances. Unless the AJAX requests fail, the metadata will be available through context.getMetadata

 when is called, and also will be available to the created instance via (key) createColumn() Column

. See for more information. By default this.context Requesting and Using Metadata (see page 278)

returns , which means that no metadata is needed.null

getConfigMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this column type to create

 instances. Unless the AJAX requests fail, the metadata will be available through ColumnConfigurator

 when is called, and also will be available to the context.getMetadata(key) createConfigurator()

created instance via . See ColumnConfigurator this.context Requesting and Using Metadata (see

 for more information. By default returns , which means that no metadata is needed.page 278) null

getMetadataRequests()

Structure Plugin for JIRA

Page of 335 370

Returns a JavaScript object specifying the metadata needed by this column type. Unless the AJAX requests

fail, the metadata will be available through when context.getMetadata(key)

, , , or createSwitchTypePreset() createAddColumnPresets() createColumn()

 is called, and also will be available to the created and createConfigurator() Column

 instances via . See ColumnConfigurator this.context Requesting and Using Metadata (see page 278

 for more information. By default returns , which means that no metadata is needed.) null

Example

getMetadataRequests: function() {

 return {

 somedata: { // metadata key

 url: baseUrl + '/some/data/url', // request URL

 cacheable: true, // if the response for this URL can be reused for other

cacheable requests

 extract: function(response) { // response to the AJAX request

 return response.property || 1; // the actual value for context.getMetadata('somedata')

 }

 },

 otherdata: {

 url: baseUrl + '/other/data/url',

 cacheable: true

 }

 };

}

3.6.6 Web Resource Contexts

The resources from the following web resource contexts are included by Structure pages:

Web resource

context

Pages that include it

structure.

widget

Structure Board (see page 12), Structure Gadget (see page 19)

See for the Loading Additional Web Resources For Structure Widget (see page 288)

recommended way of extending the widget.

structure.

printable

Printable page (see page 111)

For details about how to use web resource contexts, see .Atlassian Developer Documentation

3.7 API Usage Samples

Use the sample plugins to learn by example. Download the source bundle from this page and use it with the

latest API version.

https://developer.atlassian.com/display/JIRADEV/Web+Resource+Plugin+Module#WebResourcePluginModule-WebResourceContexts

Structure Plugin for JIRA

Page of 336 370

3.7.1 Download

Name Version Date

labels-extender-1.0.0.jar 7 2017-01-20 22:08

scheduled-sync-1.0.0.jar 7 2017-01-20 22:08

status-bar-column-2.0.0.jar 7 2017-01-20 22:08

structure-api-examples-3.0.0.zip 7 2017-01-20 22:08

The provided code is not production-quality and not supported. It is provided as a sample of how

one can use Structure API.

The sample code is in public domain – feel free to copy, modify and base your work on it.

3.7.2 Example List

Sample

Plugin

Description

simple-

plugin

Very basic demo of using .StructureManager

scheduled-

sync

A plugin that allows to schedule periodical full synchronization (resync).

foo-

synchronizer

A skeleton project for starting your own synchronizer plugin.

status-bar-

column

Adds a column to the Structure widget that shows a colored bar, depending on the

statuses of the sub-issues.

labels-

extender

A plugin that adds Labels Extender, which includes issues in the structure based on issue

key mentioned in Labels field of the parent issue.

3.8 Structure 3 API Changes

3.8.1 State of the API

In Structure 3 we had to change API in an incompatible way because the underlying architecture of the

product had changed. If you have integration with Structure 2, most likely it won't work with the new

Structure and some effort is needed to migrate the code.

https://wiki.almworks.com/download/attachments/8094411/labels-extender-1.0.0.jar?version=7&modificationDate=1484939330000&api=v2
https://wiki.almworks.com/download/attachments/8094411/scheduled-sync-1.0.0.jar?version=7&modificationDate=1484939331000&api=v2
https://wiki.almworks.com/download/attachments/8094411/status-bar-column-2.0.0.jar?version=7&modificationDate=1484939331000&api=v2
https://wiki.almworks.com/download/attachments/8094411/structure-api-examples-3.0.0.zip?version=7&modificationDate=1484939330000&api=v2

Structure Plugin for JIRA

Page of 337 370

As of Structure versions 3.0 – 3.1, the new API is not yet finalized and thorough documentation is not yet

published. We plan to spend additional effort on making the APIs simple, stable and well-documented and

publish the final documentation then.

Until that time, it's possible to use the current non-published API with Structure 3, however:

There’s no public documentation on it. The sources of the API artifact are published, but they mostly

don’t have javadocs yet.

There will be backwards-incompatible changes while we finalize the API. The concepts and

interfaces will stay mostly the same, but some classes may be moved and optimized. This is less

likely to impact REST API, although we plan to introduce new REST APIs that would be simpler than

the low-level API we have now.

There will be new interfaces that would make it easier to deal with the new concepts. Right now it

may be a little “low-level” and somewhat more complicated than it needs to be.

Although the documentation about the new API is not available, Structure team will be happy to assist you

in migrating your code to work with Structure 3.

This article lists some of the most frequently used API calls. If you need to do something that is not covered

by this article or have any questions, please write us at support@almworks.com

3.8.2 Conceptual Changes

Forests and Rows
In Structure 2, a structure's content was called a . That is still the case, however, the forest now forest
contains rather than issues. A row has a Row ID – a long integer primary key for the row. Given row rows
ID, you can retrieve information about the item displayed in that row.

The data structure that represents a forest didn't change. Previously a forest was represented by an array of

pairs . Now the forest is represented by an array of pairs .(issueID, depth) (rowID, depth)

The concept of a row may seem superfluous, but it's actually required for uniquely identifying a

specific position in a forest. Issue ID (or Item ID) is not sufficient because an issue can be located

at multiple places in the forest.

Items
Each row has an associated an issue, a folder, a project or any other type of items. In Structure 3, – item
item types are extendable and an add-on may provide additional types of items to Structure. An item is

identified by , which consists of: Item Identity

Item Type, represented by a complete module key of a JIRA plugin module that provides the item

type, and

Structure Plugin for JIRA

Page of 338 370

Item ID, represented by a long integer (for example, issue ID for issues) or by a string (a user either

key for users).

Sometimes item type is omitted; in that case the implied item type is "issue".

Some of the most popular item types are:

Item

Type

Module Key Meaning of

Item ID

Comments

Issue com.almworks.jira.structure:

type-issue

Issue ID

(long)

Default when item type is not

specified

Folder com.almworks.jira.structure:

type-folder

Either folder

ID (long) or

folder i18n

name

(string)

Folders are introduced in Structure 3

User com.almworks.jira.structure:

type-user

User key

(string)

Generator com.almworks.jira.structure:

type-generator

Generator

ID (long)

A generator is an automation rule

embedded in the structure.

Page com.almworks.structure.

pages:type-confluence-page

Page ID (ID

modulo 1e9)

Confluence pages are added as a

type by Structure.Pages extension

Attributes
Attributes are a generalization of a JIRA's issue fields. An attribute is something that can be calculated for

an item. For example, an issue has such attributes as "summary", "key", "priority". But purely Structure-

related values are also attributes, such as "sequential number", or "aggregate progress", or "sum of story

points". The attributes can also be retrieved for any types of items – for a Confluence page (provided by

Structure.Pages extension), "summary" would be the title of the page, "labels" would be the labels, and a

new attribute "author" would provide the initial author of the page.

Attributes are identified by an attribute specification, or . It is usually represented as a JSON attribute spec

object with an ID and parameters.

Concept Comparison

 Structure 2 Structure 3

A structure's content is ... Forest Forest

Things that can be placed into a structure are ... Issues Items (including issues)

Forest consists of ... Issues Rows

Structure Plugin for JIRA

Page of 339 370

 Structure 2 Structure 3

A position in a forest is identified by ... Issue ID Row ID

A value in the Structure grid is displayed by ... Column Column

A column requests from the server ... Fields Attributes

3.8.3 REST API

Retrieving Structure Forest

GET /rest/structure/2.0/forest/latest?s={%22structureId%22:$id}

This method retrieves a content of a structure. If structure has generators, the generated content is

returned. Generators are preserved in the forest.

Parameters:

$id – structure ID

Return value sample:

{

 "spec":{"structureId":171},

 "formula":"10394:0:4/356,10332:0:14707,10374:1:5/240,10348:2:14717",

 "itemTypes":{

 "4":"com.almworks.jira.structure:type-generator",

 "5":"com.almworks.jira.structure:type-folder"

 },

 "version":{

 "signature":-1659607419,

 "version":1

 }

}

In this reply, the most important part is "formula", which contains serialized information about the forest,

much like in Structure 2.Each component (delimited by comma) represents a row and looks like this:

. In this example, the numbers are:10374:1:5/240

10374 is the row ID,

1 is the row depth,

5/240 is the item identity. If the row contains an issue, it’s just issue ID, otherwise it has the format

of , or . Item type is a <item type>/<long item id> <item type>//<string item id>

number, which is expanded in the “itemTypes” map in the reply.

Structure Plugin for JIRA

Page of 340 370

Updating a Structure Forest

POST /rest/structure/2.0/forest/update

Parameters:

{

 "spec": { "structureId": <id> }, // use structure ID

 "version": { "signature": <signature>, "version": <version> }, // use last seen signature

and version

 "actions": [

 {

 "action": "add",

 "under": 0, // at the top level

 "after": 123, // after row ID 123 (not issue iD!)

 "before": 456, // before row ID 456

 "forest": "-100:0:10001" // insert issue 10001, -100 is the temporary row ID which

will be mapped into the real row ID when the method returns

 },

 {

 "action": "move", // works like previously, only row IDs instead of issue IDs

 "rowId": 123,

 "under": 456,

 "after": 0,

 "before": 124

 },

 {

 "action": "remove",

 "rowId": 442

 }

]

}

Creating a structure

POST /rest/plugins/structure/2.0/structure

Parameters:

{

 "name": "my structure",

 "description": "my description",

 "permissions": [] // same format you see when you GET structure

}

Structure Plugin for JIRA

Page of 341 370

Deleting a structure

 DELETE /rest/plugins/structure/2.0/structure/<id>

3.8.4 Java API

Versions
As Structure 3 API is finalized, it's getting a lot of refactoring and version changes. A new Structure version

may have a backward-incompatible API, although incompatibilities may be isolated and your code has a

good chance to work fine. However, the major version is promoted every time a backward-incompatible

change is made, therefore you need to carefully set up the version of imported API packages – either set

them optimistically (for example, – up to version 15) and test your integration with a new release [12,15)

to see that there are no errors; or set the version as usual – for example, – but then you might [12,13)

need to recompile with each new release of the API. The latter approach is recommended for in-house

customizations.

Version Supported JIRA

Versions

Introduced in Structure

Version

OSGi

Import

OSGI Import

(Optimistic)

12.0.0 JIRA 6.3+ 3.0.0 "[12,13)" "[12,15)"

12.1.0 JIRA 6.3+ 3.0.1 "[12.1,13)" "[12.1,15)"

13.0.0 JIRA 6.3+ 3.1.0 "[13,14)" "[13,16)"

13.0.1 JIRA 6.3+ 3.1.1 "[13,14)" " [13,16)"

The API versions and sources are available from the public Maven repositories – http://mvnrepository.com

/artifact/com.almworks.jira.structure/structure-api

Retrieving Structure's Forest
To get the content of a structure, you need to use interface, which can be injected. It has ForestService

 method that will return a given which is a getForestSource() ForestSource ForestSpec,

specification of what kind of forest you are retrieving. For getting just a content of a structure, use

. Once you have a , you can use ForestSpec.structure(structureId) ForestSource

 to retrieve an instance of – which should be forestSource.getLatest().getForest() Forest

familiar from the Structure 2 API.

But now contains row IDs, not issue IDs, so to get information about what issues (or other items) Forest

are in the forest, you need to "dereference" each row ID.

http://mvnrepository.com/artifact/com.almworks.jira.structure/structure-api
http://mvnrepository.com/artifact/com.almworks.jira.structure/structure-api

Structure Plugin for JIRA

Page of 342 370

Working with Rows
For working with rows, use . To get an item ID from a row ID, use RowManager rowManager.getRow

. This gives you instance. To see if it is an issue, use (rowId).getItemId() ItemIdentity

 and to get issue ID in that case, use .CoreIdentities.isIssue(itemId) itemId.getLongId()

To get all row IDs for a given issue ID (for example, to find an issue in a forest), you can use rowManager.

. These row IDs may be from multiple forests, so you findRows(CoreIdentities.issue(issueId))

need to see if the forest that you have contains some of those IDs.

Getting Totals and Other Values
To calculate totals or other Structure-calculated values, you need to use .StructureAttributeService

StructureAttributeService.getAttributeValues() has the following parameters:

ForestSpec – use the same forest spec that you use to retrieve the forest;

row IDs – you need to specify for which rows (not issues!) the values are requested;

a collection of – specify which attributes are requested.AttributeSpec

You need to build a list of attribute specs to specify what to calculate. There are several ways to get a

correct attribute spec:

Some specs are defined in .CoreAttributeSpecs

You can build a spec using .AttributeSpecBuilder

You can parse a JSON representation of a spec into a then extract "id" and "params".Map,

Examples:

Attribute Spec

Story Points

AttributeSpecBuilder

 .create(“customfield", ValueFormat.NUMBER)

 .params()

 .set("fieldId", 10000) // 10000 – the id of

"Story Points" custom field

 .build()

 Story Points

AttributeSpecBuilder

 .create("sum", ValueFormat.NUMBER)

 .params()

 .setAttribute(storyPoints) // storyPoints =

the attribute spec for Story Points

 .set("distinct", true) // exclude

duplicates

 .build()

Structure Plugin for JIRA

Page of 343 370

Changing Structure
To change a structure, you need to use method. Each update is a UpdatableForestSource.apply()

separate transaction – the concept of a ForestTransaction used in Structure 2 has been removed.

To get an instance of you need to cast retrieved from UpdatableForestSource ForestSource

.ForestService

Examples:

Operation Code

Add an issue with ID 10200 to structure, under parent row with ID 1040, after

row with ID 1900 and before row with ID 2000 forestSource.apply(

new

UpdatableForestSour

ce.Update.Add(

 CoreIdentities.

issue(10200), 1040,

1900, 2000))

Remove rows with IDs 10100 and 10102

forestSource.apply(

new

UpdatableForestSour

ce.Update.Remove(

 LongArray.create(

10100, 10102)))

Move row with ID 1010 as the first row under parent row with ID 1040, before a

row with ID 1060 forestSource.apply(

new

UpdatableForestSour

ce.Update.Move(

 LongArray.create(

1010), 1040, 0, 106

0))

Structure Plugin for JIRA

Page of 344 370

1.

2.

4 Structure FAQ

4.1 Frequently Asked Questions

4.2 Cannot Create an Issue With +Next Issue (+Sub-

Issue) Because of the Required Fields

4.2.1 Question

I have a number of fields required for the issues. When I try to use Structure's or +Next Issue +Sub-Issue

button, the creation of the issue fails, because the values of the required fields were not provided.

4.2.2 Answer

You can enter other fields when creating a new issue.

Use to add the required fields to the view."+" button (see page 43)

When entering a new issue, use and to switch between edited fields. You can also Tab Shift+Tab

click in a cell to edit it, or use other .Keyboard Shortcuts (see page 206)

If the initial creation of an issue has failed, you don't have to lose the entered data. Just add the

required fields and double-click on the value you need to edit, or click button in the toolbar. Edit

You can change the values of the new issue and try to create it again.

For convenience, you can set up a separate view for entering new issues (or modify the preset view called

), so you can quickly switch between different sets of columns. See Entry Saving and Sharing Views (see

 for details.page 45)

4.3 Plugin Manager Says Structure Is Unlicensed

4.3.1 Question

I have a valid license installed. Why do I see Structure as or having in the Unlicensed Action Required

Plugin Manager?

Structure Plugin for JIRA

Page of 345 370

4.3.2 Answer

That may be so because Plugin Manager is not aware of ALM Works licenses. To verify the true status of

your Structure license, please check page. If it shows you Administration | Structure | License Details

that the license is OK, you can safely ignore the status of the Structure license in Plugin Manager.

Structure supports two kinds of licenses — purchased via Atlassian and issued by ALM Works. For details,

please see .Setting Up Structure License (see page 220)

4.4 No Check Mark Displayed for a Resolved Issue

4.4.1 Question

Why do I see a resolved issue in Structure, but there's no green check mark, which usually indicates that an

issue is resolved?

This article answer these questions as well:

Why do I see a check mark on a unresolved issue?

Why does an open issue that still in the work have 100% progress indication?

When I turn on "Unresolved" filter button, why do I see some of the resolved issues anyway?

4.4.2 Answer

The JIRA's notion of a "Resolved Issue" (or "Completed Issue") can be quite confusing. The source of

confusion is that an issue is considered to be resolved based on its field, not based on its Resolution

Status:

Unresolved means that the Resolution field is empty, regardless of issue Status.

Resolved means that the Resolution field has some value, regardless of issue Status.

If an issue has a non-empty Resolution field (i.e. considered Resolved):

The green check mark is displayed in Structure on that issue;

The issue is filtered out by the Unresolved button;

The progress of the issue is 100% regardless of other fields.

See also: , , Flags Column (see page 62) Filtering (see page 66) Progress Column (see page 50)

Problems Caused By Custom Workflows
The default workflow in JIRA contains the "Resolved" status and if you select this status, JIRA requires you

to select some non-empty value for the Resolution field too. Thus, the issue gets the Resolved status and

becomes truly resolved (or completed), because it has a value in the Resolution field.

Structure Plugin for JIRA

Page of 346 370

1.

2.

3.

4.

1.

2.

The confusion may arise, if in a custom workflow / screen configuration, Resolution field is not set as

required or not added to the screens, associated with transitions to the Resolved status. In this case, a user

may move an issue to the Resolved status, but the issue will still be unresolved/uncompleted, because the

Resolution field is still empty.

If you have such a configuration, in the Structure this problem may manifest itself when you are trying to use

the Unresolved filter button (which works as a shorthand for filtering using JQL: "Resolution is EMPTY

"). The issues with the Resolved status but with no Resolution will still be visible even if you switch the filter

on.

Solution:

Edit your workflow: in all transitions to a status that should be considered resolved, use a screen with

the Resolution field.

In all transitions to a status that should not be considered resolved, use "Clear Resolution" step.

Make Resolution field required. (It will matter only if Resolution is added to the screen configuration.)

Check all screens - "Edit Issue" screen and all screens not mentioned in (1) above should not contain

Resolution field.

Problems Caused By Manually Added "Unresolved" Resolution Value
To make matters worse, sometimes JIRA administrators add a new resolution option, named "Unresolved".

Then, for example, on the workflow's "Reopen" step configuration, instead of clearing the Resolution, they

change it to this "Unresolved" value.

The problem is that the new "Unresolved" resolution is still a non-empty value, and any issue having this

value in the Resolution field will be considered resolved, by JIRA and Structure and other plugins.

But on the issue page, the user will see . So it will be practically impossible to Resolution: Unresolved

distinguish this resolved (completed) issue from the issues which are really unresolved (have empty

Resolution field).

Solution:

Use JIRA's Bulk Change to clear resolution from all issues that have Resolution "Unresolved".

Remove resolution "Unresolved".

4.5 Structure plugin won't start

4.5.1 Question

I try to install (enable) Structure plugin, but it doesn't work. When I reload Plugin Manager page, Structure

plugin is disabled. What is the problem?

Structure Plugin for JIRA

Page of 347 370

4.5.2 Answer

Structure plugin may fail to start due to the following reasons. To better understand what's going on, check

JIRA logs (or) and verify each of the following possible causes.catalina.out jira-application.log

Structure database cannot be created or opened, filesystem read-only

or full
Structure stores all its data in sub-directory of the JIRA home directory. At first launch, it tries structure/

to create that directory and shuts down if fails to do so. At every start it tries to open the database contained

there and also shuts down if fails to do so. In all cases, there should be a big warning or error message in

the JIRA log.

Possible actions:

Create sub-directory manually and grant full permissions on it to the account that is used structure

to run JIRA.

Verify that filesystem is not read-only.

Verify that there's enough free disk space (at least 100 MB).

Verify that Structure's database is not opened with some other tool, like Derby console.

See also: Structure Files Location (see page 242)

Some of the required system plugins are disabled
Structure relies on some of the system plugins. If they are disabled, you may get all kind of weird messages

from JIRA when it tries to start Structure.

Note that it is quite likely that the error messages will be completely unrelated to the disabled plugins. For

example:

com.atlassian.plugin.PluginParseException: Unable to load the module's display conditions:

Could not load 'com.almworks.jira.structure.web.UserCanCreateStructureCondition' in plugin com.

almworks.jira.structure

... stack trace ...

Caused by: com.atlassian.plugin.web.conditions.ConditionLoadingException: Could not load 'com.

almworks.jira.structure.web.UserCanCreateStructureCondition' in plugin com.almworks.jira.

structure

... stack trace ...

Caused by: java.lang.IllegalStateException: Cannot autowire object because the Spring context

is unavailable. Ensure your OSGi bundle contains the 'Spring-Context' header.

... stack trace ...

Possible actions:

Open , click . Verify that all Administration | Plugins | Manage Plugins Show System Plugins

plugins are enabled. If some are disabled, enable them, then try to enable or reinstall Structure.

Structure Plugin for JIRA

Page of 348 370

If for some reason you need to keep some of the plugins disabled, and Structure wouldn't start without

them, please write to .support@almworks.com

Incomplete download or corrupt plugin JAR file
It is possible for the Plugin Manager to download the plugin JAR file only partially, if there are any problems

with the server or the connection.

Also, it has been reported that if you download the plugin manually with Internet Explorer, it completely

messes up the JAR file and turns it into a ZIP file with absolutely invalid content.

To verify that you have a correct JAR file, locate plugin JAR in directory plugins/installed-plugins

under your JIRA home. Structure plugin has the word "structure" in its file name. Verify that the JAR file

MD5 hash is the same as listed on the page.Download Archive

Incorrect JIRA setup
A symptom that provides evidence in favor of this cause is that contain one or several JIRA application logs

lines that look like the following:

ERROR [plugin.osgi.factory.OsgiPlugin] Unable to start the Spring context

for plugin com.almworks.jira.structure

In order for Structure plugin to work, it requires some of standard Atlassian plugins, such as the one that

allows Structure to post to the . We have been reported of cases where these plugins Activity Streams

cannot start because

 variable was set in in -Datlassian.org.osgi.framework.bootdelegation JAVA_OPTS setenv.sh

(), as recommended in . If you are using JIRA setenv.bat this comment to the Upgrade to JIRA 4.2 Guide

5.0 or later, please try to remove the variable from and see whether it resolves the problem.JAVA_OPTS

If none of the above help resolve the problem, please contact ALM Works support.

4.6 After an Issue is Moved to Another Project, It

Cannot Be Found in the Structure

4.6.1 Question

An issue was added to the structure. Afterwards, the issue was moved in JIRA to another project. Now, the

issue cannot be found in the structure, either by summary, or by the new or old issue key. What happened?

https://wiki.almworks.com/display/structure/Download+Archive
https://confluence.atlassian.com/pages/viewpage.action?pageId=16121981
https://confluence.atlassian.com/display/JIRA/Adding+the+Activity+Stream+Gadget
https://confluence.atlassian.com/display/JIRA/Updating+JIRA+Plugins+for+JIRA+4.2?focusedCommentId=228623879#comment-228623879

Structure Plugin for JIRA

Page of 349 370

4.6.2 Answer

Please check that the project where the issue was moved to is . enabled for Structure (see page 225)

Structure plugin ignores issues in the projects that are not Structure-enabled, so the moved issue is ignored

too, as if it ceased to exist.

If you need this issue in the structure, either include the project where the issue resides now into the list of

 or move the issue to an already Structure-enabled project, e.g., Structure-enabled projects (see page 225)

to the original project.

4.7 User Cannot Access Structure, Although

Permissions Have Been Granted

4.7.1 Question

Initially, the user (either a normal JIRA user or a JIRA administrator) could not access Structure plugin

because it was not or not . A enabled for the user (see page 226) enabled in any project (see page 225)

JIRA administrator has granted permissions for the user (by either adding her to the group that can access

Structure or enabling the group the user belongs to for Structure access) or enabled Structure for some

projects. However, the user still cannot see the Structure menu and cannot access any structure. How to

resolve this problem?

4.7.2 Answer

Configured permissions related to Structure are cached on the server, so for a couple of minutes after the

JIRA administrator makes changes to the permissions, the user may not be able to access Structure. These

caches will last for approximately 5 minutes before they automatically refresh, after that the user will be able

to use Structure.

There is a way to enforce cache refresh: the user should do a of a JIRA page in their browser, hard refresh

after that they should be able to use Structure immediately. In most browsers, hard refresh is achieved by

clicking the Refresh button while holding or button. There's a good list of ways to do a hard Ctrl Shift

refresh in all popular browsers on Wikipedia: .http://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

4.8 Issues Not Added to a Structure when Using Links

Synchronizer or Import

4.8.1 Question

I'm trying to use Links synchronizer (Import) with link type X but the issues are not added to the structure.

http://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

Structure Plugin for JIRA

Page of 350 370

4.8.2 Answer

Link synchronizer's ability to add issues to the structure is controlled by the parameter.Scope

If you'd like to add issues that have a link of type X to the structure, run Import with all Synchronize

 turned on.all issues

Note that if you install a synchronizer (rather than run an Import) with Synchronize all

 on, it will continuously work both ways - removing issues from the structure will issues

cause links to be removed. If you run a and choose direction from Resync (see page 157)

Structure to Links, then all links of type X between issues that are not in the structure (but

from projects enabled for Structure) will be . If you Resync an empty structure to deleted

links with on, you'll effectively remove all links of that type.Synchronize all issues

If you'd like to add of the linked issues to the structure, you need to first add them via some Search

 or , and then run Import with (see page 63) Filter Synchronizer (see page 161) Synchronize issues

 selected. Use options if you want the synchronizer to that are already in the structure Expand to...

add missing sub-issues or parent issues to the structure.

See also: Links Synchronizer (see page 164)

4.9 Where to find JIRA Server ID

Structure license is tied to a particular JIRA Server and for generating a license for a server, a Server ID is

required.

Server ID is a 16-digit code, that JIRA Administrator can look up in JIRA menu Administration | System Info

or in Administration | Structure | License Details.

4.10 Integration with JIRA Agile (Greenhopper)

4.10.1 Question

We're using JIRA Agile (GreenHopper) - are there any conflicts with Structure? Can we see the Structure's

hierarchy in JIRA Agile?

4.10.2 Answer

You can use JIRA Agile and Structure side by side. Structure plugin stores its data in a separate place, so it

will not conflict with any other plug-in.

Structure Plugin for JIRA

Page of 351 370

By default, Structure's hierarchy and issue order are independent from JIRA Agile's, but you can install a

 to have Agile Rank synchronized with the position JIRA Agile (GreenHopper) Synchronizer (see page 167)

in the Structure and Epics synchronized with the positions of stories under epics in the Structure.

JIRA Agile displays the hierarchy of a selected issue in a separate Structure-provided tab in the issue

details panel.

See also: , JIRA Agile (GreenHopper) Synchronizer (see page 167) Structure on Agile Boards (see page 27

)

4.11 Using Subtasks and Structure

4.11.1 Question

Should I disable sub-tasks to use Structure?

4.11.2 Answer

Not necessarily. While Structure plugin can be a good replacement for sub-tasks, they can be used in

parallel — for example, if you want to try Structure on a single project without affecting other JIRA users.

Structure treats sub-tasks as any other issues. You can also install a Sub-Tasks Synchronizer (see page

, which makes sure that JIRA sub-tasks are positioned under their JIRA parent issues.160)

4.12 Difference from Sub-tasks

4.12.1 Question

How is issue hierarchy provided by Structure plug-in different from the standard sub-tasks?

4.12.2 Answer

Sub-tasks have several major limitations:

sub-tasks are only a one-level hierarchy;

sub-tasks are separate issue types;

sub-tasks always inherit project and security level from their parent task.

None of these limitations are present in Structure. At the same time, Structure plugin provides all the

features that sub-tasks have, and more.

See also: Structure Widget Overview (see page 30)

Structure Plugin for JIRA

Page of 352 370

1.

2.

4.13 Some Link Synchronizer Operations Are Not

Written to the History

4.13.1 Question

Link creation and removal operations, when performed by link synchronizers, are not written to the issue

history and activity streams. Why?

4.13.2 Answer

They are not written because doing so may affect JIRA performance. If you want them to be written, please

perform the following steps:

Add a new JIRA startup system property: -Dstructure.bulkLinkProcessor.

useLinkManager=true

This page describes how to add JIRA startup properties.

Restart JIRA

4.14 Why Use Structure Plugin?

4.14.1 Question

Why use Structure plugin?

4.14.2 Answer

Structure plugin makes Atlassian JIRA a perfect tool for planning, mind mapping or task decomposition.

Project managers can make extensive plans and monitor progress using JIRA issues. Project team

members can break down tasks into smaller pieces for more precise estimation and reporting.

See also: Why Structure?

4.15 Performance Considerations

For those, who have large JIRAs (hundreds of thousands of issues) there are a few things to bear in mind

when working with the Structure.

https://confluence.atlassian.com/display/JIRA/Setting+Properties+and+Options+on+Startup
https://wiki.almworks.com/pages/viewpage.action?pageId=3638111

Structure Plugin for JIRA

Page of 353 370

1.

2.

3.

4.

The recommended limit for the number of issues in one structure is 100K and with this Structure already

might be working noticeably slower, especially if there are many users working with the Structure Board at

the same time.

So what we recommend is to distribute the issues between several smaller structures (5-10K issues per

structure works perfectly) - the number of structures does not affect the performance that much.

Another thing that may affect the performance are the . Incorrect synchronizers (see page 151)

synchronizers configuration may lead to conflicts when one synchronizer reverses the actions of the other,

and vice versa. There is a safeguard mechanism that stops the cycle and sends warnings, but the next user

action might trigger it again, so there's a possibility of wasted CPU cycles and overgrowth of the structure

change history.

There were also several customer specific issues, which only reproduced in the customer's environment,

but they were successfully resolved each time.

If necessary, you can also to reduce the load (for switch off some parts of the structure (see page 242)

example, the Structure panel on the Issue Page) and Structure is limit the group of users (see page 251)

exposed to.

4.16 How to restore the structure using History

Sometimes you might want to restore a structure to some previous state. For example, if it was incorrectly

modified by some user, or if some synchronizer was not configured correctly and it did not work the way the

user expected.

Here is what you can do in this situation:

Open the structure panel.History (see page 109)

In the history, find and select the moment when the structure was in the desired state (before the

unwanted changes took place).

Press CTRL+A to select all issues and press CTRL+C to cut them to clipboard.

Switch off history panel and press CTRL+V – this should rearrange structure according to the view

you selected in the history.

If you have some complicated synchronizers (for example, the ones, which use S-JQL in their

configuration), it may be a good idea to temporarily disable the synchronizers before restoring and

then enable them back and run the resync.

4.17 Can I export a structure to Microsoft Word so that

it can be emailed as a document?

Exporting a structure to MS Word directly is not supported at this time. The nature of Structure plugin is

such, that the format and the presentation of data is much closer related to MS Excel than that of MS Word.

Structure Plugin for JIRA

Page of 354 370

To export to Excel just click a drop-down arrow on the button located on the right of the Export Structure

, and choose . Structure will create an MS Excel file with the same name as the Toolbar Export to Excel

structure that you are exporting and will save it in your browser's folder.Download

Once you have the file, you can open it, copy the data you need and paste it into any MS Word file for

further formatting.

Another way to convert a structure into a document that can be shared with a customer, is to use |Export

 and then use any "PDF Printer" to save it as a PDF File.Printable Page

Structure Plugin for JIRA

Page of 355 370

1.

a.

b.

2.

3.

4.

5.

5 Structure Troubleshooting

5.1 Collecting Support Zip

ALM Works support may ask you to collect a Support Zip during a support case investigation.

To collect Support Zip, you will need permissions in your JIRA. You will System Administrator

also need a way to transfer files from the host that runs JIRA instance.

If you do not have the required access, please ask your JIRA administrator or your system

administrator for assistance.

To collect a Support Zip:

Open page.Administration | System | Logging and Profiling

Enter STRUCTURE TROUBLESHOOTING into the field, turn on Optional Message Log

 and press .Rollover Mark

Scroll down and click , enter package name Configure logging level for another package

then select logging level DEBUG and click . com.almworks Add

Reproduce the problem being investigated.

Open , switch to tab. Select Administration | System | Atlassian Support Tools Support Zip

options , , , . Unselect Application Properties Thread Dump JIRA Application Logs Tomcat Logs

all other options. Click .Create

Use access to the system that hosts JIRA to get the support zip file. If the file is larger than 100 MB,

please create the support zip again but also turn on option Limit File Sizes.

Send the resulting ZIP file to ALM Works support by email or attach it to the support request in ALM

.Works JIRA

5.2 HAR Network Report

HAR Network Report is something we (ALM Works Support) may ask you to collect, to help us understand a

tricky problem that we could not reproduce.

HAR stands for , a text-based format for the log of network communications HTTP Archive Format

between a user agent (the browser) and a web server. You can also use this report with a HAR

 for in-depth analysis of your JIRA page load performance. (Be aware though that with an Viewer

online viewer you may transfer sensitive or security-related information to a third party.)

https://jira.almworks.com
https://jira.almworks.com
http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-viewer/
http://www.softwareishard.com/blog/har-viewer/

Structure Plugin for JIRA

Page of 356 370

1.

2.

3.

4.

5.

6.

5.2.1 Collecting HAR Report with Google Chrome

Open a new Chrome window and navigate to the page where the problem happens.

Press or use menu to open a section with developer Ctrl+Shift+I Wrench | Tools | Developer Tools

tools. Switch to the tab there. Make sure tab is selected below.Network All

Reload the page by using or clicking the Reload button. This will make Network tab log all Ctrl+R

network exchange during page load.

The network tab will start collecting information or network exchange automatically after it's

opened. If you know that the problem is not related to the initial page load, you may skip

this step to avoid adding extra data to the log. If unsure, reload the page to collect the full

report.

Reproduce the problem being analyzed.

After the problem has been reproduced, on the column in the Network tab and right-click Name

choose either or Save all as HAR Copy all as HAR

Paste the report into an e-mail to our support, or attach the saved .HAR file.

Structure Plugin for JIRA

Page of 357 370

1.

2.

3.

5.3 Troubleshooting Synchronizers

Structure synchronizers (see page 151) work in background and can lead to changes in the structures or

issue data that might be hard to trace. Complex configuration rules don't make things better, so it's

important for JIRA admin to be able to track which synchronizers are doing what and what has caused a

particular change a user is complaining about.

5.3.1 Structure Audit Log

Starting with Structure 3, all standard synchronizers record all actions they have taken in the database and

allow the administrator to undo the changes. Navigate to Administration | Structure | Support |

 to query history or apply undo.Synchronizer Audit Log

5.3.2 Log Files

To get detailed reports about what's going on, you can reconfigure your JIRA logging so that structure

synchronizers can produce more verbose messages. Also, you might want to direct messages from the

synchronizers into separate log files.

The appearance of detailed synchronizer messages is governed by the log level: the lower the log level, the

more detailed messages can appear. By default, log level for structure synchronizers is , and you can WARN

set it to lower levels, like (the lowest one.) You can set the logging level either DEBUG temporarily (see page

 (until the next JIRA restart) or .357) permanently (see page 357)

To see the list of possible log levels and other general information regarding logging in JIRA, please refer to

.JIRA logging documentation

Temporarily change log level for structure synchronizers
If you set log level in this way, it will not persist after you restart JIRA. This is a relatively simpler way than

setting the log level permanently.

Log in as a user with the global permission.JIRA System Administrators

Select | | | (tab). The Administration System Troubleshooting and Support Logging & Profiling

'Logging' page will be displayed, which lists all defined log4j categories (as package names) and their

current logging levels.

Locate and click the link that reads "Configure logging level for another package", and a dialog will be

displayed. For troubleshooting bundled synchronizers, specify package name com.almworks.

; choose the appropriate logging level, e.g. .jira.structure.ext DEBUG

https://confluence.atlassian.com/display/JIRA/Logging+and+Profiling
https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions

Structure Plugin for JIRA

Page of 358 370

1.

2.

3.

Permanently change log level for structure synchronizers or set up

separate log files for synchronizers
This way, you need to modify the file, which is located in the log4j.properties JIRA installation directory

.

The package name that all bundled synchronizers log under is . You com.almworks.jira.structure

can add the following lines to have debug messages from synchronizers show on the console and/or in the

log file (depending on their respective log levels):

log4j.logger.com.almworks.jira.structure = DEBUG, console, filelog

log4j.additivity.com.almworks.jira.structure = false

Or, you can set up a separate log file for synchronizer actions:

log4j.appender.structure-sync=com.atlassian.jira.logging.JiraHomeAppender

log4j.appender.structure-sync.File=structure-sync.log

log4j.appender.structure-sync.Threshold=TRACE

log4j.appender.structure-sync.MaxFileSize=20480KB

log4j.appender.structure-sync.MaxBackupIndex=1

log4j.appender.structure-sync.layout=org.apache.log4j.PatternLayout

log4j.appender.structure-sync.layout.ConversionPattern=%d %t %p %X{jira.username} [%c{4}] %m%n

log4j.logger.com.almworks.jira.structure = DEBUG, structure-sync, console

log4j.additivity.com.almworks.jira.structure = false

5.4 Structured JQL Troubleshooting

If a query doesn't work as expected, please try the following steps.Structured JQL (see page 178)

Double-check if the query itself correctly expresses what you are searching for. Feel free to ask a

question on or write to if you need help with S-JQL.Atlassian Answers support@almworks.com

Probably, JIRA indexes that are used for searching have become corrupt. Please try to do a full

 — note that you should use option, the other one is reindex of JIRA Lock JIRA and rebuild index

known to not help when indexes are corrupted.

If the query still returns strange results, please go to the Structured JQL Troubleshooting page and

follow the instructions outlined there:

<base URL>/secure/StructuredJqlTroubleshooting.jspa

Here, refers to the .base URL JIRA base URL

On this page, you will be able to run a Structured JQL query and collect extensive logs which we in

ALM Works can inspect in order to track down the issue.

https://confluence.atlassian.com/display/JIRA/JIRA+Installation+Directory
https://answers.atlassian.com
https://confluence.atlassian.com/display/JIRA/Search+Indexing
https://confluence.atlassian.com/display/JIRA/Search+Indexing
https://confluence.atlassian.com/display/JIRA/Configuring+JIRA+Options

Structure Plugin for JIRA

Page of 359 370

1.

2.

3.

5.5 Collecting Performance Snapshots

Performance snapshots allow ALM Works support team to analyze performance-related problems on your

JIRA server without direct access to it.

5.5.1 Download and install Atlas-Yourkit plugin.

Get the latest version from this page. In JIRA 4.3 and later, you can install this plugin without JIRA restart.

The performance analysis plugin and redistributed parts of YourKit profiler are free, but if you'd like to

analyze the performance snapshots yourself, you'll need to obtain YourKit license and download YourKit

software (they provide a free evaluation period).

Name Version Date

atlas-yourkit-0.2.jar 7 2017-01-20 22:08

5.5.2 Load Profiling Agent

Open menu (hint: in JIRA 4.4 Administration | Troubleshooting and Support | YourKit Profiling

and later versions, press ("g" twice) and search for "yourkit").g,g

If agent is already loaded, you'll see profiling controls - skip this step then.

Click to load profiling agent. You'll need to have JDK installed. If you don't have JDK Load Agent

installed – follow the link on that page, download and install a matching JDK on JIRA host. It is not

necessary to restart JIRA, just install the JDK and load agent.

There's certain risk that JVM will crash when loading profiling agent into JVM. A safer method of

loading profiling agent is by changing JIRA start-up parameters (in /) and setenv.sh setenv.bat

specifying parameters with other options. See for details.agentpath YourKit Documentation

5.5.3 Capturing CPU Performance Snapshot

After profiling agent is loaded, you can click on the YourKit page, then perform the Start CPU Sampling

actions that make JIRA slow, or wait for some time to collect the statistics. When finished, click Stop CPU

. Performance snapshot will be saved to a directory within your JIRA Home, and the path will be Sampling

shown on the YourKit page.

5.5.4 Capturing Memory Snapshot

Click "Take Memory Snapshot" - memory dump will be collected and saved in a file under your JIRA Home.

Do not take memory snapshots unless you need to!

https://wiki.almworks.com/download/attachments/8749663/atlas-yourkit-0.2.jar?version=7&modificationDate=1484939322000&api=v2
http://yourkit.com/docs/10/help/agent.jsp

Structure Plugin for JIRA

Page of 360 370

Taking memory snapshot is usually a long operation, which could last several minutes. During that

time JIRA will be completely frozen. Make sure you've got enough disk space (several GBs). Don't

panic - it does take that much time. After you click the button the page will be reloading. The

browser may fail to load the page due to timeout - check JIRA logs to see when snapshot is

finished.

5.5.5 Sending the Snapshots to Support Team

By default, snapshots are written into directory. Locate it and create <jira_home>/yourkit/snapshots

a ZIP archive of all relevant snapshot files.

Please send the ZIP to us as described here: .Sending Files to Support Team (see page 365)

5.5.6 After Profiling Session

There's no way to unload the profiling agent. You may want to continue running JIRA with the profiling agent

loaded, since it does not product much overhead. (Make sure you have stopped all the monitoring.)

For a safer / cleaner environment, you can restart JIRA. (If you made additional effort to enable profiler

agent in script, you'll need to comment that options out.)setenv

5.5.7 Performance Snapshot Without Yourkit Plugin

Performance Profile allows ALM Works support team to analyze performance-related problems on your

JIRA server without direct access to it.

We are using Java Profiler product called . In order to collect the profile, you'll need to download YourKit

freely distributed "agent" library, connect it to your JIRA instance and capture a performance snapshot. You

will need to purchase a license from YourKit only if you want to analyze the captured profile yourself.

No special knowledge is required to collect the performance profile, but being familiar with using

the command-line on the server that runs JIRA helps.

Download Profiling Agent

Download the ZIP with profiling agent from here: jira-profiler-v1-yjp956.zip md5sum

e3ea2b72ef4b22584c641425275050d0

Unpack the downloaded ZIP file into the directory where you have JIRA installed (JIRA home!). This will not

create directory under your JIRA installation path.<jira_install>/profiler

http://yourkit.com/
http://almworks.com/.files/jira-profiler-v1-yjp956.zip

Structure Plugin for JIRA

Page of 361 370

1.

2.

3.

4.

1.

a.

b.

2.

a.

You can unpack the profiler into any other directory, but this instructions and our scripts assume

that the profiler is unpacked into JIRA install dir.

If you will be able to restart JIRA before profiling, this is all you need — you can proceed to restarting JIRA

.with Profiling (see page 361)

Additional Download to Profile JIRA Without Restart
If you need to profile JIRA without restarting it first (and assuming it is not already started with a profiler

agent), you will need to download full distribution of the YourKit Java Profiler:

Open http://yourkit.com/download/index.jsp

Click on type of download - the installer! ZIP archive is typically downloaded under ZIP Archive NOT

"Solaris" section - it is the correct link even if you run JIRA on Windows.

License key is not required for our purpose! Do not request evaluation license. (Unless you intend to

do an evaluation of YourKit, of course.)

Unpack the downloaded ZIP into – this is the directory created at <jira_install>/profiler

step 1. Unpacking will create a sub-directory there - for example, <jira_install>/profiler

./yjp-9.5.6

Restart JIRA with Profiling

If you need to profile without restart, skip this step.

The following instruction is provided for a standalone JIRA installation.

To restart JIRA with profiling, you need to pass additional options to Java that runs JIRA. This is done by

editing on Windows or on a <jira_install>\bin\setenv.bat <jira_install>/bin/setenv.sh

Unix-based OS and pointing Java to a profiler agent that you have unpacked at step 1.

Find out which profiler agent to use.

Look into directory. Typically there will be two sub-<jira_install>/profiler/bin

directories for your operating system: 32-bit and 64-bit. The bitness must match the bitness of

JVM that runs JIRA. You can verify which Java your JIRA runs on if you open Administration

 in JIRA and look for "Java VM". If it mentions "64-Bit", then JIRA runs on a 64-| System Info

bit Java.

Note the name of the subdirectory under directory that corresponds to the bitness profiler

of target JVM: it may be or or something like that.win64 linux-x86-32

Edit script:setenv

On Windows, set or append the following parameters to JVM_SUPPORT_RECOMMENDED_ARGS

in (following is a single long line):<jira_install>\bin\setenv.bat

http://yourkit.com/download/index.jsp

Structure Plugin for JIRA

Page of 362 370

2.

a.

b.

3.

4.

5.

6.

set JVM_SUPPORT_RECOMMENDED_ARGS=-agentlib:%~dp0..

\profiler\bin\win64\yjpagent=port=10001,onlylocal,dir=%~dp0..\profiler\snapshots,

delay=20000 -XX:MaxPermSize=500m

On other OS, set or append the following parameters to JVM_SUPPORT_RECOMMENDED_ARGS

in (following is a single long line):<jira_install>/bin/setenv.sh

JVM_SUPPORT_RECOMMENDED_ARGS="-agentpath:`dirname \"$0\"`/../profiler/bin/linux-

x86-64/libyjpagent.so=port=10001,onlylocal,dir=`dirname \"$0\"`/../profiler

/snapshots,delay=20000 -XX:MaxPermSize=500m"

Note that in the lines above, you should change or to the name of the directory win64 linux-x86-64

where the correct profiler agent for your OS/Java is located.

You may also need to change to make profiling agent listen on some other TCP port - in port=10001

case port 10001 is already taken.

Stop JIRA and start it again.

Watch for YourKit message like <jira_install>/logs/catalina.out [YourKit Java Profiler

9.5.6] Loaded.

Use Copy & Paste to copy the parameters and then edit them in the setenv.sh

If the parameters are set incorrectly, JIRA start may fail. Verify that you have specified the agent

directory correctly. Also verify that directory path does not contain spaces.<jira_install>

Profiler agent will use directory to write performance <jira_install>/profiler/snapshots

snapshots - it must be write-accessible to the JIRA process.

Now you can proceed to .#Running Profiling Session (see page 363)

Attach Profiler Agent to JIRA without Restarting

If you have restarted JIRA with profiling, skip this step.

If possible, restart JIRA with profiling instead of attaching profiler agent on the fly.

You will need the full distribution of YourKit downloaded at step 1.1. You will need to run a Java program as

specified below - with the same version of Java that JIRA runs on. We assume that it is in your PATH

variable in the command-line, but if it's not - you need to specify a full path to .java

Structure Plugin for JIRA

Page of 363 370

1.

2.

3.

4.

a.

b.

Find out the process ID of the process that runs JIRA. You can use command from the Java jps

distribution.

Find out the location of JDK (Java Development Kit). If you don't have JDK installed (only JRE), this

procedure won't work. Typically JDK home is stored in the command-line environment variable

JAVA_HOME.

Change current directory to . (You may have a different <jira_install>/profiler/yjp-9.5.6

version of yjp.)

Run the following command, substituting JIRA process ID instead of .PID
On Windows:

java -cp lib\yjp.jar;%JAVA_HOME%\lib\tools.jar com.yourkit.Main -attach PID port=10

001,onlylocal,dir=<jira_install>\profiler\snapshots

Replace <jira_install> with the full path of the JIRA installation folder.

On other OS:

java -cp lib/yjp.jar:$JAVA_HOME/lib/tools.jar com.yourkit.Main -attach PID port=100

01,onlylocal,dir=`pwd`/../snapshots

The command should output something like this:

Attaching to process 60108 using options port=10001,onlylocal,dir=..

\snapshots The profiler agent has attached. Waiting while it initializes...

The agent is loaded and is listening on port 10001. You can connect to it

from the profiler UI.

Running Profiling Session
To successfully run a profiling session, you need to have JIRA running with a profiling agent, as explained

above. The agent does not add much overhead when being idle — it sits there waiting for your commands

to start a profiling session.

General Procedure
The profiling session is controlled by sending commands to the profiling agent (within the JIRA process).

The program that is used to send the commands is , located in yjp-controller-api-redist.jar

. The common format for running this program is:<jira_install>/profiler

java -jar yjp-controller-api-redist.jar localhost 10001 <command>

The is replaced with some actual command, and if you changed the default port of the agent <command>

from 10001 to something else, you need to specify that port number here instead of 10001. This command

should be run from directory.<jira_install>/profiler

Structure Plugin for JIRA

Page of 364 370

1.

2.

3.

1.

2.

3.

4.

5.

We are assuming that is on your PATH. If not the case, use the full path to executable.java java

CPU Performance Analysis
If JIRA is unresponsive or burns CPU extensively, you can run CPU analysis session.

Start session with the following command:

java -jar yjp-controller-api-redist.jar localhost 10001 start-cpu-sampling

Let JIRA work for some time. If needed, take a specific action that causes the problem to manifest.

Stop session and record a snapshot:

java -jar yjp-controller-api-redist.jar localhost 10001 capture-performance-snapshot

Sending the Snapshots to Support Team
By default, snapshots are written into directory. Locate it and <jira_install>/profiler/snapshots

create a ZIP archive of all relevant snapshot files. If the ZIP is less than 10 Megabytes, it's ok to send it to

us by e-mail.

If the ZIPPed snapshot is 10 MB or larger, you need to use FTP to send it over to us:

Use any FTP client (or from the command line).ftp lftp

Connect to host f.almworks.com

Use login name and password almftp almftp

Upload files to the root folder.

After the upload is finished, please send us an e-mail with a notification that you have uploaded the

snapshots.

You will not be able to list or download files from that FTP, and your FTP client may show errors

about that. That's ok and should not prevent you from uploading snapshots.

After Profiling Session
You may want to continue running JIRA with the profiling agent loaded, since it does not product much

overhead. Make sure you have stopped all the monitoring.

For a safer / cleaner environment, you can restart JIRA with the profiling options in script setenv

commented out.

Structure Plugin for JIRA

Page of 365 370

1.

2.

3.

4.

5.

5.6 Sending Files to Support Team

When you need to send files to ALM Works support team, please use one of the following methods (listed in

the order of preference).

5.6.1 Attach to the Support Request in ALM Works JIRA

File size limit: 50 MB

If the files pertain to a Support Request on , please use JIRA to upload and attach https://jira.almworks.com

the files to the issue. Size limit is 50 MB per upload.

Please note that normally Support Request issues have "Protected" issue security level, which

means that only the reporter and ALM Works have access to that issue (and attached files).

However, if for some reason you don't see "Security Level: Protected" on the issue page, it means

that the issue can be seen by anyone, and any attached files can be downloaded by anyone.

Please keep this in mind – ALM Works is not responsible for public disclosure of any information

entered into a publicly-visible issue, including information in the attachments.

If the issue is public and you'd like to change the security level to Protected, please comment on

that issue and we'll do that shortly.

5.6.2 Send Files by E-mail

File size limit: 20 MB

You can send the files to . Maximum total attachments size is 20 MB.support@almworks.com

If you don't have a preceding e-mail communication with support about the problem in question, please add

a short comment or a reference to the problem being diagnosed.

5.6.3 Upload Files via FTP

File size limit: 1 GB

Please use FTP only to upload large files.

Use any FTP client (or from the command line).ftp lftp

Connect to host f.almworks.com

Use login name and password almftp almftp

Upload files to the root folder.

https://jira.almworks.com

Structure Plugin for JIRA

Page of 366 370

5.

1.

2.

3.

After the upload is finished, please with a comment about what you have send us an e-mail

uploaded.

The files you have uploaded are safe – they cannot be downloaded by anyone except ALM Works

support.

You will not be able to list or download files from that FTP, and your FTP client may show errors

about that. That's ok and should not prevent you from uploading files.

5.7 Alternative Structure Gadget for IE8 and IE9

This article applies to JIRA 6.0 and later.

There is a known problem that Structure gadget (either added to a JIRA dashboard or a Confluence page)

is not displayed properly when viewed in Internet Explorer 8 or 9. For that case, Structure is shipped with

alternative gadgets which work in these and all modern browsers. This article describes how to enable and

use the alternative gadgets.

Temporary Solution Warning

These gadgets are supplied as a temporary solution for Internet Explorer 8-9 users. Once JIRA

discontinues support of these browsers in one of its future versions, we will remove them

 in favor of the all-purpose general gadget. When in the corresponding Structure version

upgrading to that future version, you'll need to recreate all alternative gadgets with the general

one.

5.7.1 Enable alternative gadgets

There are several kinds of alternative gadgets, one for each JIRA version. By default, all alternative gadgets

are disabled. You will need to enable the one that works with the version of your JIRA.

To enable a gadget, please do the following:

Open | .Administration Add-ons | Manage Add-ons

Locate Structure plugin and expand its row.

Click the link that looks like the following: "179 of 182 modules enabled".

Use the Search feature of your browser to locate the gadget by its name or unique ID. Determine the

appropriate name by the following table:

Structure Plugin for JIRA

Page of 367 370

3.

4.

5.

6.

1.

2.

JIRA

version

Gadget name Unique ID

6.0–

6.0.8
gadget:Structure (IE 8-9 Compatible, Works with JIRA 6.0.x) structure-gadget-ie-jira60

6.1–

6.1.7
gadget:Structure (IE 8-9 Compatible, Works with JIRA 6.1.x) structure-gadget-ie-jira61

There is no gadget compatible with JIRA 6.2. We are looking into ways to provide it; to be

notified of the progress on it, watch/vote this issue in our JIRA: -Make gadget HJ-1703

accessible from IE 8-9 on JIRA 6.2/JIRA 6.3(Open)

Click the Enable button to the right of the module name. (Should you later need to disable the

gadget, you'd need to click the Disable button.)

It is recommended to enable only the gadget appropriate for your JIRA version. A gadget

designed for other JIRA version will not work in most cases — users will see empty space

or a piece of code in place of the gadget. (All other JIRA functionality, including Dashboard,

is not affected.)

This is necessary to consider when upgrading your JIRA.

So, for example, if you first enable the alternative gadget on JIRA 6.0, then when you later

upgrade to JIRA 6.1, the gadget will stop working. You will need to enable the gadget for

JIRA 6.1 and recreate all of the existing gadgets. Afterwards, it is recommended to disable

the gadget for JIRA 6.0.

It is recommended to disable the general gadget, so that you don't accidentally use it. To do that, on

the same page locate the gadget by name () and click the Disable button to the gadget:Structure

right of it.

Go to a JIRA dashboard and check that you can add the enabled gadget. The alternative gadgets are

named "Structure (IE Compatible)".

5.8 Troubleshooting Performance and Stability Issues

In cases when JIRA's performance deteriorates or if the system becomes unstable or unresponsive, it is

important to achieve two goals:

Bring system back to normal in the shortest amount of time.

Collect information that would help analyze the problem and make sure it does not appear again.

https://jira.almworks.com/browse/HJ-1703?src=confmacro

Structure Plugin for JIRA

Page of 368 370

1.

2.

3.

The second goal is strategically very important, however, it might get overlooked in a rush to make things

work "now". For example, JIRA administrator may be inclined to restart a stuck JIRA instance quickly in

order for it to get back to working state as fast as possible. But if thread dumps are not collected, the

developers will never know where JIRA was stuck, so the same problem may happen again.

The first goal is of course also very important. Sometimes JIRA administrator manages to restore system

functioning, sometimes help from Atlassian and ALM Works support teams is needed. Support engineers

and developers would typically take into account all information they have, analyze it and try to pinpoint the

source of the problem. Often additional information is required from the JIRA administrator, and sending

requests and replies back and forth takes precious time.

This article is intended to provide JIRA administrators with advice about how to collect maximum information

about a performance or stability problem, when that problem happens. The list is not intended to be

complete, additional information may still be needed, however, providing all listed information gives a good

chance that a support engineer will be able to identify a problem and provide advice sooner.

5.8.1 Thread Dumps

Thread dumps are the most important information when system is unresponsive or has performance issues.

They allow to peek into what's going on inside JIRA's JVM process.

Please refer to for instructions of manually Atlassian documentation on generating a thread dump

capturing a thread dump on the server.

Thread dumps are also a part of the Support Zip (3 dumps are generated in one zip), however,

generating a support zip might be unavailable if JIRA is hanging.

For best diagnosis, please collect 5-6 thread dumps with 3-4 second interval.

Please collect 5-6 thread dumps with 3-4 second interval.

5.8.2 Verbose Logging

If the problem has temporary but reproducible manner, you can turn on verbose logging so that the

engineers can gather more information from the logs. To do so:

Open page.Administration | System | Logging and Profiling

Enter STRUCTURE TROUBLESHOOTING into the Optional Message field, turn on Log Rollover and

press Mark.

Scroll down and click , enter package name Configure logging level for another package com.

 then select logging level and click .almworks DEBUG Add

Then you can try to reproduce the problem and collect the support zip.

Do not forget to turn off the DEBUG logging after the problem has been resolved, otherwise you

may get too many messages in the logs during normal operation.

https://confluence.atlassian.com/adminjiraserver071/generating-a-thread-dump-802593021.html

Structure Plugin for JIRA

Page of 369 370

1.

2.

3.

1.

2.

1.

2.

3.

4.

5.

6.

5.8.3 Support Zip

Support zip is the most important thing after thread dumps. It allows engineers to have full understanding of

the environment and retrospect using the logs into what was going on. If you had Verbose Logging on

before problem appeared, it gives even more details.

To collect a support zip:

Open , switch to tab.Administration | System | Atlassian Support Tools Support Zip

Open , switch to tab. Select all Administration | System | Support Tools Create Support Zip

options. Click .Create

Download the resulting ZIP file and send it to the support teams: either attach it to the ticket, or, if the

file is large, request a URL for uploading.

On JIRA Data Center, collect Support Zips on each node.

5.8.4 Browser Console Log

If the problem seems to be on the client side, in the browser – if there are errors or if the browser is hanging

or some button or link does not respond, check out the browser's error console. Depending on the browser

type, the console may be opened with different menus or keyboard shortcuts.

Reproduce the problem

Copy all contents from the console and send it to support.

Also, please include browser type and version, as well as the information about operating system.

5.8.5 HAR Report

HAR report is also taken on the browser and contains logs of network communications with the server. Use

this log to provide information that can help troubleshoot issues with slow loading of data or general slow

responsiveness on the client side.

Use Google Chrome

Open menu, More Tools | Developer Tools.

Switch to Network tab

Reproduce the problem

Right click in the table and select "Save as HAR with content..." or "Copy All as HAR".

Paste or save HAR as a file.

Structure Plugin for JIRA

Page of 370 370

HAR with content provides more information but it may contain your JIRA's data. Review the

contents before sending it out to support.

5.8.6 Screenshots or Video

When there's a visible and informative behavior demonstrated by the system, a screenshot or a video

showing the problem would go a long way in getting the support engineers understand the issue.

You can use operating system's native tools to capture a video, or install a third-party tool for that.

Feel free to ask ALM Works Support for recommendations if you don't have preferable screen

capturing tool.

	Structure User's Guide
	Basic Concepts
	Default Structure
	Favorite Structures

	Structure Menu
	JIRA Pages with Structure
	Structure Board
	Making Structure Board Your JIRA Home

	Structure on the Issue Page
	Collapsing/Showing Structure Section
	Structure Selection
	Adding Issue to a Structure
	Views and Options Drop-Downs
	Adjusted Time Tracking Section
	Activity tab
	Structure Options for the Issue Page
	1. Which Structure to Select Initially?
	2. Should Structure Section be Minimized Automatically?
	3. Options Scope and Default Options

	Structure Gadget
	Adding Structure Gadget to Dashboard
	Configuring the Gadget
	Configuring Gadget View
	Using the Gadget
	Using Structure Gadget in Confluence
	How to Add Structure Gadget

	Adding Structure Gadget to Confluence Configuration
	Setting Up CORS Filter in JIRA

	Structure on the Project Page
	Structure on Agile Boards
	Structure on the Issue Navigator Page
	Viewing Structure Details of a Selected Issue
	Opening Search Results on the Structure Board

	Working with the Structure Widget
	Structure Widget Overview
	Switching Between Structures
	Using Structure Widget for Searching

	Navigating Structure
	Navigating with Mouse
	Navigating with Keyboard
	Selecting Multiple Issues
	Entering Multi-Select Mode
	Special Selection Markers
	Exiting Multi-Select Mode
	Restoring Selection After Navigation

	Selecting Multiple Items
	Entering Multi-Select Mode
	Exiting Multi-Select Mode

	Main Structure Toolbar
	Structure Toolbar
	Configuring View
	Using Views
	Views Menu
	Switching View with Keyboard

	Customizing Columns
	Adding Columns
	Configuring Columns
	Removing Columns
	Rearranging Columns
	Resizing Columns and Autosize

	Saving and Sharing Views
	Saving View Adjustments
	Sharing a View

	Pinned Issue Mode
	What is Displayed in Pinned Issue mode
	Turning Pinned Mode On and Off
	Limitations Imposed by the Pinned Issue Mode
	When Pinned Issue Is Missing from Structure

	Widget Columns
	Issue Key Column
	Summary Column
	Field Columns
	Displaying Aggregate Values

	Icons Column
	Progress Column
	How is Progress Calculated?
	Individual Issue Progress Calculation
	Total Progress Calculation

	Progress Based on Time Tracking
	Calculating Progress for Issue Without Sub-Issues
	Calculating Progress for Issue with Sub-Issues
	Examples
	1. Example without time estimates
	2. Example with time tracking information
	3. More complex example

	Progress Based on Resolution Only
	Calculating Progress for Issue Without Sub-Issues
	Calculating Progress for Issue with Sub-Issues
	Example: Resolution Only with Story Points

	Progress Based on Status
	Calculating Progress for Issue Without Sub-Issues
	Calculating Progress for Issue with Sub-Issues
	Example: Progress Based on Status, All Sub-Issues Are Equal

	Progress Based on Percent Field
	Calculating Progress for Issue Without Sub-Issues
	Calculating Progress for Issue with Sub-Issues
	Examples
	A: Percent Field, All Sub-Issues Are Equal
	B: Percent Field, Story Points

	Images Column
	Viewing Full-Size Images

	Work Logged Column
	Displaying Aggregate Values
	How is Work Logged Calculated?

	Special Columns
	Flags Column
	JIRA Actions Column

	Sequential Index Column

	Searching and Filtering
	Simple, JQL, and S-JQL Search
	Simple Search
	JQL Search
	S-JQL Search

	Filtering
	Default Quick Transformations

	Searching and Filtering Within Structure
	Searching within the Structure
	Filtering Structure
	Showing Unresolved Issues Only

	Pinned Item Mode
	Turning Pinned Mode On and Off
	Limitations Imposed by the Pinned Item Mode
	When Pinned Issue Is Missing from Structure

	Searching Outside Structure
	Searching for Issues Outside Current Structure
	Adding Issues to Structure

	Using Issue Navigator Columns

	Transformations
	Available Transformations
	Working with Transformations
	Using Transformations
	Sorting and Filtering
	Transformations Panel
	Add
	Edit
	Remove a Transformation
	Hide Transformations Panel
	Remove All Transformations
	Save Transformations

	Quick Transformations
	Quick Transformations Panel
	To activate a quick transformation
	To deactivate a quick transformation

	Defining Quick Transformations
	Adding a Quick Filter
	Adding an Extender, Grouper or Sorter Transformation

	Modifying Quick Transformations

	Default Transformations

	Two-Panel Mode
	Resizing Secondary Panel
	Swapping panels
	Structure Widget on Secondary Panel
	Issue Clipboard

	Changing Structure
	Adding Existing Issues to Structure
	Adding Issues to Structure
	Moving Issues within Structure
	Basic Moves
	Moving an Issue to an Arbitrary Position
	Multiple Selection

	Moving Items within Structure
	Basic Moves
	Moving an Item to an Arbitrary Position
	Multiple Selection

	Removing Items from Structure
	Changing Multiple Issues
	Changing Multiple Items
	Using Drag and Drop
	Basic Drag-And-Drop
	Moving vs Copying
	Dragging Multiple Items
	Cancelling Drag
	Impossible Moves
	Scrolling Structure While Dragging

	Using Copy and Paste
	Copy / Paste Scenarios
	Copying Issues Between Structures
	Cut
	Paste

	Moving Issues Within A Structure
	Cut
	Paste

	Using Cut, Copy and Paste
	Copy / Paste Scenarios
	Moving Items Between Structures
	Cut/Copy
	Paste

	Moving Items Within A Structure
	Cut
	Paste

	Undoing Changes

	Secondary Issue Panels
	Configuring Secondary Panel View
	Resizing Secondary Panel
	Secondary Panels Are Read-Only
	JIRA Search Results
	Removed Issues
	Current Issue

	Working with Issues
	Viewing Issue Details
	Working with issue
	Separate view for issue details
	Resizing details panel
	Details and secondary panels
	Using keyboard

	Creating New Issues
	Quickly Add a New Issue
	Create a New Issue Based on Existing Issue
	Editing Other Fields during Creation
	Using "Create Issue" Dialog
	Creating JIRA Agile (GreenHopper) Epics
	Additional Keyboard Shortcuts
	Uploading New Issue to the Server
	Using Edit Mode

	Editing Issues
	Entering Edit Mode
	Changing Fields
	The Field Editor
	Allowed Changes

	Using Keyboard in Edit Mode
	Entering Edit Mode
	Keyboard Shortcuts in the Edit Mode

	Correcting Input Errors
	Input Errors when Creating a New Issue

	Editing from Gadget
	On E-mail Notifications

	Bulk Change
	Cloning Multiple Issues
	Using JIRA Actions
	Using Actions Drop-Down
	Using JIRA Shortcuts
	No Page Reload

	Viewing History of a Structure
	Limitations of the History View
	Printing a Previous Structure Version
	Exporting a Previous Structure Version to XLS Format

	Printing Structure
	Exporting Structure to XLS (Excel)
	Compatibility
	Row Groups
	Columns
	Printing

	Real-Time Collaboration

	Automation
	Types of Generators
	How to Add a Generator
	How to Edit a Generator
	How to Remove a Generator
	Generators
	Insert
	Filter
	Additional Options
	Inserter/Extender Duplicates Filter
	Basic Example
	Multiple Parents Example
	Example With Link Cycles

	Sort
	Group
	Extend
	Linked issues
	Stories under Epics
	Sub-tasks
	Child issues from Portfolio for JIRA

	Generators Options
	Defining Generator Scope

	Managing Structures
	Locating a Structure
	Finding Structures by Name, Access Level or Owner
	Finding a Structure by Its ID

	Structure Details
	Editing Structure Details

	Creating New Structures
	Structure Permissions
	Access Levels
	Default Access
	Permission Rules
	Examples
	Edit Issue JIRA Permission and Editing Structure
	Permissions Caching

	Customizing View Settings
	Switching Between Default and Customized View Settings
	Configuring Views Menu
	Configuring Default View

	Copying a Structure
	Copying Structure As-Is vs. Cloning Issues
	New Structure
	Copying Structure and Cloning Issues
	How Issue Cloning Works
	Cloning Parameters
	Required Permissions
	Executing Bulk Cloning
	Checking Clone Progress
	Cancelling Cloning
	Cloning Queue

	Copying Synchronizers
	Synchronizers Copying Parameters
	Required Permissions
	Copied Synchronizers

	Archiving a Structure
	Unarchiving Structure
	Searching for Archived structures
	Synchronizers

	Deleting a Structure

	Managing Views
	Locating a View
	Changing View Settings
	Renaming a View and Changing Other Properties

	View Sharing and Permissions
	Changing permissions
	Private and Public Views

	Associating Views with Structures
	Copying a View
	Deleting a View

	Template Structures and Projects
	Configuring Template Structures
	Creating Issues and a Structure from Template
	Template Projects

	Sharing a Perspective
	Synchronization
	Importing Structure
	Exporting Structure
	Installing Synchronizer
	Modifying Synchronizer
	Removing Synchronizer
	Turning Synchronizer On and Off
	Running Resync
	Resync Directions
	Running Resync

	Synchronization and Permissions
	Protection from Synchronizer Cycles
	Bundled Synchronizers
	Sub-Tasks Synchronizer
	Sub-Tasks Synchronizer Parameters
	Sub-Tasks Synchronizer Rules

	Filter Synchronizer
	Filter Synchronizer Parameters
	Filter Synchronizer Rules
	Automatic Branches Removal

	Links Synchronizer
	Links Synchronizer Parameters
	Link Type
	Link Direction
	Parent Issue Filter and Sub-Issue Filter
	Scope
	Removal
	Primacy

	Links Synchronizer Preserves Links Between Added List of Issues
	Links Synchronizer Rules

	JIRA Agile (GreenHopper) Synchronizer
	JIRA Agile Synchronizer Parameters
	On Fix Versions
	JIRA Agile Synchronizer Rules
	How to Add Issues to Structure Sync'ed with JIRA Agile
	Syncing Partial Orders

	Status Rollup Synchronizer
	Status Rollup Synchronizer Parameters
	How Status Rollup Synchronizer Works
	How Status is Changed
	Why Can a Workflow Transition Fail
	Changing Resolution
	Manually Changing Status of an Issue That Has Sub-Issues

	Structure Activity Stream
	Available Filters
	Reading Activity Stream
	Activity Streams Performance

	Structured JQL
	S-JQL Cookbook
	Find issues added to a structure
	Quick Filter for JIRA Agile's (GreenHopper) Scrum Board to display only low-level issues in a structure
	Retrieve all Epics in a certain status and all of their children
	Find Test Cases associated with Stories in an active sprint
	Find all issues that are blocking critical issues
	Find all unassigned issues in a part of a project
	Top-level view on unfinished parts of a project
	Find violations of the rule "Tasks must be under Epics or Stories"
	Find violations of the rule "An issue cannot be resolved if it has unresolved children"
	Find issues that can be resolved because all their children are resolved
	Get a view of a second (third, ...) level of the hierarchy
	Get the contents of a folder

	S-JQL Reference
	Multiple instances of items
	Constraints
	Basic constraint
	JQL constraint
	leaf and root
	Specific issue
	Function constraint (folder, item)
	Syntax
	folder()
	item()

	Empty constraint

	Negation
	Relational constraint
	Relations
	Operators
	Sub-constraints
	self and issues relations: adding sub-constraint matches to the result set
	issue relation

	Combining constraints with Boolean operators
	Railroad diagrams
	structure-query
	constraint
	basic-constraint
	operator

	List of S-JQL keywords

	structure() JQL function
	Function arguments need to be quoted if they contain spaces or non-letters
	What if structure name or structure query itself contains quotes?
	Example 1
	Example 2: escaping with backslash

	Backward compatibility with structure() JQL function prior to Structure 2.4

	Keyboard Shortcuts
	Keyboard Shortcuts (PC)
	Navigation
	Structure Views
	Searching & Adding to Structure
	Standard JIRA Actions
	Changing Structure
	Changing Issues
	Selecting Issues
	Advanced

	Keyboard Shortcuts (Mac)
	Navigation
	Structure Views
	Searching & Adding to Structure
	Standard JIRA Actions
	Changing Structure
	Changing Issues
	Selecting Issues
	Advanced

	Quick Action Lookup

	Getting Help

	Structure Administrator's Guide
	Installing Structure
	Migrating Data from Structure 2 to Structure 3
	Creating a Backup of Structure 2.x Data
	Restoring Structure Data from 2.x Backup
	After Data Migration
	Upgrade Testy
	Upgrading "Global Structure"

	Memory Guidelines
	Assessing Available Memory
	Heap Memory Requirements
	PermGen Memory Requirements
	Changing Memory Parameters
	Use 64-Bit Java
	Physical Memory Requirements

	Uninstalling and Reinstalling Structure
	Uninstalling Structure
	Reinstalling Structure

	Upgrading and Downgrading
	Upgrading
	Downgrading

	Setting Up Structure License
	Setting Up Evaluation License
	Licenses from ALM Works and from Atlassian
	Purchasing a Commercial License
	Purchasing from ALM Works
	Purchasing from Atlassian
	Purchasing from Resellers or Atlassian Experts

	Migrating Licenses
	Structure License Parameters
	When Structure is Available for Free
	License Maintenance and Expiration
	Commercial License
	Evaluation License
	License expiration and maintenance expiration warnings

	Getting Started with Structure
	Selecting Structure-Enabled Projects
	Global Permissions
	Who Has Access to the Structure
	Restricting User Access to Structure
	Changing Permission to Create New Structures
	Changing Permission to Manage Synchronizers
	Changing Permission to Access Automation

	Changing Structure Defaults
	Initial Configuration
	Changing Default Structure
	Changing system-level default structure
	Changing project-level default structure

	Changing Default View Settings
	Changing Default Options for the Issue and Project Pages

	Structure Backup, Restore and Migration
	Using Structure Backup
	Backing Up Structure
	Restoring Structure from Backup
	Migrating Structures

	Automatic Structure Maintenance
	Automatic Structure Maintenance
	Maintenance Tasks
	Running Maintenance Tasks Manually

	Workflow Integration
	Structure Workflow Validator
	Structure Workflow Condition

	Anonymous Usage Statistics
	Viewing Current Statistics
	Turning Anonymous Usage Statistics On and Off

	Structure Files
	$JIRA_HOME/structure
	Cache files

	Dark Features
	Alternative initial values for project/type when creating an issue in dialog

	Turning Off Optional Features
	Advanced Configuration with System Properties
	Setting System Properties on Startup
	Setting System Properties with Script Runner
	Synchronizer Cycle Guard

	System Requirements
	Atlassian Platform
	Databases
	Browsers
	Server Requirements
	Non-Conforming systems

	Best Practices
	(HIDDEN) Backup Strategy
	Option 1. Automatic XML Backup + Export Directory Backup
	Option 2. File-Based Backup
	Hot File-Based Backup
	Cold File-Based Backup

	Option 3. Manual / API-Triggered XML Backup
	Restoring from File Backup
	Restoring from XML Backup
	Incremental and Differential Backups

	Backup Strategy
	Option 1. Automatic XML Backup + Export Directory Backup
	Option 2. File-Based Backup
	Hot File-Based Backup
	Cold File-Based Backup

	Option 3. Manual / API-Triggered XML Backup
	Restoring from File Backup
	Restoring from XML Backup
	Incremental and Differential Backups

	Gradual Deployment
	Turning Optional Functionality Off

	Structure Developer's Guide
	Structure Developer Documentation
	Structure Concepts, Developer's Perspective
	Basic Concepts Overview
	A Note on Extensibility

	Accessing Structure from JIRA Plugin
	Setting Up the Integration
	Add dependency to your pom.xml
	Import StructureComponents
	Have Structure API service injected into your component
	Additional Libraries Used in Structure API
	Integers and HPPC
	JetBrains Annotations

	Controlling Compatibility
	Why Declare Compatible Versions
	Importing Specific Range of API Versions

	Making Structure Dependency Optional
	Declare Optional Dependency
	Isolate Dependencies in the Code

	Structure Services
	Services to Start With
	More Power
	Extreme Power

	Building Forest Specification
	Reading Structure Content
	Figure out Structure ID
	Create a ForestSpec
	Retrieve ForestSource
	Retrieve Forest and its version
	Iterate through Forest and get StructureRow instances
	Analyze the row and process data

	Changing Structure Content
	Forest Coordinates
	Applying Forest Action
	Adding a single row
	Adding a sub-forest
	Removing a sub-tree
	Moving a sub-tree

	Inspecting the Results
	Effects and Changing Dynamic Structures
	Concurrency and Atomicity
	Permissions

	Loading Attribute Values
	About Attributes
	General Approach to Loading Values
	Figure out which Attributes do you need
	Figure out which Rows do you need to calculate the Attributes for
	Call StructureAttributeService
	Read out the result

	Creating and Adding Folders
	Create the Folder entity
	Define folder's identity
	Add folder to structure

	Creating Dynamic Structures
	Create generator instance
	Insert generator into the forest

	Extending Structure Functionality
	Creating a New Column Type
	The Plan
	The Attributes
	AttributeSpec for Status Bar
	Status Bar Attribute
	Attribute Provider
	Client-Side Column
	API Overview
	Column Specifications
	The Column Context
	Requesting and Using Metadata
	Column
	ColumnConfigurator
	ColumnOption
	ColumnType
	Column Groups
	Web Resources and Contexts

	Export Renderers
	Export Strategies
	Generic Renderer Provider
	Advanced Excel Renderer Provider

	Creating a New Synchronizer
	Implement StructureSynchronizer
	Define structure-synchronizer Module
	Test Thoroughly
	Sample Project

	Loading Additional Web Resources For Structure Widget
	Using Web Resource Contexts

	Accessing Structure Data Remotely
	Reference
	Structure Developer Reference
	Structure Java API Reference
	Structure API Versions
	Current Versions
	Version Compatibility
	Getting Versions

	Structure Plugin Module Types
	structure-synchronizer
	Module description sample

	structure-attribute-loader-provider
	Example

	structure-export-renderer-provider
	Export renderer provider example

	structure-item-type
	Example

	new-structure-template
	structure-query-constraint
	Generator Modules
	Example
	Generator Icons

	Structure REST API Reference
	General Notes
	API Versions
	REST Resource Addresses
	Authentication

	REST Resources
	

	Structure Resource
	Structure Representations
	Structure Fields
	Permission rules
	Set rules
	group
	projectRole
	user
	anyone

	Apply rules

	Error entity

	Structure Resources
	GET /structure
	Request
	Response
	Success
	Example 1: all structures
	Example 2: only "Test plan"
	Example 3: structures that the user can edit with permissions and owners shown
	Example 4: require XML representation

	Error

	POST /structure
	Request
	Response
	Success
	Example 1: minimal structure
	Example 2: structure with some permissions

	Error

	GET /structure/{id}
	Request
	Response
	Success
	Example 1: retrieve structure with ID 100 without permissions and owner
	Example 2: permissions and owner are requested to be included, but only owner is shown, because the user has only View access as indicated by readOnly
	Example 3: XML representation may be requested in the request URL instead of the Content-Type HTTP header

	Error

	POST /structure/{id}/update
	Request
	Response
	Success
	Example 1: change description of the Global Structure
	Example 2: changing permission rules

	Error

	DELETE /structure/{id}
	Request
	Response
	Success
	Example

	Error

	Forest Resource
	Retrieving Forest
	Request
	Example:

	Response

	Changing Forest

	Item Resource
	Creating a New Item
	Example
	Parameters
	Specific parameters for main item types
	Folder
	Issue

	Reply Example

	Updating an Existing Item
	Parameters
	Reply

	Value Resource
	Loading Values
	Example
	Parameters

	Response
	Parameters

	Structure JavaScript API Reference
	JavaScript API Functions
	window.almworks.structure.api.subClass(className, superclass, prototype)
	window.almworks.structure.api.registerColumnType(type, key)
	window.almworks.structure.api.registerColumnGroup(options)

	JavaScript API Classes
	Column Class
	window.almworks.structure.api.Column
	Properties
	context
	spec

	Methods
	init(options)
	getCellValueHtml(renderingParameters)
	getCellViewHtml(renderingParameters)
	collectRequiredAttributes(attributeSet)
	getDefaultName()
	isResizable()
	canShrinkWhenNoSpace()
	isAutoSizeAllowed()
	getMinWidth()
	getDefaultWidth()
	getHeaderCellHtml()
	getMetadataRequests()
	getSortAttribute()
	isSortDescendingByDefault()

	ColumnConfigurator Class
	window.almworks.structure.api.ColumnConfigurator
	Required Methods
	getColumnTypeName()
	getDefaultColumnName()

	Other Methods
	init(options)
	getGroupKey()
	getMetadataRequests()
	getOptions()

	ColumnOption Class
	window.almworks.structure.api.ColumnOption
	Properties
	title

	Required Methods
	createInput(div$)

	Other Methods
	init(options)
	createLabel(div$)
	notify()
	isInputValid()

	ColumnType Class
	window.almworks.structure.api.ColumnType
	Methods
	createSwitchTypePreset(context)
	createAddColumnPresets(context)
	createColumn(context, spec)
	createConfigurator(context, spec)
	getPresetMetadataRequests()
	getColumnMetadataRequests()
	getConfigMetadataRequests()
	getMetadataRequests()

	Web Resource Contexts

	API Usage Samples
	Download
	Example List

	Structure 3 API Changes
	State of the API
	Conceptual Changes
	Forests and Rows
	Items
	Attributes
	Concept Comparison

	REST API
	Retrieving Structure Forest
	Updating a Structure Forest
	Creating a structure
	Deleting a structure

	Java API
	Versions
	Retrieving Structure's Forest
	Working with Rows
	Getting Totals and Other Values
	Changing Structure

	Structure FAQ
	Frequently Asked Questions
	Cannot Create an Issue With +Next Issue (+Sub-Issue) Because of the Required Fields
	Question
	Answer

	Plugin Manager Says Structure Is Unlicensed
	Question
	Answer

	No Check Mark Displayed for a Resolved Issue
	Question
	Answer
	Problems Caused By Custom Workflows
	Problems Caused By Manually Added "Unresolved" Resolution Value

	Structure plugin won't start
	Question
	Answer
	Structure database cannot be created or opened, filesystem read-only or full
	Some of the required system plugins are disabled
	Incomplete download or corrupt plugin JAR file
	Incorrect JIRA setup

	After an Issue is Moved to Another Project, It Cannot Be Found in the Structure
	Question
	Answer

	User Cannot Access Structure, Although Permissions Have Been Granted
	Question
	Answer

	Issues Not Added to a Structure when Using Links Synchronizer or Import
	Question
	Answer

	Where to find JIRA Server ID
	Integration with JIRA Agile (Greenhopper)
	Question
	Answer

	Using Subtasks and Structure
	Question
	Answer

	Difference from Sub-tasks
	Question
	Answer

	Some Link Synchronizer Operations Are Not Written to the History
	Question
	Answer

	Why Use Structure Plugin?
	Question
	Answer

	Performance Considerations
	How to restore the structure using History
	Can I export a structure to Microsoft Word so that it can be emailed as a document?

	Structure Troubleshooting
	Collecting Support Zip
	HAR Network Report
	Collecting HAR Report with Google Chrome

	Troubleshooting Synchronizers
	Structure Audit Log
	Log Files
	Temporarily change log level for structure synchronizers
	Permanently change log level for structure synchronizers or set up separate log files for synchronizers

	Structured JQL Troubleshooting
	Collecting Performance Snapshots
	Download and install Atlas-Yourkit plugin.
	Load Profiling Agent
	Capturing CPU Performance Snapshot
	Capturing Memory Snapshot
	Sending the Snapshots to Support Team
	After Profiling Session
	Performance Snapshot Without Yourkit Plugin
	Download Profiling Agent
	Additional Download to Profile JIRA Without Restart

	Restart JIRA with Profiling
	Attach Profiler Agent to JIRA without Restarting
	Running Profiling Session
	General Procedure
	CPU Performance Analysis

	Sending the Snapshots to Support Team
	After Profiling Session

	Sending Files to Support Team
	Attach to the Support Request in ALM Works JIRA
	Send Files by E-mail
	Upload Files via FTP

	Alternative Structure Gadget for IE8 and IE9
	Enable alternative gadgets

	Troubleshooting Performance and Stability Issues
	Thread Dumps
	Verbose Logging
	Support Zip
	Browser Console Log
	HAR Report
	Screenshots or Video

