
Oct 25, 2018 9:50 PMDate:

1Version:

Igor SeredaAuthor:

Structure for Jira

Documentation

Table of Contents

1 Structure User's Guide 11

1.1 Basic Concepts 11

1.1.1 Default Structure 13

1.1.2 Favorite Structures 13

1.2 Structure Menu 14

1.3 JIRA Pages with Structure 15

1.3.1 Structure Board 16

1.3.2 Structure on the Issue Page 18

1.3.3 Structure Gadget 24

1.3.4 Structure on the Project Page 32

1.3.5 Structure on Agile Boards 34

1.4 Working with the Structure Widget 35

1.4.1 Structure Widget Overview 35

1.4.2 Navigating Structure 39

1.4.3 Main Structure Toolbar 42

1.4.4 Configuring View 45

1.4.5 Widget Columns 54

1.4.6 Searching and Filtering 136

1.4.7 Transformations 146

1.4.8 Two-Panel Mode 153

1.4.9 Changing Structure 155

1.4.10 Working with Issues 166

1.4.11 Viewing History of a Structure 182

1.4.12 Full Screen Mode 185

1.4.13 Printing Structure 187

1.4.14 Exporting Structure to XLS (Excel) 188

1.4.15 Real-Time Collaboration 191

1.5 Automation 192

1.5.1 Types of Generators 192

1.5.2 How to Add a Generator 192

1.5.3 How to Edit a Generator 193

1.5.4 How to Remove a Generator 194

1.5.5 Generators 194

1.5.6 Generators Options 204

1.5.7 Paused Automation 206

1.6 Manual Adjustments 209

1.6.1 Enabling Manual Adjustments 209

1.6.2 Manual Adjustments are NOT Reflected in Jira 211

1.6.3 Special Considerations When Using Manual Adjustments 211

1.6.4 Why is Manual Adjustment Necessary? 211

1.6.5 Order of Operations with Manual Adjustments 212

1.6.6 Undoing Manual Adjustments 213

1.7 Managing Structures 213

1.7.1 Locating a Structure 214

1.7.2 Structure Details 216

1.7.3 Creating New Structures 217

1.7.4 Structure Permissions 217

1.7.5 Customizing View Settings 220

1.7.6 Copying a Structure 222

1.7.7 Archiving a Structure 230

1.7.8 Deleting a Structure 232

1.8 Managing Views 233

1.8.1 Locating a View 233

1.8.2 Changing View Settings 234

1.8.3 View Sharing and Permissions 236

1.8.4 Associating Views with Structures 238

1.8.5 Copying a View 238

1.8.6 Deleting a View 238

1.9 Template Structures and Projects 239

1.9.1 Configuring Template Structures 239

1.9.2 Creating Issues and a Structure from Template 239

1.9.3 Template Projects 240

1.10 Sharing a Perspective 240

1.11 Structure Activity Stream 242

1.11.1 Available Filters 242

1.11.2 Reading Activity Stream 243

1.11.3 Activity Streams Performance 244

1.12 Structured JQL 245

1.12.1 S-JQL Cookbook 245

1.12.2 S-JQL Reference 251

1.12.3 structure() JQL function 275

1.13 Keyboard Shortcuts 278

1.13.1 Keyboard Shortcuts (PC) 278

1.13.2 Keyboard Shortcuts (Mac) 280

1.13.3 Quick Action Lookup 282

1.14 Getting Help 283

2 Structure Administrator's Guide 285

2.1 Installing Structure 285

2.1.1 Migrating Data from Structure 2 to Structure 3 286

2.1.2 Memory Guidelines 287

2.1.3 Uninstalling and Reinstalling Structure 290

2.1.4 Upgrading and Downgrading 291

2.2 Setting Up Structure License 292

2.2.1 Setting Up Evaluation License 292

2.2.2 Licenses from ALM Works and from Atlassian 293

2.2.3 Purchasing a Commercial License 294

2.2.4 Migrating Licenses 295

2.2.5 Structure License Parameters 295

2.2.6 When Structure is Available for Free 296

2.2.7 License Maintenance and Expiration 296

2.3 Getting Started with Structure 297

2.4 Selecting Structure-Enabled Projects 298

2.5 Global Permissions 299

2.5.1 Who Has Access to the Structure 299

2.5.2 Restricting User Access to Structure 299

2.5.3 Changing Permission to Create New Structures 301

2.5.4 Changing Permission to Manage Synchronizers 302

2.5.5 Changing Permission to Access Automation 302

2.6 Changing Structure Defaults 303

2.6.1 Initial Configuration 303

2.6.2 Changing Default Structure 304

2.6.3 Changing Default View Settings 305

2.6.4 Changing Default Options for the Issue and Project Pages 305

2.7 Structure Backup, Restore and Migration 306

2.7.1 Using Structure Backup 307

2.7.2 Backing Up Structure 307

2.7.3 Restoring Structure from Backup 308

2.7.4 Migrating Structures 310

2.8 Automatic Structure Maintenance 312

2.8.1 Automatic Structure Maintenance 312

2.8.2 Maintenance Schedule 312

2.8.3 Maintenance Tasks 314

2.8.4 Running Maintenance Tasks Manually 316

2.9 Workflow Integration 316

2.9.1 Structure Workflow Validator 316

2.9.2 Structure Workflow Condition 318

2.10 Running Structure on Jira Data Center 318

2.10.1 Archived Projects and Structure 318

2.11 Anonymous Usage Statistics 319

2.11.1 Viewing Current Statistics 320

2.11.2 Turning Anonymous Usage Statistics On and Off 320

2.12 Structure Files 320

2.12.1 $JIRA_HOME/structure 320

2.13 Turning Off Optional Features 320

2.14 Advanced Configuration 322
2.14.1 Setting Application Properties with the Structure Dark Features and Fine Tuning

Interface 322

2.14.2 Setting System Properties 323

2.14.3 Structure size limit 324

2.14.4 Structure Automation limits 324

2.14.5 Automation Defaults 324

2.14.6 Manual adjustments 325

2.14.7 Hidden Issue Links 325

2.14.8 Synchronizers 326

2.14.9 Synchronizer Cycle Guard 326

2.15 System Requirements 328

2.15.1 Atlassian Platform 328

2.15.2 Databases 328

2.15.3 Browsers 329

2.15.4 Server Requirements 329

2.15.5 Non-Conforming systems 329

2.16 Best Practices 329

2.16.1 Backup Strategy 330

2.16.2 Gradual Deployment 331

2.17 Dark Features 332

2.17.1 Alternative initial values for project/type when creating an issue in dialog 332

2.17.2 Synchronization 332

3 Structure Developer's Guide 365

3.1 Structure Developer Documentation 365

3.2 Structure Concepts, Developer's Perspective 366

3.2.1 1. Basic Concepts Overview 366

3.2.2 2. A Note on Extensibility 367

3.3 Accessing Structure from JIRA Plugin 367

3.3.1 Setting Up the Integration 367

3.3.2 Structure Services 372

3.3.3 Building Forest Specification 374

3.3.4 Reading Structure Content 375

3.3.5 Changing Structure Content 378

3.3.6 Loading Attribute Values 382

3.3.7 Creating and Adding Folders 384

3.3.8 Creating Dynamic Structures 385

3.4 Extending Structure Functionality 386

3.4.1 Creating a New Column Type 387

3.4.2 Creating a New Synchronizer 407

3.4.3 Loading Additional Web Resources For Structure Widget 408

3.4.4 Declaring a New Generic Item Type 409

3.5 Accessing Structure Data Remotely 411

3.6 Reference 412

3.6.1 Structure Developer Reference 412

3.6.2 Structure Java API Reference 412

3.6.3 Structure Plugin Module Types 414

3.6.4 Structure REST API Reference 422

3.6.5 Structure JavaScript API Reference 455

3.6.6 Web Resource Contexts 469

3.7 API Usage Samples 470

3.7.1 Download 470

3.7.2 Example List 470

3.8 Structure 3 API Changes 471

3.8.1 1. State of the API 471

3.8.2 2. Conceptual Changes 472

3.8.3 3. REST API 474

3.8.4 4. Java API 476

4 Structure FAQ 480

4.1 Frequently Asked Questions 480

4.2 Cannot Create an Issue With +Next Issue (+Sub-Issue) Because of the Required

Fields 480

4.2.1 Question 480

4.2.2 Answer 480

4.3 Plugin Manager Says Structure Is Unlicensed 481

4.3.1 Question 481

4.3.2 Answer 481

4.4 No Check Mark Displayed for a Resolved Issue 481

4.4.1 Question 481

4.4.2 Answer 481

4.5 Structure plugin won't start 483

4.5.1 Question 483

4.5.2 Answer 483

4.6 After an Issue is Moved to Another Project, It Cannot Be Found in the Structure

485

4.6.1 Question 485

4.6.2 Answer 485

4.7 User Cannot Access Structure, Although Permissions Have Been Granted 486

4.7.1 Question 486

4.7.2 Answer 486

4.8 Issues Not Added to a Structure when Using Links Synchronizer or Import 486

4.8.1 Question 486

4.8.2 Answer 486

4.9 Where to find JIRA Server ID 487

4.10 Integration with JIRA Agile (Greenhopper) 487

4.10.1 Question 487

4.10.2 Answer 487

4.11 Using Subtasks and Structure 488

4.11.1 Question 488

4.11.2 Answer 488

4.12 Difference from Sub-tasks 488

4.12.1 Question 488

4.12.2 Answer 488

4.13 Changes Made to Links Are Not Written to Activity Stream and Issue History 489

4.13.1 Question 489

4.13.2 Answer 489

4.14 Performance Considerations 489

4.15 How to restore the structure using History 490

4.16 Can I export a structure to Microsoft Word so that it can be emailed as a

document? 490

5 Structure Troubleshooting 492

5.1 Collecting Support Zip 492

5.2 HAR Network Report 492

5.2.1 Collecting HAR Report with Google Chrome 493

5.3 Troubleshooting Synchronizers 494

5.3.1 Structure Audit Log 494

5.3.2 Log Files 494

5.4 Structured JQL Troubleshooting 496

5.5 Collecting Performance Snapshots 496

5.5.1 1. Download and install Atlas-Yourkit plugin. 496

5.5.2 2. Load Profiling Agent 496

5.5.3 3. Capturing CPU Performance Snapshot 497

5.5.4 4. Capturing Memory Snapshot 497

5.5.5 5. Sending the Snapshots to Support Team 497

5.5.6 6. After Profiling Session 497

5.5.7 Performance Snapshot Without Yourkit Plugin 498

5.6 Sending Files to Support Team 503

5.6.1 1. Attach to the Support Request in ALM Works Service Desk (Preferred) 504

5.6.2 2. Send Files by E-mail 504

5.6.3 3. Upload Files Directly to Our Server 504

5.7 Alternative Structure Gadget for IE8 and IE9 504

5.7.1 Enable alternative gadgets 505

5.8 Troubleshooting Performance and Stability Issues 506

5.8.1 1. Thread Dumps 507

5.8.2 2. Verbose Logging 507

5.8.3 3. Support Zip 508

5.8.4 4. Browser Console Log 508

5.8.5 5. HAR Report 508

5.8.6 6. Screenshots or Video 509

Documentation

Version 1 10

Links to the available documentation collections:

Download documentation:

Name Version Published

Documentation

Version 1 11

1 Structure User's Guide

This section contains information for Structure users.

Contents:

1.1 Basic Concepts

Structure for Jira is an Atlassian Marketplace app that lets you organize Jira issues into

arbitrary, user-defined, hierarchical lists that map to your organization's evolving project

management processes.

We recommend you to get acquainted with a few important concepts to help shorten the

learning curve.

Structure
(vs.
structure)

Structure is the name of our product. In our documentation we differentiate

between , the app, and the that you build with it using Structure structures
capitalization. When you see “ ” with a capital “ ” we are referring to Structure S
the app. When you see “ ” with a lowercase “ ” we are referring to the structure s
the structures you create in the app.

structures
contain Jira
issues

Think of a structure as a container that may be filled with Jira from a issues
single, or multiple Jira projects. Within this container you may organize the

issues into arbitrary groups of hierarchical lists. For example, you may wish to

group your issues by type, by assignee, or by priority—or by some

combination thereof. In fact, you may organize the issues in your structure

any way you'd like.

items Typically, Jira projects contain issues of many different types. For example,

“bugs”, “tasks” or “activities”.

Structure adds a few new, helpful, project management elements such as

folders, and generators.

Collectively, we refer to all of these (i.e., everything that appears in a

structure) as .items

Documentation

Version 1 12

generators As mentioned above, Jira issues may appear in a structure automatically. This

may happen when a template is used, or through powerful automation

features that we refer to as . Every time you open your structure, generators
the generators find and automatically add and/or manipulate the Jira issues in

your structure using issue attributes and business rules that you specify.

a view We refer to a particular configuration of the columns that you decide to display

in the Structure panel as a .view

sub-items
(and parent
items)

When you place one item under another item in a structure it becomes a sub-
 of the item above it. The item above the sub-item is the item.item parent

Sub-items may contain sub-items of their own, and those sub-items may

contain still more sub-items, and so on. You may create as many levels of

parent item / sub-item relationships as you wish in a structure.

Importantly, these parent item / sub-item relationships may be different in

different structures. The relationships may be created arbitrarily to suite your

needs within a particular structure.

children Sometimes we refer to sub-items as (of the parent item).children

Jira sub-
tasks

Jira and Structure are conceptually similar, but they are sub-tasks sub-items
not the same. Jira sub-tasks are a special type of Jira issue that includes a

parent/child relationship within Jira.

It may be desirable for sub-tasks to appear in your structures as sub-items of

the relevant (parent) Jira task. However, this is not a requirement.

There are no restrictions on Structure parent/child relationships, so sub-tasks

may be placed anywhere in a structure, like any other other Jira issue type.

item – sub-
item
relationship

With Structure, you may create any parent item / sub-item relationship
—and you may create as many levels of them as you wish. Think of you wish

a structure as a blank project management canvas that you may adapt to your

project’s needs, or to team’s project management methodology—even if these

things differ across different teams of different projects.

structures
within
structures

With Structure, — i.e., a you may add structures to other structures
structure can be an item (see above) in another structure.

Documentation

Version 1 13

templates With Structure, you may create reusable that are used template structures
over-and-over-again by your project teams at the start of each new project.

1.1.1 Default Structure

Default structure is displayed to the user when there's no specific structure selected - by

default. JIRA administrator can .change the system default structure (see page 304)

For the and you can define which Issue Page (see page 22) Project Page (see page 32)

structure should be used as default. A can be specified for a project-level default structure
project that is enabled for Structure on the page.Defaults (see page 304)

1.1.2 Favorite Structures

When you are logged in, you can mark one or more structures as your favorite, so you can

quickly access them later.

As you switch between structures in the Structure widget, you can see top 5 of the favorite

structures ordered alphabetically by name.

Documentation

Version 1 14

To manage your favorite structures, use the page. To make Manage Structure (see page 213)

a structure your favorite, click a white star () near the name of that structure. The star will

colored () to indicate that the structure was added to the list of your favorite structures.

Structure Popularity

Structure is the number of users who have marked this structure as favorite. popularity
 page has tab, which shows the most popular Manage Structure (see page 213) Popular

structures.

1.2 Structure Menu

Once you install Structure, you will see a new item added to the top-level navigation bar (1).

If you haven't created any structures yet (or had structures shared with you), the menu will

allow you to create a new structure (2) or view our Getting Started guide (3).

Haven't read our Getting Started guide? It's the best way to get up to speed fast and

take full advantage of the powerful functionality Structure has to offer.

Once you create your first structures (or are given access to existing structures), the Structure

menu will also provide quick access to your favorite and recent structures:

Documentation

Version 1 15

1.

2.

3.

4.

The menu has several sections:

Recent Structures. Shows structures that you've visited recently, or those which have

been recently updated. Click a structure's name to open it.

Favorite Structures. Lists structures you have marked as your favorite. This section will

be hidden if you don't have any favorite structures.

Default Structure. Shows the system-wide . If a Default Structure (see page 13)

separate default structure is for the current project, it will be listed defined (see page 304)

here as well.

Manage Structures. Takes you to the screen, where Manage Structures (see page 213)

you can view all of the structures you have access to, search for structures, set your

favorite structures, and edit the configurations for existing structures (if you have the

appropriate permission).

1.3 JIRA Pages with Structure

There are several pages you can view and manage structures within Jira:

Documentation

Version 1 16

On a dedicated Structure Board

On the issue page

On project pages and agile boards

On a dashboard

Most functionality is available in each of these locations; however, since each serves its own

purpose, there are some differences in behavior and appearance:

Working from the Structure Board provides the most unrestricted Structure

experience. To get to the Structure Board from any other page with a Structure widget,

click the link at the bottom of the widget. This will open the currently viewed Open
structure on the Structure Board.

1.3.1 Structure Board

Structure Board is a full-screen view which gives you access to all the features available in

Structure.

The main elements of the Structure Board are:

Structure Toolbar. At the top of the Structure Board, the gives Toolbar (see page 42)

you access to the main functions for building and working with structures.

Working Panels. The left panel always displays the or structure widget (see page 35)

, while the left panel can display another structure widget, search results (see page 38)

, and other features based on the issue details (see page 166) history (see page 182)

add-ons you have installed.

Status Bar. At the bottom of the Structure Board, this shows the number of items

currently displayed, links for the operations and notifications.Undo

Documentation

Version 1 17

To open the Structure Board, click in the top navigation menu in Jira and select the Structure
specific structure you want to see.

If the structure you need is not listed in the menu, there are several options:

At the bottom of the Structure menu, select . From the Manage Structure (see page 213)

Manage Structure page, you can browse and search for available structures.

Open another structure and on the Structure switch between structures (see page 36)

Board.

If you know the structure ID, you can open it directly with a URL:

http://your.jira.address/secure/StructureBoard.jspa?s=structure-id

Keyboard Shortcut

Press and then quickly on any Jira page to open the Structure Board with the g s
structure you opened last. ()Go Structure

Save Time!

You can make the Structure Board your .Jira Home page (see page 17)

Making Structure Board Your Jira Home

If you want to go straight to the when you log in to Jira, you can Structure Board (see page 16)

make it your Jira Home page. To do so:

Documentation

Version 1 18

1.

2.

Click your avatar in the top right corner of the Jira page.

Select in the section.Structure My Jira Home

When used as a Jira Home page, the Structure Board will show your most recently opened

structure.

You can also go to your Jira Home at any time by clicking the Jira logo in the top left corner of

any Jira page.

1.3.2 Structure on the Issue Page

If an issues belongs to , the a project for which the Structure add-on is enabled (see page 298)

Structure widget is displayed on the issue details page. The widget is presented as a separate

section, located right above the section.Activity

Documentation

Version 1 19

When you open an issue page, the structure that appears there is based on the Structure

.Options for the Issue Page (see page 22)

Pinned Issue

The issue itself is automatically located and in the structure. This means Pinned (see page 141)

only the parent issues and sub-issues of the viewed issue are displayed.

You can unpin the issue to see the whole hierarchy by clicking the button on the toolbar or Pin
by using the keyboard shortcut (period).ctrl + .

Structure widget can be hidden from the Issue Details page. Please refer to the

 article for details.Structure Administration (see page 320)

Starting with Jira 6, search results on the Issue Navigator page can display the details

of a selected issue in a side panel. This details panel also contains a Structure

section. Since the details panel is often much narrower than the issue page, it may be

helpful to to fit only the necessary information in the configure a view (see page 45)

smaller space left for the Structure widget.

Unique Features

There are several specific features on the issue page that are not present on the Structure

Board:

Collapsing/Showing Structure Section

The Structure section can be hidden, as can any other section on the issue page. Once you

hide the Structure section, it will remain hidden even if you open another issue page.

Also, the Structure section is automatically hidden if the issue you open does not belong to the

selected structure. (This behavior can be adjusted in the .) Structure Options (see page 22)

When the Structure section is hidden, the issue hierarchy is not loaded from the server – it will

be loaded only when you first open the Structure section.

The flag is stored in a browser cookie or local storage, along with flags for hidden
other sections.

Documentation

Version 1 20

Structure Selection

As you open the issue details for the first time, you will see one of the structures that contain

this issue (this behavior can be adjusted through).Options (see page 22)

To switch to a different structure, simply click the name of the currently displayed structure and

select the one you want to see. You will see those structures that contain this issue in the top

section of the displayed menu.

Structures where this issue is added through will not Automation (see page 192)

appear in the list of structures containing the issue, as this would significantly affect

performance.

As you switch to another structure, this new structure is memorized and shown the next time

you open an issue.

Adding Issue to a Structure

If the issue you are viewing does not belong to the currently-selected structure, you can add it

to this structure. To do so, unpin the issue by clicking the button. Then select where you Pin
want the issue added (it will be added beneath whatever issue is highlighted in the structure)

and click the button.Place

Now you can click the button again to see only your issue and its parents and children.Pin

If the issue is already in the structure, you can add another instance of it to the

structure using the same approach. Unpin the issue, select a location for this new

instance of the issue and click the button.Place

Documentation

Version 1 21

Structure Tools

Next to the button, you should see the button. This allows you to access some of the Pin ...
basic Structure functions, including Add New issue, Expand/Collapse, Edit, Copy, Cut, Paste

and Remove.

Using these tools provides much of the functionality available on the Structure Board, just in a

compact form.

Views and Options Drop-Downs

Located at the right corner of the Structure section header are Views and Options icons.

Click Views icon to open the and select another view for the Views Menu (see page 46)

displayed structure.

Click Options icon to open .Structure Options for the Issue Page (see page 22)

An asterisk appears next to the view name if it has been locally adjusted (see page

.53)

Adjusted Time Tracking Section

Structure automatically sums up time tracking information from the sub-issues and displays

aggregate values in the time tracking section. Whenever any change is detected in the child

issues, the time tracking information is refreshed.

You can turn off time tracking aggregation by clearing the check Include structure sub-issues
box. The standard Jira time tracking will be shown (without Structure). The browser will

remember your preference and display the original Time Tracking panel when you open other

issues, until you select the check box again.Include structure sub-issues

If the time tracking section is not present, it means that neither the current issue nor its sub-

issues have any time tracking info.

Documentation

Version 1 22

Activity tab

As you work with structures, all changes are added to the Jira Activity Stream. As such, all

changes to the structure that affect the current issue will be displayed in the tab of the Activity
issue page. This may be useful if you want to find out why this issue is in a particular position

within a structure, including who added or moved it, and when. See Structure Activity Stream

 for more information.(see page 242)

Structure Options for the Issue Page

You can adjust how the Structure widget appears on issue pages. To change your Structure

settings, click on the gear button in the section header. The changes are saved to the server

and applied immediately.

Which Structure is Displayed?

When you have multiple structures, an issue might be present in more than one of them. When

the issue page is opened, Structure needs to decide which structure to display initially.

This is controlled by a number of parameters:

Auto-switch When auto-switch is turned on, the structure is selected based on which

project and structures the issue belongs to. When auto-switch is turned off, the

Structure section shows the structure that the user opened last on the

Structure Board (the structure).current

When this auto-switch mode is selected, Structure looks for a structure that

contains the issue displayed on the page.

Documentation

Version 1 23

Auto-
switch:
structure
with
displayed
issue

Auto-
switch:
default
structure

When this auto-switch mode is selected, the Default Structure (see page 13)

for the issue's project will always be selected (even if the issue is not in that

structure).

Keep
structure
when
navigating

When you click on another issue within the Structure widget, the browser

takes you to that issue's page. If this option is turned on, the new page

displays the same structure as the page you navigated from (auto-switch is not

applied).

We recommend leaving this option on. This will prevent you from

unintentionally switching structures while reviewing a structure's

issues.

The option currently does not work when you hit Keep structure when navigating
the button in your browser – if you return to an issue page in this manner, the Back
structure will again be selected based on the Auto-switch settings.

Auto-Minimize?

If is selected, the Structure section will Auto-minimize panel when issue is not in structure
be minimized if the current issue is not in the initially selected structure.

To expand the Structure section, click the section header (where it says). You will Structure
need to click to view and edit the current structure.Remove Pin

Options Scope and Default Options

When you adjust the Structure options, the changed settings apply when you view any issue on

this Jira instance. (The settings are saved in your account settings.)

Documentation

Version 1 24

The default values of these options can be configured by the Jira Administrator on the

 page.Structure Defaults (see page 303)

1.3.3 Structure Gadget

You can view and edit structures directly from your Jira dashboard with the Structure

Dashboard Gadget. The gadget can also be imported into Confluence and included on a

Confluence page.

Adding Structure Gadget to Dashboard

Structure gadget is added as any other gadget: click button in the top right corner Add Gadget
of the dashboard, find "Structure" and click . You need to have change permissions Add It Now
on the dashboard (if you don't have permissions to change the dashboard, you can try to create

a copy using).Tools | Copy Dashboard

You can add several gadgets showing different structures on the same dashboard.

Configuring the Gadget

When you first add a gadget to dashboard, gadget configuration panel appears with a dimmed

preview of the gadget below. (The same panel is shown when you use the command from Edit
the gadget header drop-down or when you edit macro with Structure gadget in Confluence.)

Documentation

Version 1 25

1.

2.

3.

4.

5.

6.

To configure the gadget:

Select a . Click arrow down in the Structure selector to view recently used and Structure
favorite structures, or start typing the structure name and let the drop-down suggest

matching structures.

Select a . Click arrow down to choose from views associated with the selected View
structure, or start typing and let Structure suggest matching views. The selected view

 determines which columns the gadget displays. (You will be able to (see page 45)

adjust the view later.)

Optionally, configure a . The displayed structure will be filtered in the same way as Filter
in the Structure Board – see . You can choose between a simple Filtering (see page 139)

text filter, JQL, S-JQL, or a saved JQL filter – see Simple, JQL, and S-JQL Search (see

.page 138)

Optionally, define the for this gadget. By default, it is the name of the selected Title
structure.

Decide how large the gadget is allowed to be and specify the number of . If Visible Rows
there are fewer visible rows, the gadget shrinks; if more, a vertical scroll bar appears.

Pick any number between 2 and 50.

Documentation

Version 1 26

6.

7.

8.

1.

2.

3.

4.

Decide if you'd like dashboard viewers to make changes to the structure or issues

(subject to the user's permissions) by selecting or un-selecting the Allow Changes
checkbox.

Optionally, decide if you'd like the gadget to have different and View Visible Rows
settings when maximized. Select the checkbox Alternative settings when maximized
to configure these parameters for a maximized gadget.

Click .Save

Deselect to protect the structure from accidental changes, such as Allow Changes
changes caused by drag-and-drop or hitting the Delete key.

It may be useful to have different and settings when the gadget is View Visible Rows
maximized. In this case, you can use the wide screen of the maximized gadget's

window optimally and see more information for the same structure. Select Alternative
to configure these parameters.settings when maximized

Configuring Gadget View

There are several ways to configure view (columns) for the gadget.

Select a predefined view from the drop-down.
Just select a view or start typing to allow Structure to suggest matching views. Set up

other gadget parameters and click .Save

Start with an existing view and modify it.
To use this method you need to have on the modified Update permission (see page 236)

view.

Select a view in the gadget configuration panel.

Click .Save

Adjust view by adding, removing or rearranging columns – see Customizing

 for details.Columns (see page 48)

A message " " will appear in the gadget View has been adjusted. Save | Revert
footer. Click .Save

If the view you are changing is used in other gadgets, you will be modifying other

gadgets' columns configuration as well.

Documentation

Version 1 27

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

Start with an existing view, adjust it and save as a new view.
Use this method if you don't have access to the original view or want to continue Update
using the original view for other gadgets configuration.

Select a view in the gadget configuration panel.

Click .Save

Adjust the view by adding, removing or rearranging columns – see Customizing

 for details.Columns (see page 48)

Open the gadget configuration again by clicking in the gadget header drop-Edit
down menu.

Click the button, located beside view selector. An additional form New View
appears – enter the new view name and click .Create View

If this gadget is going to be visible to other users, make sure they have access to

the view you've created. Gadget configuration panel will suggest to make this

view – click to make the view public (see page 236) Let everyone use this view
available to everyone.

Start with a new view and adjust it.

Without selecting a view in the gadget configuration panel, click the New View
button.

An additional form appears – enter the new view name and click .Create View

If this gadget is going to be visible to other users, make sure they have access to

the view you've created. Gadget configuration panel will suggest to make this

view – click to make the view public (see page 236) Let everyone use this view
available to everyone.

Click .Save

The created view will have basic default columns (issue key and summary).

Adjust the view by adding, removing or rearranging columns – see Customizing

 for details.Columns (see page 48)

A message " " will appear in the gadget View has been adjusted. Save | Revert
footer. Click .Save

If the user viewing the gadget does not have permission on the configured view, Use
the gadget will show a default view with only Issue Key and Summary as columns.

Documentation

Version 1 28

When you see " " message in the gadget footer, View has been adjusted. Save | Revert
it means that you have changed the columns configuration for this gadget. These

changes are local and are effective only in the same browser they were made in. Click

 to save and share the changes or to go back to the configuration stored Save Revert
on the server. See for details.Saving and Sharing Views (see page 53)

Using the Gadget

The Structure gadget contains a stripped-down version of the standard Structure widget that

you see on other pages. Because the screen space available to a gadget is usually limited, it

lacks features like search and secondary panels. It also doesn't have a toolbar. However, most

keyboard shortcuts are functional. If the gadget allows editing, you can rearrange issues with

drag-and-drop; you can also move, create, edit, and delete issues using the keyboard.

Structure Dashboard Gadget is a bit limited when it comes to editing issue fields, due

to some incompatibilities between field editors and gadget framework. Because of this,

only a handful of fields can be edited from within Structure Gadget. See Editing from

 for more details.Gadget (see page 179)

If the gadget is displayed in its "home" JIRA dashboard (not in Confluence or elsewhere), the

last column lets you use the action drop-down for issues.

Using Structure Gadget in Confluence

In the current version the Structure Gadget in Confluence is supported, but some

issue may occur. This will be fixed in the future versions.

You can embed in a Confluence page and view or edit Structure Gadget (see page 24)

structure in Confluence.

Before you can use Structure Gadget on a Confluence page, your Confluence

administrator must . add Structure Gadget to Confluence Configuration (see page 30)

If you try to insert a macro and don't see in the list, most likely the gadget is Structure
not configured.

Documentation

Version 1 29

1.

2.

3.

4.

5.

6.

The displayed Structure gadget is not suitable for printing. Support for printable

Structure gadget is coming later. For now, please use Printable Page (see page 187)

to print a structure separately.

How to Add Structure Gadget

When editing a page, click Insert/Edit Macro, and select . Macro configuration Structure
dialog appears.

If button is shown, you need to log in into JIRA first.Login & approve

If message appears, then you currently don't have any Structure plugin not available
visible structures. Probably you need to login.

Configure gadget (see page 24) - select the structure to be displayed and configure

other parameters, then click .Save

Configure gadget appearance, for example, set to and to width 100% border not
.selected

Click and you're done!Insert

Documentation

Version 1 30

6.

1.

a.

b.

Adding Structure Gadget to Confluence Configuration

Adding JIRA gadgets to Confluence is covered by Atlassian documentation. Here's a list of

references to get you started.

Unless you'd like to see Structure as anonymous user, connect Confluence to JIRA using

. You'll need to enable outgoing authentication from Confluence to Application Links
JIRA.

Documentation: Configuring Application Links

Use to let the Confluence page viewer authenticate OAuth Authentication
separately with JIRA. (Preferred)

Documentation: Configuring OAuth for an Application Link

Use authentication if you'd like confluence users act in JIRA Trusted Applications
under the same usernames without additional authentication.

Documentation: Trusted Application Authentication

Structure Gadget may allow modification of structure, updating and

creating issues under the account that is used by Confluence to access

JIRA. Make sure you understand how Trusted Applications work before

allowing production structures to be accessed with this kind of

authentication. Using OAuth is more secure because the end-user will

never be able to do anything that they are not able to do directly in JIRA.

http://confluence.atlassian.com/display/DOC/Configuring+Application+Links
http://confluence.atlassian.com/display/APPLINKS/Configuring+OAuth+Authentication+for+an+Application+Link
http://confluence.atlassian.com/display/DOC/Configuring+Trusted+Applications+Authentication+for+an+Application+Link

Documentation

Version 1 31

1.

b.

2.

3.

1.

2.

Add Structure Gadget to the list of . Remember that you can copy the External Gadgets
URL of the Gadget from the gadgets selection dialog, when you click on Add Gadget
JIRA dashboard.

Documentation: External Gadgets

Check on a sample page if you can include Structure macro and get data from JIRA.

If you have problems with Structure gadget in Confluence, check the browser's console. If you

see errors saying that loading some of the resources is denied, then you hit a CORS problem in

JIRA. To work around that problem, see .Setting Up CORS Filter in JIRA (see page 31)

Main article: Adding JIRA Gadgets to a Confluence Page

Setting Up CORS Filter in JIRA

Sometimes Structure Gadget fails to load correctly in Confluence. You might see missing icons

or the application can fail to work.

This may happen because of a known JIRA issue that prevents Structure gadget from loading

resources from JIRA when it's being served in Confluence on another web domain.

To work around that problem, you can set up CORS filter in the Tomcat server that runs JIRA

(Nginx users may want to consider this alternative):Nginx Configuration Option (see page 32)

Copy cors-filter-2.4.jar, java-property-utils-1.9.1.jar from to the directory CORS docs /lib
under JIRA's installation folder.

Edit file and add the following:JIRA_INSTALL_DIR/atlassian-jira/WEB-INF/web.xml

 <!-- ==================== CORS configuration
====================== -->
<filter>
 <filter-name>CORS</filter-name>
 <filter-class>com.thetransactioncompany.cors.CORSFilter<
/filter-class>
 <init-param>
 <param-name>cors.allowOrigin</param-name>
 <param-value>http://YOUR-CONFLUENCE-DOMAIN.com</param-
value> <!-- use http: or https: depending on your
configuration -->
 </init-param>
 <init-param>
 <param-name>cors.supportedMethods</param-name>
 <param-value>GET, POST, HEAD, OPTIONS, PUT, DELETE<
/param-value>
 </init-param>
</filter>

https://confluence.atlassian.com/display/DOC/Registering+External+Gadgets
https://confluence.atlassian.com/conf57/adding-jira-gadgets-to-a-confluence-page-701435363.html
http://software.dzhuvinov.com/cors-filter-installation.html

Documentation

Version 1 32

2.

3.

<filter-mapping>
 <filter-name>CORS</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Restart JIRA

Nginx Configuration Option

Some Nginx proxy users reported that adding the following block directive is an effective

workaround for addressing the missing CORS headers issue.

Please replace with your actual Confluence domain name:XXXX

location ~* \.(eot|ttf|woff|woff2)$ {
 add_header Access-Control-Allow-Origin "https://confluence.
XXXX.com";
 try_files $uri @jira;
 }
 location / {
 try_files $uri @jira;
 }

 location @jira {
 proxy_pass http://localhost:8080 ;
 proxy_read_timeout 180s;
 proxy_http_version 1.1;
 proxy_redirect off;
 }

1.3.4 Structure on the Project Page

If a project is , you will see a new Structure icon on the enabled for Structure (see page 298)

side navigation bar. Clicking this will open the Structure widget on the Project Page.

Documentation

Version 1 33

This is a fully-functional Structure widget and has the same functionality you can find on the

, with the following exceptions:Structure Board (see page 16)

Scope

The current project defines the scope of the displayed data:

An automatic project filter is added to the primary panel, hiding all issues from other

projects. This is a non-removable transformation.

Project issues will be displayed in the secondary panel.

If you'd like to see the full structure without the project filter, click the link in the Open
Structure widget's footer.

Layout

When you open the Structure tab, the Double Grid layout is selected automatically.

The primary (left) panel displays the most recently viewed structure or the default structure for

the current project (as defined in the Options dialog). You can quickly switch to another

structure by clicking the structure name and selecting the desired structure.

The secondary (right) panel shows issues from the current project that are not part of the

selected structure. This allows to quickly place other issues from the project into the structure.

Project Page Options

You can make the widget open with the structure that is defined as a default structure for this

specific project.

To do this, click the options gear button in the top right corner and select the Auto-switch
option. The changes are saved to the server and applied immediately.

If you are the Project Administrator, the options dialog will also show the link to a page where

you can change the default structure for your project.

Documentation

Version 1 34

The default value for this option can be configured by the JIRA Administrator on the

 page.Structure Defaults (see page 303)

Perspectives are Unavailable

It is not possible to from the project page.share a perspective (see page 240)

1.3.5 Structure on Agile Boards

If you are using Jira Software (formerly Jira Agile or GreenHopper), you will see an additional

Structure tab in the issue details panel on Scrum and Kanban boards.

The Structure tab displays the standard Structure widget in Pinned Item Mode (see page 141)

(highlighting the position of the selected issue and its sub-issues). You can unpin the structure

by clicking the Pin button in the toolbar or hitting (period). Ctrl+.

Adding Columns

Due to the constrained horizontal space, Structure initially displays only the Key and Summary

columns in the Agile tab. You can by clicking the Add add more columns (see page 48)

Columns button (the plus sign).

Switching Issues

When you click another issue on an Agile board, the Structure widget automatically selects and

pins that issue in the current structure. You can switch to a different structure clicking the

structure name.

Documentation

Version 1 35

Editing Issue Fields

You can edit any field from within Structure widget (just as you can on the Structure Board),

provided there's enough space. After you edit an issue, Structure signals Jira to reload the

page, and you will see the updated values on the board.

Only the users who have will see the Structure tab access to Structure (see page 299)

on Agile boards.

1.4 Working with the Structure Widget

Structure widget is the main tool for working with a structure and its items. It's a component of

the Structure plugin that is used on the Structure Board, on the Issue Page and in other places

 where structure is displayed.(see page 15)

The following sections describe how to use the structure widget in detail.

1.4.1 Structure Widget Overview

Structure displays issues as a hierarchical list. You can view as much or a little information

about each item, by adding or removing to the Structure panel (or by columns (see page 48)

selecting one of the predefined views).

Within the Structure widget, you can:

Rearrange issues and adjust their position within the hierarchy

Edit issues

Documentation

Version 1 36

Perform Jira issue operations

Search and filter issues

Switch to a different structure (see page 36)

To learn more about performing each of these actions, see Moving Items within Structure (see

 and .page 157) Working with Issues (see page 166)

Structure widget is displayed on the , Structure Board (see page 16) Issue Page (see

 and in .page 18) other places in JIRA (see page 15)

Displaying Full Cell Content

In the Structure grid, if the content of a cell is larger than the cell's size, only a part of the

content will be shown.

You can view the full content by clicking or hovering the mouse pointer over the "More" sign

(three vertical dots) that appears at the right side of the cell.

To close the full-content panel, click the x, move the mouse away, press Esc or click anywhere

outside the panel.

You can start editing the cell value even when the full-content panel is shown: double-

click the panel or the Summary text in the panel.

Switching Between Structures

If you need to switch structures without leaving the current Structure widget, instead of using

the , click the name of the structure inside the widget:Structure menu (see page 14)

Documentation

Version 1 37

If the structure you need is listed under the Recent Structures or Favorite Structures list, click

the name to open it.

If the structure you are looking for is not listed, start typing the name into the Search Structure
box at the top to see a list of matching structures.

Apart from choosing structures, you can also use this drop-down to run text and JQL

searches, see the clipboard contents and - if you have Structure.Pages installed -

search for Confluence pages. All of these options are available under the Tools

section of the menu.

Documentation

Version 1 38

1.

2.

3.

4.

Using Structure Widget for Searching

On the Structure Board you can use the structure widget not only for showing structures, but

also for searching existing issues (using JQL or text search) and displaying your clipboard

contents.

To search existing issues:

Make sure you have a structure open

Click the structure's name in the main panel

Look for the Tools section in the drop down

Select either Text Search or JQL Query

Once the search is open, just start typing and the results will be updated.

Documentation

Version 1 39

Just like when you're working with a structure, you can select a specific for your search view
results and then as necessary.add and arrange columns (see page 48)

The also works for search results the same way it works for structure panel toolbar
structures. You can apply , additional and more sorting (see page 201) filtering (see page 195)

complex .transformations (see page 146)

Search only looks for issues from .structure-enabled projects (see page 298)

1.4.2 Navigating Structure

Navigating with Mouse

You can select items, scroll up and down, as you would do with any table. Clicking a link of an

item will open the panel with item details or take you to the item page depending on the

settings. So if you'd like to just select an item, click anywhere in the row except the underlined

links. The row of an issue is also selected when you click the JIRA actions icon at the end of

the row.

To show or hide sub-items of a parent item, click the button near the item summary.Expander

To expand or collapse the whole hierarchy, use or buttons in the Expand All Collapse All
toolbar. You can also expand the structure to a certain level by clicking the drop-down menu

next to these buttons and selecting the desired level of depth.

Documentation

Version 1 40

If there are many items in the structure, not everything is loaded from the server. As

you scroll down or expand sub-items lists, the data is loaded on demand, which

means there might be a delay before the grid is filled with the data for the displayed

items.

Navigating with Keyboard

You can use to focus on the next or previous item in the list. Left and right arrows arrow keys
expand and collapse sub-items list.

To expand all sub-items, press the keyboard button twice. To collapse all sub-times lists, Plus
press twice the keyboard button .Minus

Using moves the selected item up or down in the hierarchy or indents/out-Ctrl+Arrow Key
dents it.

You can press to open JIRA actions menu for the selected issue.Alt+Down

There are a lot more that let you work with the keyboard shortcuts (see page 278)

Structure almost without touching the mouse. Press to see the shortcuts cheat Ctrl+?
sheet or click at the bottom of the structure widget.Info

Selecting Multiple Items

To select multiple items (for moving, copying, deleting, or editing), do one of the following:

Click the gray dot at the beginning of the item row for each item you wish to select

Press to add the currently-focused item, and then move to the next issue and Space
press againSpace

Hold and use the Up and Down arrows to select a range of issuesShift

Hold and use the Right/Left arrows to select/deselect the focused issue with all its Shift
sub-issues

Documentation

Version 1 41

Hit (on Mac) to select all issuesCtrl+A Command+A

Selected items are marked with a filled circle, and an additional panel appears at the top of the

grid showing the number of selected items and several action buttons.

The selection panel offers the following features:

Move focus from one selected item to another by clicking the up and down arrows

Bulk Edit (see page 180) the selected issues using the Jira bulk change wizard

Show only selected items and their parents by clicking the Filter button

Remove all selections by clicking the close button in the right corner of the panel

Special Selection Markers

If you collapse a list of sub-items, the selection marker of the parent item will show if it contains

any selected sub-issues.

For example, if you collapse sub-issues of , , and in the example OFW-1 DTD-1 LHMGR-2
below, you will see these selection markers (the large and small circles to the left of each row):

The meaning of each marker is as follows:

The item and its sub-items are selected.all

The item and of its sub-items are selected.some

The item itself selected, but of its sub-items are selected.is not some

Documentation

Version 1 42

The item itself selected, but of its sub-items are selected.is not all

Changing Multiple Items

The following actions work with the multi-selection:

Drag and drop (see page 160) lets you move a selection of items within a structure or

between two structures

Cut and paste (see page 162) allows you to move items within a structure and between

different structures

Remove button (see page 159) or key lets you remove multiple items from the Delete
structure

Toolbar buttons , , and are allowed for multiple Move Up Move Down Indent Outdent
items, only if all items in the selection are at the same level in hierarchy and have the

same parent item

Bulk Change (see page 180) lets you use the Jira bulk change wizard to modify the

selected issues

Exiting Multi-Select Mode

To exit multi-select mode (and deselect all items), press the button at the far right of the x
selection panel or press the key.Escape

You can also press () twice – the first key stroke will select all Ctrl+A Command+A
items, the second one will deselect all items.

1.4.3 Main Structure Toolbar

The Structure toolbar provides access to the main functions of the Structure widget.

As you move the mouse pointer over the buttons in the toolbar, the active buttons are

highlighted. Some buttons in the toolbar may be grayed out, indicating that these actions are

not currently possible. For example, you cannot use the Paste action unless you have items in

your clipboard, so the button will remain light gray and not clickable until you add items to your

clip board.

Documentation

Version 1 43

Not sure what a button does? Hover the mouse pointer over the toolbar button for a

few seconds and a tooltip will appear.

Available Actions

The following actions are accessible from the Structure toolbar.

Button Action More
Information

Keyboard
Shortcut

Create a new item and add it under the item

currently selected in the structure. By

default, you can add either new issues or

new folders (Confluence pages are available

if you have Structure.Pages installed).

To search for existing issues, click the drop-

down menu next to the Add button.

Creating

new items
Enter

Expand or collapse the whole hierarchy. Use

the drop-down menu to expand the

hierarchy to a specific level.

Navigating

Structure

(see page

39)

++ / --

Move an item up or down within the

structure, without changing the item's

parent. If it is not possible to move an item

up or down without changing its parent, the

respective option will be grayed out.

Moving

Issues

Within

Structure

(see page

157)

Ctrl+Up /
orCtrl+Down

Command+Up
/Down

Unindent / Indent the item one level. If either

or both of these moves are not possible, the

option(s) will be grayed out.

Moving

Issues

Within

Structure

(see page

157)

Ctrl+Left /
orCtrl+Right
+Command

/Left Right

Edit the currently selected issue / stop

editing and save changes.

Editing

Issues (see

page 173)

Tab

Documentation

Version 1 44

Button Action More
Information

Keyboard
Shortcut

Cut the selected item(s) to the clipboard

.(see page 155)

Issue

Clipboard

(see page

155)

Ctrl+x or

Command+x

Copy the selected item(s) to the clipboard

.(see page 155)

Issue

Clipboard

(see page

155)

Ctrl+c or

Command+c

Paste item(s) from the clipboard (see page

 into the structure.155)

Issue

Clipboard

(see page

155)

Ctrl+v or

Command+v

Remove the currently selected item(s) from

the structure.

Removing

Issues (see

page 159)

Delete

Switch Automation editing mode on/off. Automation

(see page

192)

~

Create a link to perspective (see page 240)

share the current view.

Perspective

(see page

240)

Open a with printable page (see page 187)

the structure or export the structure to Excel

.(see page 188)

Printing

(see page

187)

Exporting to

Excel (see

page 188)

Select the layout options, including opening

the .secondary panel (see page 153)

Documentation

Version 1 45

Button Action More
Information

Keyboard
Shortcut

Secondary

Panel (see

page 153)

1.4.4 Configuring View

The way Structure Widget displays the structure and the items it contains is very configurable.

You can configure how each item is represented by customizing columns (see page 48)

or .selecting a pre-defined View (see page 46)

You can display only part of the whole structure that is relevant for some item by pinning

.that issue (see page 141)

You can the displayed structure using text or JQL and display only filter (see page 139)

the matching items and their parent issues.

Using Views

A is a visual configuration of the Structure Widget, which defines which columns are view
displayed and in what configuration.

Structure comes with a number of pre-installed views, but you can also define your

own views - see .Managing Views (see page 233)

On the Structure Board, the current view is displayed in the top right corner:

On picture: Current view is called "Basic view".

If you modify the view, the small blue asterisk will be shown next to it until you either save this

change or revert to the original settings:

Documentation

Version 1 46

On other pages with structure the current view may be identified if you hover mouse over the

Views icon, or click this button:

You can change which columns are displayed by or switching to another view (see page 46)

by manually .adding, removing or rearranging columns (see page 48)

When you manually change column configuration, you create your local adjustments to the

currently select view. You can then save the changes (if you have permissions to change the

view) or save and share your customization as a new view – see Saving and Sharing Views

.(see page 53)

Views Menu

You can switch to another view by pulling down Views menu and selecting one of the views it

offers, or searching for a different view.

To open Views menu on the Structure Board, click current view name; on an issue page and

project page click the Views icon.

Apart from the list of views the Views drop-down shows important information about the current

view.

Documentation

Version 1 47

1.

2.

3.

4.

5.

6.

7.

1.

In the menu you can see the following:

Current view name. Hover mouse over the name to see the tooltip with the view

description.

If the view was modified, you'll see the corresponding message and links, which allow

you to save or revert the changes.

Permissions settings and a link to change them.

View search. Start typing the view name and results will be filtered as you type.

Search looks for any views that match the entered name, not only those in this

list.

Associated views list. This list can be customized for each structure by the structure

owner or anyone who has Control access level on the structure – see Customizing View

.Settings (see page 220)

List of views you have recently used (excluding the views shown in the section above).

Manage Views link opens dialog.View Management (see page 233)

Switching View with Keyboard

You can switch current view only using keyboard:

Use shortcut to open Views menu (hit "v" twice);vv

Documentation

Version 1 48

2.

3.

Use arrows to select a view, or enter text to search for matching views;

Hit to switch to selected view or to close the menu.Enter Escape

Customizing Columns

To configure structure columns, position mouse pointer over the structure header for a second

to have grid controls appear. These controls let you select which columns to show and how

much space each column gets.

When you add, configure, remove or rearrange columns, you make adjustments to the

 that's being used to display the structure. Adjusted view is marked with a blue View
asterisk (). The adjustments are stored in your browser and affect only yourself – to *

make the changes persistent and available to others, you need to save the view or

.create a new view (see page 53)

Adding Columns

To add a column, click on the button at the right corner of the table header. A drop-down with +
the available column presets appears. To select the desired column, you can:

use the mouse to find a specific column, or

use keyboard to select the column and hit when done, orarrow keys Enter

start typing the column name to filter the list, then select the appropriate column.

To abort adding a new column, hit .Escape

Documentation

Version 1 49

Use keyboard shortcut to quickly open the Add Column dialog (hit "t" twice).TT

Configuring Columns

To configure a column, click the arrow icon in the column header. The column will be

highlighted, and its configuration drop-down will appear, allowing you to change the column

name, type and other options.

The particular set of options available for the column is determined by its . type (see page 54)

For example, the column type lets you select the issue field to display and Field (see page 55)

enable aggregation for numeric and time-tracking fields.

Any changes you make are applied immediately, so you can see the effect almost instantly.

When you are happy with the column, simply close the configuration panel by clicking the arrow

icon again or clicking anywhere outside the panel.

To cancel all of your changes use the button at the bottom of the "Revert changes"
configuration panel. The column will be restored to its original state.

Removing Columns

To remove a column, click the arrow icon in the column header, then use the button "Remove"
at the bottom of the column configuration panel.

You cannot remove and Summary Column (see page 54) Special Columns (see

.page 71)

Rearranging Columns

You can change the position of a column by grabbing the column name with the mouse and

dragging it to the left or right.

Resizing Columns and Autosize

Documentation

Version 1 50

Resizing Columns and Autosize

Structure automatically tries to give all displayed columns enough space to display all

information, but sometimes you might need to give more space to a column or two.

Column widths are not part of the and are not saved on the server or shared.View

There are a number of ways to change column widths:

Grab the resizer and drag. When you hover your mouse over a column, the resizer that

is responsible for that column's width is highlighted. When the column size is close to

what Structure considers ideal width (based on the displayed data), the resizer "snaps"

to the perfect position.

Hold CTRL and drag resizer. Works same as above, but without snapping. You can

use it to fine-tune column width.

Hold ALT (Option) and drag resizer. In this mode, you will redistribute the space

between two adjacent columns - increasing the width of one column and decreasing the

width of another.

Double-click the resizer or the column header. The column will automatically resize

to the default size.

Click "Autosize" icon () or double-click Summary column. All columns will be

resized automatically, based on the displayed data.

If you are unable to comfortably view all of the columns or need to stretch columns beyond the

visible panel, you may need to enable .Horizontal Scrolling (see page 51)

Documentation

Version 1 51

Horizontal Scrolling

 Structure automatically adjusts column sizes to fit every

selected column into the panel. While you can easily change the size of each column, by

default you are still bound by the size of your Structure panel. This can make it difficult to view

several columns at once or columns with a great deal of information (such as the Summary

column or text columns), particularly when you're working with a Double Grid layout or viewing

Structure on a small screen.

To make it easier to work with multiple columns and/or larger columns, you can turn on

horizontal scrolling. This will allow you to work with as many columns as you need and set their

sizes as large as necessary for easy viewing.

To enable horizontal scrolling:

Click the Add Column icon “ ”+

Click the toggle.Horizontal scrolling

Once you turn horizontal scrolling on, your view may no longer fit within the viewing panel. In

this case, a horizontal scrollbar will appear at the bottom of the panel. Sliding this from left to

right will allow you to bring different columns into view.

Pinned Columns

Not all columns move when you scroll. The remains visible at Summary column (see page 54)

all times, so you can keep track of essential information as you focus in on other columns.

Additionally, the is always available, though it may not be Jira Actions column (see page 72)

visible.

Documentation

Version 1 52

Saving Horizontal Scrolling Settings

Structure allows you to save your horizontal scrolling settings for a particular view.

For example, by default, the Basic View only shows a few essential columns. Keeping

horizontal scrolling disabled for this view makes sure all of your essential information is visible

at a glance. On the other hand, the Planning view often has several columns and might be

easier to scroll through than trying to view all together.

To set your horizontal scrolling preference for a saved view:

In the Views Menu, select Manage Views

Locate the view you want to set and click Details

Under the Properties tab, check or uncheck Horizontal scrolling

Horizontal Scrolling is enabled by default for the Planning and Tracking views. If you

prefer not to use Horizontal Scrolling for these views, you can disable it using the

methods above.

Documentation

Version 1 53

Saving and Sharing Views

When you have , you have adjusted the added, removed or rearranged columns (see page 48)

view that is used to display the structure. The view is marked as "adjusted" with the blue

asterisk:

Saving View Adjustments

The adjustments you have made to the view are local, they are stored in your browser. To

make the changes persistent and to push them to other people using the same view, you need

to save a new version of the view. To do that, open Views drop-down and click link.Save

To save view changes you need to have access level for that view (see Update View Sharing

). If you do not have permissions to change the view, you can and Permissions (see page 236)

create a new view based on your modifications with link.Save As

If you need to remove your adjustments and get back to the original view as it stored on the

server, click link.Revert

Sharing a View

A view has a set of permissions, just like a structure. When you initially create a view with Save
 link, the view is - it "belongs" to you and noone else can use it. You, however, can As private

use this view with any structure.

To share a view with other people, you can either make view , allowing everyone to public
locate and use this view, or define more fine-grained permissions for the view.

To make current view public, click link in the view drop-down. After that, everyone Make Public
will be able to find and use the view, but only you will be able to modify it.

Documentation

Version 1 54

To define fine-grained permissions or modify sharing, click or link in Share Change Sharing
the Views drop-down to open View Management dialog. See View Sharing and Permissions

 for details.(see page 236)

1.4.5 Widget Columns

Structure widget provides a number of columns that display information about issues in the

structure. You can the displayed columns by adding new columns, customize (see page 48)

changing each column configuration, or .switching to a new view (see page 46)

Out of the box, Structure provides the following columns:

Structure also contains , so the selection of available columns extension API (see page 365)

may be extended by a third-party plugin.

Issue Key Column

For issues the Issue Key column displays the issue key. For other types of items it remains

empty.

Compact View

If the project key is large, the issue key column may get too wide. You can configure Issue Key

column to replace the project key with a small avatar icon of the project.

To enable compact view of the Issue Key column, open the and column options (see page 48)

select Compact View.

Summary Column

For issues the Summary column displays the issue summary and, optionally, part of the issue

description. For folders it shows the folder name. Sub-items have the text in the Summary

column indented relative to their parent item.

Summary can be and it's the only field edited right in the structure widget (see page 173)

required for .creating new issues (see page 169)

Documentation

Version 1 55

To turn off descriptions in the Summary column, use the column configuration panel

.(see page)

Summary column cannot be removed from the Structure grid or reconfigured to a

different column type because it displays the hierarchy.

Field Columns

For each issue field in your Jira, Structure offers a column that displays that field's value.

Displaying Aggregate Values

For numeric and time-tracking fields, Structure also offers to display an aggregated value,

calculated as a sum of the field values over sub-issues.

To display an aggregated value, use the and column configuration panel (see page)

select . If there's no such option for a given field, then the Sum over sub-issues
aggregate cannot be calculated.

Alternatively, you can add a predefined column from the sub-section in the Totals Add
 drop-down menu.Column

When aggregate value is displayed for an issue that also has its own value in the field,

own value is displayed next to the aggregate value in grey color.

Since each issue can be present multiple times in the structure, you can select if you

want to count every instance of this issue in the totals or count it just once.

Note that values of the totals may change depending on the selected structure.

Editing Values

Most field columns are editable – you can by double-clicking it (if edit field value (see page 174)

the field is added to the Edit Screen in Jira). When aggregate value is displayed, you can still

edit the issue's own value.

Documentation

Version 1 56

1.

2.

Note that issue status editor suggests only statuses that are allowed according to

workflow and there are no required fields or dialogs to show in corresponding

transition.

Icons Column

Icons column displays icons for issue type, priority, status, project, reporter, and assignee.

Its narrow width and short name allow to save horizontal space for other columns. You can

 which icons to display and arrange them in any order.configure (see page)

Progress Column

The Progress column displays configurable aggregate issue progress, which includes progress

values from sub-issues.

Progress column allows you to customize how the progress is calculated – based on time

tracking, Resolution and Status field, or custom fields. There are several predefined

configuration of Progress column, available under menu. You can Add Column (see page 48)

add any available preset configuration and then customize it using the column configuration

 (shown when you click the grey arrow in the column header).panel (see page)

Progress is the custom Structure column, not available in the Issue Navigator or other

standard JIRA views.

How is Progress Calculated?

Configuration of the progress calculation is divided into two parts:

How individual issue progress is calculated, regardless of its position in the structure.

How progresses from sub-issues are aggregated and combined with individual progress

of the parent issue.

Individual Issue Progress Calculation

There are several progress calculation modes. Mode is selected by the option:Based On

Total Progress Calculation

When individual issue progress is calculated based on , Status (see page 62) Percent Field

, or , you can specify how individual sub-issue (see page 65) Resolution Only (see page 60)

progresses are aggregated into parent issue progress. This is defined by option:Weight

Documentation

Version 1 57

All Sub-Issues Are Equal – All sub-issues are considered equal when calculating

aggregated progress for the parent issue. Weights do not accumulate, so sub-issues of

each level are considered equal irrespective of how many sub-sub-issues they have.

Time Estimate – Sub-issues' progresses are weighted proportionally to their total time

estimate (). This option is akin to , yet Time Spent + Remaining Estimate Time Tracking
allows to get individual progress from other sources (e.g. numeric custom field or Status

field). If time information is not present, it is counted in as an average, based on the

mean total time (time spent + remaining estimate).

Custom Numeric Field – Sub-issues are weighted according to a value in the specified

numeric field, for example, . Weights are accumulated upwards. If field value Story Points
is not present, it is counted in as an average, based on the mean field value across sub-

issues.

Zero value in the field configured as weight will discard any issue's progress in parent

issue aggregation.

Progress Based on Time Tracking

The progress is calculated based on the issue's Resolution field, time tracking data and the

progress of sub-issues. Best estimate of the issue's completion is given, with extrapolation of

the sub-issue estimates if needed.

Calculating Progress for Issue Without Sub-Issues

If the issue does not have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the Apply Resolution
progress is 100%.

Otherwise, if the issue has time tracking information, the progress is calculated

proportionally to this issue completion%: (Time Spent) / (Time Spent +

Remaining Estimate)

Otherwise, the progress is 0%.

Calculating Progress for Issue with Sub-Issues

If the issue does have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the Apply Resolution
progress is 100% - regardless of the sub-issues progress.

Documentation

Version 1 58

If the issue and its sub-issues do not have estimates or work logged (or if time tracking is

turned off), the progress is calculated as the average from the sub-issues progresses.

If time tracking is used and all issues have an estimate (either original estimate or

remaining estimate) - the estimates and total work logged are summed up and the

progress is calculated as the total completion%: (Total Time Spent) / (Total

Time Spent + Total Remaining Estimate)

If a sub-issue does not have time tracking information, it is counted in as an

average sub-issue, based on the mean total time (time spent + remaining

estimate)

If the issue has both its own time tracking information and sub-issues with progress,

and if is turned off, issue's own progress value is Ignore Parent Issue Progress
counted as if it was the progress of one another sub-issue.

Examples
1. Example without time estimates

Issue Explanation Progress

Sub-sub-

issue 2.1

This issue is resolved (indicated by the green mark) - so it is

complete

100%

Sub-issue

2

It has two sub-issues with 100% and 0% progress, the total

progress is average value

50%

Top issue It has two sub-issues: sub-issue 1 is 0% done and sub-issue 2 is

50% done, the mean value is 25%.

25%

Documentation

Version 1 59

2. Example with time tracking information

Issue Explanation Progress

Sub-

issue

1

It has 3 days of work logged with 1 day remaining, so its progress is

time spent / total time = 3 / (3 + 1)

75%

Sub-

issue

2

This issue does not have any work logged, is not resolved and does not

have sub-issues

0%

Top

issue

The top issue has total time spent of 3 days (work logged on sub-issue

1) and 2 total days remaining (estimates on sub-issue 1 and sub-issue

2), so its progress .3 / (3 + 2)

60%

3. More complex example

Issue Explanation Progress

Sub-

sub-

issue

2.1

It has 2 days of work logged and 1 day remaining, the progress is 2 /

(2 + 1)

66%

Documentation

Version 1 60

Sub-

sub-

issue

2.2

This issue has 1 day of work logged and no work remaining - so even

though it is not resolved, it's considered completed

100%

Sub-

issue

2

It has total time spent of 3 days, and total remaining estimate of 2 days

(the remaining time from sub-sub-issue 2.1 and its own 1 day, which is

considered additional work, besides sub-issues). The progress is 3 /

.(3 + 2)

60%

Sub-

issue

1

This one has 3 days of work logged and 1 day remaining - the progress

is 3 / (3 + 1)

75%

Top

issue

The progress of the is calculated as follows. The obvious total top issue
time spent is 6 days, total remaining estimate is 3 days (count in all sub-

issues on all levels). But there's also , which does not have sub-issue 3
estimates or work logged, so it’s estimated based on the average among

the Top Issue's children issues - and : the sub-issue 1 sub-issue 2
average between total time of (3 + 1 = 4 days) and total time sub-issue 1
of (3 + 2 = 5 days) is 4.5 days. So is treated as if sub-issue 2 sub-issue 3
it has total time 4.5 days (and given its 0% progress that's 0 days spent

and 4.5 days remaining). That yields for the : total time spent is top issue
6 days, total remaining time is 7.5 days, and the progress is 6 / (6 +

, which gives 44% value.7.5)

44%

Progress Based on Resolution Only

The progress is calculated based on the issue’s Resolution field and the progress of sub-

issues.

Calculating Progress for Issue Without Sub-Issues

If the issue does not have sub-issues:

If the issue's Resolution field is not empty, the progress is 100%.

Otherwise, the progress is 0%.

Documentation

Version 1 61

Calculating Progress for Issue with Sub-Issues

If the issue does have sub-issues:

If the issue's Resolution field is not empty, the progress is 100% - regardless of the sub-

issues progress.

Otherwise, sub-issues progress is aggregated sum with specified weights.

Example: Resolution Only with Story Points

Individual progress is 0% or 100% based on Resolution field; total progress is calculated as

weighted average, with weights contained in a field.Story Points

Column Configuration

Sample Structure

Documentation

Version 1 62

Issue Explanation Progress

Sub-

sub-

issue

1.2

This issue is resolved (indicated by the green mark) - so it is complete 100%

Sub-

issue

1

It has two sub-issues with 0% and 100% progress, and story points are

2 and 3 respectively. So the total progress is weighted average value of

(0 x 2 + 100 x 3) / (2 + 3)

60%

Top

issue

It has two sub-issues: sub-issue 1 is 60% done and sub-issue 2 is 0%

done, and their cumulative story points are (2 + 3) and 1 respectively.

So progress is (60 x 5 + 0 x 1) / (5 + 1)

50%

Progress Based on Status

The progress is determined by issue's Status field. Percentage values are assigned to specific

statuses.

Calculating Progress for Issue Without Sub-Issues

If the issue does not have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the Apply Resolution
progress is 100%.

If the issue's Status is assigned a value (%) in the column configuration, the progress is

equal to that value.

Otherwise, the progress is undefined, so the issue neither shows any progress, nor

affects the progress of its parent issue.

Calculating Progress for Issue with Sub-Issues

If the issue does have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the Apply Resolution
progress is 100% - regardless of the sub-issues progress.

Otherwise, sub-issues progress is aggregated sum of progresses with chosen weights.

Documentation

Version 1 63

If the issue has both its own status and sub-issues with progress, and if Ignore Parent
 is turned off, issue's own progress value is counted as if was the Issue Progress

progress of one another sub-issue.

If some of statuses don't have any percentage configured, issue progress is

considered undefined.

Example: Progress Based on Status, All Sub-Issues Are Equal

In this example, statuses have the following percentages: Open = 0%, In Progress = 50%,

Resolved or Closed = 100%, Reopened = 80%. is turned on, Apply Resolution Ignore Parent
 is turned on.Issue Progress

Column Configuration

Documentation

Version 1 64

Sample Structure

Issue Explanation Progress

Sub-

sub-

issue

1.1

This issue is Open, so it is 0% 0%

Sub-

sub-

issue

1.2

This issue is In Progress, so it is 50% 50%

Sub-

sub-

issue

1.3

This issue is Resolved, so it is 100%. Also, according to workflow, it has

non-empty Resolution, which also means it's complete.

100%

Sub-

sub-

issue

1.4

This issue is Close, so it is 100%. Also, according to workflow, it has non-

empty Resolution, which also means it's complete.

100%

Sub-

issue

1

Average progress is (0+50+100+100)/4. Issue's own status is In

Progress, but it's percentage is ignored because of "Ignore parent issue

progress in aggregation" option

63%

Documentation

Version 1 65

Issue Explanation Progress

Sub-

sub-

issue

2.1

This issue is Reopened, so is 80% 80%

Sub-

sub-

issue

2.2

This issue is Open, so is 0% 0%

Sub-

issue

2

Average progress is (80+0)/4 = 40%. But issue itself has Resolution and

"Issues with Resolution are 100% done" option is turned on, so this

overrides sub-issues progress and makes issue complete

100%

Top

issue

It has two sub-issues: sub-issue 1 is 63% done and sub-issue 2 is 100%

done. Average progress is (63+100)/2

82%

Progress Based on Percent Field

The progress is assigned to each issue manually in a custom field, and aggregated for parent

issues.

You can use any numeric JIRA custom field to store the current progress % – a value from 0 to

100.

Calculating Progress for Issue Without Sub-Issues

If the issue does not have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the Apply Resolution
progress is 100%.

If the issue's Custom Field value is not empty and is between 0 and 100, it's considered

as the completion progress in percents.

If the issue's Custom Field value is less than 0, the progress is 0%, if greater than 100,

the progress is 100%.

Otherwise, the progress is undefined, so such issue neither shows any progress, nor

affects progress of its parent issue.

Documentation

Version 1 66

Calculating Progress for Issue with Sub-Issues

If the issue does have sub-issues:

If the issue's Resolution field is not empty, and is turned on, the Apply Resolution
progress is 100% – regardless of the sub-issues progress.

If the issue's Custom Field value is not empty, it's considered as that issue's completion

progress in percents (from 0 to 100) – regardless of the sub-issues progress.

Otherwise, sub-issues progress is aggregated sum of progress with chosen weights.

Examples
A: Percent Field, All Sub-Issues Are Equal

Custom field named , total progress is based on , and Complete All Sub-Issues Are Equal
 is turned on.Apply Resolution

Column Configuration

Documentation

Version 1 67

Sample Structure

Issue Explanation Progress

Sub-sub-

issue

1.1

This issue is 50% complete as specified by custom field 50%

Sub-sub-

issue

1.2

This issue is resolved (indicated by the green mark) - so it is

complete, even if "Complete" field is empty

100%

Sub-sub-

issue

1.3

This issue has no progress information (neither "Resolution" nor

"Complete" fields), so progress is undefined and not counted at all.

n/a

Sub-sub-

issue

1.4

This issue has 0 "Complete" value, which means it's 0% complete 0%

Sub-

issue 1

It has two four sub-issues, but 1.3 is ignored. So the total progress is

average of the rest: (50 + 100 + 0) / 3

50%

Sub-

issue 2

The issue is 25% complete as specified by custom field 25%

Top

issue

It has two sub-issues: sub-issue 1 is 50% done and sub-issue 2 is

25% done. So the progress is average between two (25 + 50) / 2

38%

Documentation

Version 1 68

B: Percent Field, Story Points

Custom field named , total progress is based on the field , and Complete Story Points Apply
 is turned on.Resolution

Column Configuration

Sample Structure

Issue Explanation Progress

This issue is 50% complete as specified by custom field and has 2

story points

50%

Documentation

Version 1 69

Issue Explanation Progress

Sub-

sub-

issue

1.1

Sub-

sub-

issue

1.2

This issue is resolved (indicated by the green mark) - so it is complete,

even if "Complete" field is empty and has 3 stroy points

100%

Sub-

sub-

issue

1.3

This issue has no progress information (neither "Resolution" nor

"Complete" fields), so progress is undefined and not counted at all.

n/a

Sub-

sub-

issue

1.4

This issue has 0 "Complete" value, which means it's 0% complete. It

has no story points, so it's counted as mean of 2 and 3 = 2.5

0%

Sub-

issue 1

It has four sub-issues, but 1.3 is ignored. So the total progress is

weighted average of the rest: (50 x 2 + 100 x 3 + 0 x 2.5) / (2 + 3 +

2.5)

53%

Sub-

issue 2

The issue is 25% complete as specified by custom field and has 1

story point

25%

Top

issue

It has two sub-issues: sub-issue 1 is 53% done and sub-issue 2 is

25% done. So the progress is calculated as (53 x 7.5 + 25 x 1) / (7.5 +

1)

50%

Documentation

Version 1 70

1.

2.

3.

1.

2.

3.

4.

Images Column

Images column displays small thumbnails of the attached image files and allows to view those

images in a pop-up dialog.

Viewing Full-Size Images

Using your mouse:

Click the image thumbnail to see the full-size image in a dialog box.

Click the left or right side to view the previous or next image.

Click the close button at the top right corner to close full-size image view.

Using your keyboard:

Select the issue that contains images.

Press ("i" twice) to view the first image.i,i

Press and to go to the next or previous image.

Press to close full-size image view.Esc

Images from Wikipedia

Work Logged Column

The Work Logged column displays the sum of time spent on an issue over a specific period of

time and, optionally, by a specific user, group or project role.

Documentation

Version 1 71

Work Logged column allows you to select one of the predefined periods using the column

. It is also possible to choose arbitrary period using "Custom period" option configuration panel

and calendar to pick dates.

Displaying Aggregate Values

Work Logged column also offers to display an aggregated value, calculated as the sum of time

spent over sub-issues.

To display an aggregated value, use the and select column configuration panel Sum over sub-
.issues

How is Work Logged Calculated?

Each time you log work on some issue you have to define "Time Spent" and "Date Started"

values. The Work Logged column will summarize logged time spent over a selected period.

Note that the start of the selected period is calculated based on the column creator's

time zone. This time zone can be configured on the .user's profile page

You can also create your own instance of Work Logged column to calculate the sum

of time spent over a selected period in your current time zone if work logs are being

created in different time zones.

Special Columns

Some columns in the Structure widget are special. They either display structure-specific

information or allow you to perform actions with the issues in the structure.

Flags Column

The flags are the small icons displayed at the left side of the table to mark specific issue states.

Structure displays the following flags:

Resolved flag means that the issue's Resolution field is not empty. Such issue is

considered completed and filtered out by the button.Unresolved (see page)

https://wiki.almworks.com/display/structuremaster/Customizing+Columns#CustomizingColumns-config-panel
https://wiki.almworks.com/display/structuremaster/Customizing+Columns#CustomizingColumns-config-panel
https://wiki.almworks.com/display/structuremaster/Customizing+Columns#CustomizingColumns-config-panel
https://confluence.atlassian.com/display/JIRA/Managing+your+User+Profile

Documentation

Version 1 72

Read-only flag means that the current user does not have permission on this Edit Issue
issue, so you cannot . Additionally, if the structure is edit this issue (see page 173)

configured to , you cannot require Edit Issue permission on Parent Issue (see page 219)

change or rearrange the immediate children of this issue.

JIRA Actions Column

The JIRA actions column displays the gear button that calls out the menu with available JIRA

actions for the issue.This column works like the similar column on the JIRA's Issue Navigator

page and lets you log work, apply workflow actions and use other JIRA actions (see page 181)

available for the issue.

You can click the gear button and select the desired action with the mouse, or you can use

keyboard shortcut to open the menu for the currently selected issue and then Alt+Down Arrow
use and arrow keys and key to select the action.Up Down Enter

Sequential Index Column

Sequential index column displays the hierarchical number (for example, "1.2.15") based on the

position of an item in the structure.

Sequential index ignores – if you see only a part of a Filtering (see page 139)

structure, the numbers will still show you the position of the item in the unfiltered

structure.

Formula Column

Formula column displays a value that is calculated from issue fields or other attributes using a

custom formula. You can use one of the predefined formulas or write your own using a simple

expression language.

Configuring Formula Column

Start with , and selecting Formula as its type. Use the adding a new column (see page 48)

following steps to define a new formula.

Documentation

Version 1 73

1. Write Formula

The formula is a simple expression that uses variables (for example, "priority" or "duedate"),

arithmetic operations and functions. Variables are linked to issue fields or other attributes and

the formula is calculated for every item in the structure. The first thing you need to do is

express exactly what you'd like to calculate, using the variables you will need.

See for an in-depth description of the language and examples.Expr Language (see page 84)

2. Verify Formula's Correctness

When you stop writing the formula and click , it is verified and a green mark is displayed if Save
the formula is ready to be used. If it's not, the problematic parts are highlighted in the formula

editor with red color.

There might be several problems with your formula:

A syntax error happens when the formula cannot be parsed, for example, if you forget a

closing parenthesis. The editor will highlight the part that failed to get parsed.

A function resolution error happens when you use an unknown function (probably you

have mistyped a known function's name). These functions are shown in red.

Documentation

Version 1 74

A variable resolution error happens when you have used a variable but it hasn't been

defined yet. This error is perfectly ok and you should proceed to the next step, defining

the variables.

3. Define Variables

Normally, the formula would involve some variables. (Otherwise the result will be the same for

each row in the structure.) These variables need to be mapped to , which could be attributes
issue fields, progress, a hierarchical total or something else. The configuration dialog displays

the list of all variables used in the formula.

If you use a well-know field name for a variable, such as or , Structure will Priority Assignee
automatically assign it to the respective attribute. If the variable name is unfamiliar to Structure,

it will remain unassigned and will be clearly marked with red color and icon.

To assign a variable to an attribute, click it in the variable list or in the formula. An attribute

selector opens up, where you can select from the list of standard attributes, use a customizable

attribute or pick an attribute that is already being used by some of the columns on the screen.

The following names are automatically recognized by Structure:

Names of the standard JIRA fields, such as or .Summary Priority

Documentation

Version 1 75

Names of the custom fields, with all non-letters removed and all spaces converted to

underscores, for example, .Story_Points

Names starting with or with and having a well-known name afterwards – Total_ Sum_
such as or . These are converted to a Sum attribute Sum_Story_Points Total_Estimate
of the given value. (Without duplicate removal option.)

Even if Structure automatically assigns an attribute to a variable, you might want to double-

check it by clicking the variable name.

Please note that if you're selecting an attribute defined in another column (from the "

" section of the attribute selection drop-down), you the Used in Columns copy
attribute definition from another column at that moment, rather than creating a link to

that column. That means that even if the other column is removed or if its content is

changed, the Formula configuration will keep using the attribute as it was defined at

the moment you configured the variable.

You can use nested formula as a variable. Once you select a text area for nested Formula...
formula is shown. Nested formula can have variables as well, and these also can be formulas -

no nesting level limit here. Variables in nested formula are not ones declared by parent one,

variables do not overwrite each other even if they have the same name.

Once you finished setting nested formula up you can collapse the dialog by clicking to a gear

button near menu you selected attribute. You can return to editing later by clicking the same

button; formula can be updated also after the dialog will be closed and reopened. Beware that if

you choose existing formula (they can present in menus "Used in Columns" and "Recently

Used") this formula is copied into editor (i.e. formulas in original columns will not be modified).

Documentation

Version 1 76

4. Optionally, Turn On Aggregation

Select to have each row display a total value, calculated as a sum of the Sum Over Sub-Items
value for the row and values for all sub-items. The usual options to exclude values from

duplicates (multiple rows with the same item) and to operate on a filtered structure apply.

Note that sometimes it doesn't make sense to calculate a sum. For example, percent

values usually cannot be added together.

Structure has no knowledge about the meaning of the values, so it will offer to sum

them up anyway. It's up to the user to make sure that the calculated value makes

sense.

Note that it's possible to use instead.aggregate functions (see page 110)

5. Optionally, Select a Number Format

If the result of your formula is a number, you might want to customize the way it is displayed.

The following options are available:

General is the usual way numbers are displayed, as-is.

Number format lets you specify the number of decimal places that will always be shown.

The value will be rounded up to the least meaningful digit in this format.

Percentage is similar to number, however, the value is treated as a ratio (0.0 = 0%, 1.0

= 100%) and the percent sign is added.

Date/Time option is used to show dates and times and allows to pick a format.

Duration option is used to display a duration values (such as those stored in Time Spent
field) and format them nicely as number of days/hours/minutes.

Note that dates, times and durations are all numbers in the Expr language.

Duration is represented as the number of milliseconds. Dates are represented as

"Epoch milliseconds", the number of milliseconds between midnight January 1st, 1970

(GMT) and the specified date, not counting leap seconds. Negative values are allowed

to represent earlier dates.

5.1 About Work Time Option

Documentation

Version 1 77

1.

2.

If option is selected, Structure will use JIRA's time tracking settings to convert the Work Time
number of hours to the number of days and weeks. By default, JIRA is set up with 8 hours in a

day and 5 days in a week. If that option is not selected, hours are converted to days and weeks

on a calendar basis.

Whether you need to use that option depends on where the value is coming from.

If you subtract dates (for example, if you want to calculate the number of days the ticket

remains open:), then you'd probably want to keep Work Time option off now() - created

and see calendar duration.

If you operate with the values retrieved from issue's Original Estimate, Remaining Estimate and

Time Spent fields (for example, to calculate overspending: time_spent +

), then you'd probably use Work Time remaining_estimate - original_estimate

option.

6. Give Column a Meaningful Name

Structure will try to provide a name based on the formula, but in most cases you'd want to

name it according to the meaning of the calculated value.

Sharing Formula Columns

Formula columns are just like any columns, so you can make them a part of a View or create a

perspective URL that would open the same configuration, including the formula column.

Sorting by Calculated Value

You can sort by the value calculated in the column by clicking the column header.

See Also

Bundled Formulas (see page 81)

Expr Language (see page 84)

Advanced Formula Configuration

While all written in this page still works, there are simpler ways to reach the same

result now.

See:

Aggregate functions (see page 110)

Nested formula dialog in variables declaration (see page 74)

Documentation

Version 1 78

Both options can lead you to result described here.

A number of interesting metrics would have a formula that involves sums of other formulas. For

example, to calculate the % of bugs in a sub-tree, we'll need to divide the total number of bugs

(calculated as a formula) by the total number of issues (also calculated as a formula).

It is possible to do that with the Formula column, but it's a bit tricky. You will need to use

temporary additional Formula columns. The following instruction walks you through the creation

of the BugFix % column, mentioned above, so that you can solve similar tasks.

Creating and Advanced Formula Column

In this walk-though, we will create a column that shows the % of bugs in a subtree. The formula

is going to be something like (total number of bugs) / (total number of issues)

.

1. Main Formula

Create a new Formula column and define the main formula. We're using and total_bugs
 as variable names, but they really could be anything.total_issues

A few things to note:

We don't have total_bugs and total_issues defined at the moment, so they are marked

red. That's OK.

We use function to avoid dividing by zero.IF()

We don't use Sum option because this is a ration. The summing is going to happen

when total_bugs and total_issues are calculated.

Documentation

Version 1 79

2. Temporary Column with Total Number of Bugs

Now let's define a new column that shows the value of . That is quite easy with the total_bugs
formula column.

For an individual row, we use function to check if the issue type is "Bug", and IF()

produce as the result in that case.1

The values are summed up, with duplicate items excluded.

type variable is automatically mapped to the Issue Type attribute

3. Temporary Column with Total Number of Issues

In the manner we create another temporary column that shows total number of issues.

Note that we still have to use because items in the sub-tree could be folders or of IF(),

other non-issue types.

Documentation

Version 1 80

4. Define Main Formula Variables

Now it's time to map the main formula's variables to the values calculated in the temporary

columns.

Go back to the main column configuration and click variable. In the attribute total_issues
selector, scroll down to section and select "Formula" entry with the name of Used in Columns
the temporary column in parentheses.

Repeat the same for .total_bugs

Please note that if you're selecting an attribute defined in another column (from the "

" section of the attribute selection drop-down), you the Used in Columns copy
attribute definition from another column at that moment, rather than creating a link to

that column. That means that even if the other column is removed or if its content is

changed, the Formula configuration will keep using the attribute as it was defined at

the moment you configured the variable.

So if you need to change the formula in the temporary column, you can do it, but then

you'll need to open the main formula configuration again and re-select the attribute for

the variable.

Documentation

Version 1 81

5. Final Steps

Select Percent as the number format and it's all done!

As a final clean-up, you can remove the temporary columns from the grid. Our Bugs % column

has all the information it needs to do the calculation.

Bundled Formulas

Structure add-on comes with several bundled formulas. You can quickly add them to the view

by opening dialog and scrolling down to the section.Add Column Calculated

Documentation

Version 1 82

Here's the description of these predefined values.

Column Name Description

BugFix %

(Count)

Displays the percentage of bugs among all sub-issues. Bugs are identified

by having issue type "Bug".

BugFix %

(Time)

Displays the percentage of time scheduled and spent on bugs, compared

to the time scheduled and spent on all sub-issues. Uses JIRA time

tracking fields.

Due In Displays amount of calendar time left before deadline. Deadline is taken

from Due Date field.

Time Since Last

Update

Displays amount of calendar time that has passed since the last update of

the issue.

Time to Resolve For resolved issues, displays the amount of calendar time that had passed

since issue creation to its resolution.

Documentation

Version 1 83

Column Name Description

Total

Underestimation

Displays the percentage by which total actual time expenditure exceeded

total original estimates. Uses total Time Spent and Remaining Estimate

fields to calculate the actual time.

Total Work

Ratio (Points)

Ratio of total work done to the total amount of work. Amount of work is

counted in Story Points, and "done" means a non-empty Resolution field.

Totals include values for all sub-issues.

Total Work

Ratio (Time)

Ratio of total work done to the total amount of work. Amount of work is

based on the sum of Time Spent and Remaining Estimate values. Totals

include values for all sub-issues.

WSJF (Basic) Weighted Shortest Job First metric, based on basic attributes available in

any JIRA – Priority, Votes, Watchers, Due Date, Story Points and

Remaining Estimate.

WSJF (SAFe) Weighted Shortest Job First metric, based on recommendations from

Scaled Agile Inc. Requires setting up the following numerical fields:

Job Size

User/Business Value

Time Criticality

Risk Reduction

Opportunity Enablement

If you have such fields but they are not numeric (for example, a select list),

edit the formula and replace the usage of a variable with a CASE()

function, where you can assign individual numerical weights to each

option.

WSJF (ALM

Works)

Weighted Shortest Job First metric, according to categories used at ALM

Works:

Benefit

Pain

Marketability

Impact

Documentation

Version 1 84

Column Name Description

Cost

Risk

Clarity.

Requires setting up such fields with the following values: Nil, Low, Medium

and High.

 Assignee Cost Calculates the dollar amount of the task based by the time (Time Spent +

Remaining Estimate) multiplied by the per hour rate for the current

Assignee. The rate is taken from the "Hourly Rate" additional property for

the user who is the assignee. Shows the total amount.

Expr Language

Expr Language (pronounced like "expert" without "t") is a language that lets you specify an

"expression", or a formula, which will be calculated for an issue or another item. When you use

is in a , the expression is calculated for each visible row in the Formula Column (see page 72)

displayed structure or query result.

You can see examples of formulas by adding predefined columns in Structure (from the

 section), and then opening panel. The language Calculated column options (see page 48)

itself and its grammar is quite obvious and is similar to arithmetic expressions with a number of

functions.

If you're familiar with writing formulas in , you'll recognize a few things Microsoft Excel
in Expr. In particular, if you know some functions that Excel provides, they have a

good chance to be supported by Structure as well.

Language Components

An expression may contain one or more of the following:

Variables, which are bound to specific values when calculating expression for a specific

item.

Functions, which may take some arguments, and which produce the result at the

moment of calculation.

Numbers and text strings.

Arithmetic, logical operations and parentheses.

Documentation

Version 1 85

There are also more advanced constructs:

Aggregate Functions, which calculate some aggregate (like sum or average) of an

expression's values calculated for multiple items in the structure.

Local Variables, which let you introduce a value and reuse it multiple times in the

formula.

Comments, which allow you document larger formulas.

Basic Constructs
Variables

Variables are user-defined names, containing letters (English only), numbers, dot (".") or

underscore ("_") characters. The first character should be a letter or an underscore.

Examples:

Priority

remaining_estimate

abc11

sprint.name

When writing an expression, you'd usually associate a name with some value that an issue or

another item has. After the expression is written, lets you Formula Column (see page 72)

associate the variables used with specific attributes.

A few things to note about variables:

You can use any names, from a simplistic "x" to a "VeryComplicatedCustomFieldName".

But, if Formula Column recognizes the variable name to be similar to a field name, it

may automatically assign an attribute to the variable. For example, "Priority" variable will

be automatically mapped to the similarly named field.

But, it is possible (although very unreasonable!) to edit the association and assign a

variable with a well-known name to something else. Please keep that in mind if you

need to troubleshoot a formula and double-check the variables.

Variable names are case-insensitive. , and will refer Priority priority pRiOrItY

to the same variable.

Functions

A function calculates some value based on its arguments and, sometimes, some external

aspect. A function is written as the function name, followed by parentheses, which might

contain arguments.

Documentation

Version 1 86

Examples:

SUM(-original_estimate; remaining_estimate; time_spent)

CASE(priority, 'High*', 5, 1)

TODAY()

There are a number of standard functions available with Structure 4.0 – see Expr Function

 for details.Reference (see page 89)

A function may take zero, one or more arguments. Some functions take variable number of

arguments. Each argument can be another Expr expression and include calls to other

functions.

Function arguments may be separated by comma (,) or semicolon (;). But in every

function call you need to use either all commas or all semicolons.

Function names are case-insensitive, like the variables. You can write or TODAY()

.Today()

Numbers and Text Strings

Numbers

You can use numbers in your formula. The numbers are always written as a sequence of digits

with optionally a dot (".") and a fractional part. Locale-specific, percentage, currency or scientific

formats are not supported.

Recognized as a number Not recognized as a number

0 0,0

1234567890123456 1 100 025

11.25 1.234e+04

.111 ($100)

You can write a number that is written with a locale-specific decimal and thousands

separator as a text value and it will be automatically converted to a number if needed.

For example:

Documentation

Version 1 87

"1 122,25" * 2 2244.5

Text Strings

Text strings are a sequence of characters enclosed either in single (') or double quotes (").

Examples:

'a text in single quotes may contain " (a double quote)'

"a text in double quotes may contain ' (a single quote)"

""

Everything within a text string is retained verbatim to participate in the expression evaluation,

except for the following:

A sequence of two backslashes () is converted to a single backslash ().\\ \

A sequence of a backslash and a single quote () is converted to a single quote \'

character () in the text values enclosed in single quotes.'

A sequence of a backslash and a double quote () is converted to a double quote \"

character () in the text values enclosed in double quotes."

Operations

Expr provides basic arithmetic operations, comparisons and logical operations.

The operations follow the general precedence rules for arithmetic, so is calculated A + B * C

correctly. Comparison operations are done after the arithmetic operations and logical

operations are done after comparisons. For detailed specification, see Expr Language

.Reference (see page 119)

Operations Comments

+ - * / Convert the value into a number.

= != Equality and non-equality: if either part of the comparison is a number, the

other part is also converted into a number. If both values are strings, then

string comparison is used.

String comparison ignores leading and trailing whitespace and is case-

insensitive (according to JIRA's system locale).

< <= > >= Numerical comparisons – both values are converted to numbers.

AND, , OR

NOT

Logical operations.

Documentation

Version 1 88

Operations Comments

() Parentheses can be used to group the results of operations prior to passing to

other operations.

Advanced Constructs
Aggregate Functions

An aggregate function calculates some aggregate value (like sum or minimum) based on

values in a number of rows, typically, for all sub-issues.

Examples:

SUM{ remaining_estimate + time_spent } – calculates the total effort

(estimated and actual) for the issue and all sub-issues.

MAX{ resolved_date - created_date } – calculates the maximum time it took to

resolve an issue, among the issue and its sub-issues.

The list of available Aggregate Functions is available in Aggregate Function Reference (see

.page 110)

Aggregate function contains exactly one expression that is being aggregated, written in curly

braces () after the function name.{}

It can also contain , which influence how the aggregation works:modifiers

SUM#all{ business_value } – this will force the function to include values from all

duplicate items in the total. (By default, duplicates are ignored.)

Note that there is function and aggregate function. You can always tell SUM() SUM{}

aggregate functions from the usual functions by the use of curly braces (like).SUM{x}

Local Variables

Local variables help when some expression needs to be used in the same formula several

times. For example:

IF(time_spent + remaining_estimate > 0; time_spent / (time_spent

+ remaining_estimate))

You can see that in this formula we are using " two time_spent + remaining_estimate"

times – one time when we check that it's not zero (so we don't divide by zero) and then when

we divide by it.

It's possible to rewrite this formula using construct:WITH

Documentation

Version 1 89

WITH total_time = time_spent + remaining_estimate : IF

(total_time > 0; time_spent / total_time)

You can define multiple local variables in succession, following one declaration with WITH

another. You can use previously defined local variables when defining local variables that

follow. Example:

WITH total_time = time_spent + remaining_estimate : WITH

progress = IF(total_time > 0; time_spent / total_time) :IF

(progress > 0.5; "Great Progress!"; progress > 0.2; "Good

Progress"; "Needs Progress")

Note the position of colon (") – it must be present where local variable definition :"

ends.

Comments

Comments are helpful when you have a large formula or when a reader might need

explanations of what is calculated. It's a good idea to add comments where the formula is not

trivial.

Example:

/* This formula calculates the verbal assessment of issue's
progress.
 And this explanation is a comment that spans multiple lines. */

WITH total_time = time_spent + remaining_estimate :

// Progress is calculated based on time tracking. (This is a one-
line comment.)
WITH progress = IF(total_time > 0; time_spent / total_time) :

IF(progress > 0.5; "Great Progress!"; progress > 0.2; "Good
Progress"; "Needs Progress")

See Also

Expr Function Reference (see page 89)

Expr Language Reference (see page 119)

Expr Function Reference

All standard Expr functions are listed on this page, grouped by category.

Documentation

Version 1 90

A function may take zero, one or more arguments. Some functions can take unlimited number

of arguments.

When a function expects a text or a numeric value as an argument and the actual type of value

is different, the function will try to convert the value to the required type. If the conversion is not

possible and the value is not empty (for example, it's impossible to convert "ABC" to a number),

the result will be an error.

A variable used in a formula may have value. Usually it means that the value for undefined

an issue is not set – for example, Resolution field will produce value until the issue undefined

is resolved. When a function that manipulates values receives value at its primary undefined

argument, the return value will also typically be undefined.

Functions

Conditional Functions

CASE

CASE(Value; Match1; Result1; Match2; Result2; ...; DefaultOpt)

Checks if the matches agains several checks and returns a corresponding result.Value

Value – value to check.

Match1, , ..., – text patterns to check against. The first matching Match2 MatchN

pattern will define the result. A pattern can be an exact value, a wildcard expression or a

regular expression. See for details.Expr Pattern Matching (see page 128)

Result1, , ..., – values to return from the function, each value Result2 ResultN

corresponds to the preceding parameter.Match

DefaultOpt – optional default value, to be returned if none of the patterns match. If not

specified, is returned.undefined

This function is typically used to map text values to numbers.

If the is , the function immediately returns result (or Value undefined DefaultOpt

 if there's no default). There's no sense in using as one of the undefined undefined

matches.

Examples:

CASE(Priority; "Highest"; 10; "High"; 5; "Medium"; 3; 1)

CASE(Version; "V1*"; 1; "V2*"; 2)

CHOOSE

CHOOSE(Index; Value1; Value2; ...)

Based on the value of , returns the corresponding value from the argument list.Index

Index – numeric index, with 1 corresponding to , 2 corresponding to Value1 Value2

and so on.

Documentation

Version 1 91

Value1, , ..., – the values to pick from.Value2 ValueN

Examples:

CHOOSE(1; "A"; "B"; "C") "A"

CHOOSE(2; "A"; "B"; "C") "B"

DEFINED

DEFINED(Value)

Checks if the value is defined. Returns false (0) if is and true (1) otherwise.Value undefined

Example:

IF(DEFINED(Resolution); ...)

DEFAULT

DEFAULT(Value; DefaultValue)

Substitutes in case is .DefaultValue Value undefined

Examples:

DEFAULT(100; 500) 100

DEFAULT(undefined; 500) 500

IF

IF(Condition1; Result1; Condition2; Result2; ...; DefaultOpt)

Checks one or several conditions, returns the result associated with the first true condition.

Condition1, , ..., – the conditions to check. The values are Condition2 Condition3

evaluated using "truthfulness check" – the first value that is "truthy", that is, not

undefined, not zero and not an empty string, will define the returned value.

Result1, , ..., – results to be returned, each result corresponding to Result2 ResultN

the preceding check.

DefaultOpt – optional default value to be returned if none of the conditions are true. If

omitted, is returned.undefined

Examples:

IF(Estimate > 0; Duration / Estimate; 0)

IF(N = 0; "No apples"; N = 1; "One apple"; CONCAT(N; " apples"))

IFERR

IFERR(Value; FallbackValue)

Checks if calculating produced an error and substitutes instead of Value FallbackValue

error value.

Documentation

Version 1 92

Normally, if an error occurs while calculating a formula, it is propagated upwards and the result

of the whole expression will be an error. This function helps circumvent that.

Example:

IFERR(100 / 0; 100) 100

ISERR

ISERR(Value; ErrorCodeOpt)

Checks if calculating value produced an error. Returns true (1) if there was an error. If

 is specified, returns true only if the error was of the specified error code.ErrorCodeOpt

Value – value to check.

ErrorCodeOpt – optional error code. See for a list.Expr Error Codes (see page 129)

Examples:

ISERR("Ham") 0

ISERR(1 / 0) 1

ISERR(1 / 0, 4) 1

Numeric Functions

ABS

ABS(Value)

Calculates absolute value of a number.

Examples:

ABS(5) 5

ABS(-4) 4

CEILING

CEILING(Value; N)

Rounds value up to the N decimal place.th

Value – a number to round.

N – how many decimal places to round up to, can be negative to round up to tens,

hundreds, etc. Default value: (round to an integer).0

Examples:

CEILING(1.678) 2

CEILING(12.34; 1) 12.4

CEILING(12.34; -1) 20

CEILING(-3.14) -3

Documentation

Version 1 93

FLOOR

FLOOR(Value; N)

Rounds value down to the N decimal place.th

Value – a number to round.

N – how many decimal places to round down to, can be negative to round up to tens,

hundreds, etc. Default value: (round to an integer).0

Examples:

FLOOR(1.678) 1

FLOOR(12.34; 1) 12.3

FLOOR(12.34; -1) 10

FLOOR(-3.14) -4

MAX

MAX(Value; ...)

Selects numerically largest value from all values passed as arguments. values are Undefined

skipped. Text values that cannot be converted to a number will also be skipped.

Examples:

MAX(Due_Date; Updated_Date)

MAX(0; -10; undefined; 10) 10

MIN

MIN(Value; ...)

Selects numerically smallest value from all values passed as arguments. values Undefined

are skipped. Text values that cannot be converted to a number will also be skipped.

Example:

MIN(0; -10; undefined; 10) -10

MOD

MOD(A; N)

Returns remainder from dividing A by N.

A – the dividend, must be an integer.

N – the divisor, must be an integer.

Example:

MOD(17; 5) 2

Documentation

Version 1 94

POW

POW(B; E)

Produces B to the power of E (B). Both values can be fractional.E

B – base

E – exponent

Example:

POW(27; 1/3) 3

ROUND

ROUND(Value; N)

Produces a rounded value up to the N decimal place.th

Value – a number to round.

N – how many decimal places to round to, can be negative to round up to tens,

hundreds, etc. Default value: (round to an integer).0

Examples:

ROUND(1.678) 2

ROUND(12.34; 1) 12.3

ROUND(12.34; -1) 10

SIGN

SIGN(Value)

Returns sign of the Value.

Examples:

SIGN(123) 1

SIGN(0) 0

SIGN(-123) -1

SQR

SQR(Value)

Returns the passed numerical value, squared.

Example:

SQR(5) 25

SQRT

SQRT(Value)

Documentation

Version 1 95

Returns the square root of the passed numerical value.

Example:

SQRT(25) 5

Text Functions

Text function let you manipulate character strings.

If a function expects a string but encounters a number, it converts it to a string using

mathematical notation ("." decimal separator, no thousands separator).

CONCAT

CONCAT(Value; ...)

Concatenates strings together. Accepts any number of arguments. Ignores undefined values.

Example:

CONCAT(Reporter; ' => '; Assignee)

EXACT

EXACT(A; B)

Checks if text value A is exactly the same as text value B.

This comparison is case sensitive, which is different from comparing A with B using equals sign

or text matching. Undefined values will be equal to each other and to empty strings.

Examples:

EXACT("Fox"; "fox") 0

EXACT("Fox"; "Fox") 1

EXACT(""; undefined) 1

LEFT

LEFT(Value; N)

Returns up to N leftmost characters from string value.

Value – string to get characters from.

N – the number of characters to get. If Value contains fewer characters, all of them are

returned.

Example:

LEFT("abc"; 2) "ab"

LEN

LEN(Value)

Documentation

Version 1 96

Returns the number of characters in a string value. If the value is not a string, it is converted to

string first.

Example:

LEN("abc") 3

LOWER

LOWER(Value)

Converts the string to lowercase. The locale of the current user is applied.

Example:

LOWER("HAM") "ham"

MATCH

MATCH(Value; Pattern)

Checks if the Value matches the Pattern. Returns (1) or (0).true false

Value – the value to check.

Pattern – pattern to check against. Can be an exact value, a wildcard expression or a

regular expression. See for details.Expr Pattern Matching (see page 128)

Examples:

MATCH("Apples"; "Oranges") 0

MATCH(" Blocker "; "blocker") 1

MATCH("Hamster"; "ham*") 1

MATCH("The Flight of the Bumblebee"; "/.light.*beer?/") 1

MID

MID(Value; Index; Count)

Retrieves a part of the text.

Value – the string value to get a substring from.

Index – the starting index of the part to retrieve, 1-based (first character is at index 1).

Count – the number of characters to retrieve.

Example:

MID("A quick brown fox"; 3; 5) "quick"

REPEAT

REPEAT(Value; N)

Produces a text that is a repetition of the string value N times.

Documentation

Version 1 97

Value – a string value to repeat.

N – the number of repetitions.

Examples:

REPEAT("ha"; 3) "hahaha"

REPEAT(123, 3) "123123123"

REPLACE

REPLACE(Value; Pattern; Replacement)

Replaces all occurrences of Pattern with Replacement and returns the new string.

Value – the value to manipulate.

Pattern – pattern to find. Can be an exact value, a wildcard expression or a regular

expression. See for details.Expr Pattern Matching (see page 128)

Replacement – an optional string to use instead of the matched parts. If omitted, the

matched parts are removed.

Examples:

REPLACE("I like cats"; "CAT"; "DOG") "I like DOGs"

REPLACE("Can you read this?"; "/[aeuio]/") "Cn rd ths?"

REPLACE_AT

REPLACE_AT(Value; Index; Count; Replacement)

Replaces a specific part of the Value with Replacement string and returns the value.

Value – the string to manipulate.

Index – the starting index of the part to replace, 1-based (first character is 1, second is

2, etc.)

Count – the number of characters to replace. When Count is 0, the Replacement string

gets inserted at the Index position.

Replacement – optional string to use instead of the replaced part. If omitted, the part

will be deleted.

When the values of Index and Count are out of range, they are brought to the nearest sensible

value.

Examples:

REPLACE_AT("A"; 1; 1; "B") "B"

REPLACE_AT("What does the fox say?"; 6; 4; "did") "What did the

fox say?"

Documentation

Version 1 98

REPLACE_AT("A step for mankind"; 3; 0; "small ") "A small step

for mankind"

REPLACE_AT("A step for mankind"; 7; 1000) "A step"

RIGHT

RIGHT(Value; N)

Returns up to N rightmost characters from string value.

Value – string to get characters from.

N – the number of characters to get. If Value contains fewer characters, all of them are

returned.

Example:

RIGHT("abc"; 2) "bc"

SEARCH

SEARCH(Pattern; Value; Index)

Finds the first occurrence of a pattern in the value. Returns the index of the matched part (1-

based), or if not found.undefined

Pattern – the string or pattern to look for. Can be an exact value, a wildcard

expression or a regular expression. See for Expr Pattern Matching (see page 128)

details.

Value – the string to search in.

Index – optional parameter that provides an index to start searching at.

Examples:

SEARCH("ham"; "The Ham is for the Hamster"; 6) 20

SEARCH("Jedi*"; "Return of the Jedi") 15

SEARCH("/^Jedi/"; "Not the Jedi you're looking for") undefined

SUBSTRING

SUBSTRING(Value; From; To)

Returns a substring, indicated by a starting index and ending index. Note that the indexes are 0-

based, unlike in some other functions.

Value – the string to take the part from.

From – starting index, inclusive, 0 means the first character, means the LEN(Value)-1

last character.

To – optional ending index, exclusive - the character at this index will not be included. If

omitted, the substring will include all characters up to the end of the .Value

Documentation

Version 1 99

Examples:

SUBSTRING("Batman"; 0; 3) "Bat"

SUBSTRING("Batman"; 3) "man"

TRIM

TRIM(Value)

Removes leading and trailing whitespace from the text.

Example:

TRIM(" Batman ") "Batman"

UPPER

UPPER(Value)

Converts the string to uppercase. The locale of the current user is applied.

Example:

UPPER("ham") "HAM"

Date and Time Functions

Date/time functions operate with numeric representation of time. A moment in time is

represented as a number of milliseconds since midnight, January 1st 1970, GMT. Negative

values are allowed.

To display a result of a date/time calculation in a readable way, you need to either configure

 to use a date/time format, or use one of the conversion Formula Column (see page 72)

functions to turn the value into a human-readable text.

Many of the date / time functions depend on the current user's time zone.

DATE

DATE(Text; LocaleOpt; TimeZoneOpt)

Converts text representation of a date to number. The resulting timestamp will correspond to

midnight of the specified date at the specified timezone.

Text – the text value to convert.

LocaleOpt – optional locale identifier, such as "fr_FR". If not specified, user's locale is

used.

TimeZoneOpt – optional time zone identifier, such as "America/New_York".

The conversion uses tries the standard formats for representing dates:

Format "yyyy-MM-dd", like "2017-04-15".

Standard formats for the specified locale.

JIRA formats, as specified in the JIRA's system settings.

Documentation

Version 1 100

If conversion is unsuccessful, returns an error.

Examples:

DATE("2016-01-01")

DATE("31/Dec/16")

DATE("12/31/2016", "en_US", "America/New_York")

DATE_ADD

DATE_ADD(DateTime, Number, Unit)

Adds the specified number of seconds, minutes, hours, days, months or years to the date or

date/time value.

DateTime – date or date/time value.

Number – the number of units of time to add.

Unit – a text value specifying the unit of time: , , , "seconds" "minutes" "hours"

, , "days" "months" "years"

Examples:

DATE_ADD(DATE("2016-01-31"), 1, "day") DATE("2016-02-01")

DATE_ADD(DATE("2016-01-31"), 1, "month") DATE("2016-02-29")

DATE_ADD(DATE("2016-02-29"), 1, "year") DATE("2017-02-28")

DATE_ADD(DATETIME("2016-01-31 10:30:00"), 3, "hours") DATETIME

("2016-01-31 13:30:00")

DATE_ADD(DATETIME("2016-01-31 23:59:59"), 2, "minutes") DATETIME

("2016-02-01 00:01:59")

DATE_SET

DATE_SET(DateTime, Number, Unit)

Sets the specified part of the date or date/time to the specific value. Note that unlike DATE_ADD

and , you can specify additional units like "day_of_week".DATE_SUBTRACT

DateTime – date or date/time value.

Number – the number to be set as the unit value in this date/time.

Unit – a text value specifying the unit of time: , , , , "second" "minute" "hour" "day"

, "month" "year", "day_of_week".

Examples:

DATE_SET(DATE("2016-01-31"), 2017, "year") DATE("2017-01-31")

DATE_SET(DATE("2016-01-31"), 2, "month") DATE("2016-02-29")

Documentation

Version 1 101

DATE_SET(DATETIME("2016-02-29 15:30"), 10, "day") DATETIME

("2016-02-10 15:30")

DATE_SET(DATE("2017-04-01"), 7, "day_of_week") DATE("2017-04-

02")

DATE_SET(DATETIME("2016-01-31 10:30:00"), 0, "hour") DATETIME

("2016-01-31 00:30:00")

DATE_SUBTRACT

DATE_SUBTRACT(DateTime, Number, Unit)

Subtracts the specified number of seconds, minutes, hours, days, months or years from the

date or date/time value.

DateTime – date or date/time value.

Number – the number of units of time to subtract.

Unit – a text value specifying the unit of time: , , , "seconds" "minutes" "hours"

, , "days" "months" "years"

Examples:

DATE_SUBTRACT(DATE("2016-02-01"), 1, "day") DATE("2016-01-31")

DATE_SUBTRACT(DATE("2016-02-29"), 1, "month") DATE("2016-01-29")

DATE_SUBTRACT(DATE("2017-02-28"), 1, "year") DATE("2016-02-28")

DATE_SUBTRACT(DATETIME("2016-01-31 10:30:00"), 3, "hours")

DATETIME("2016-01-31 07:30:00")

DATE_SUBTRACT(DATETIME("2016-02-01 00:01:59"), 2, "minutes")

DATETIME("2016-01-31 23:59:59")

DAY

DAY(DateTime)

Returns the day of the month for the give date or date/time value. The result is calculated using

current user's time zone.

Example:

DAY(DATE("2017-04-15")) 15

DAYS_BETWEEN

DAYS_BETWEEN(DateTime1, DateTime2)

Calculates the number of full days (24 hour periods) between two date or date/time values.

Returns negative value if occurs earlier than .DateTime2 DateTime1

Examples:

Documentation

Version 1 102

DAYS_BETWEEN(DATE("2017-01-01"), DATE("2017-02-01")) 31

DAYS_BETWEEN(DATE("2017-01-01"), DATE("2017-01-01")) 0

DAYS_BETWEEN(DATE("2017-01-01"), DATE("2016-01-01")) -366

DAYS_BETWEEN(DATETIME("2017-01-01 00:00"), DATETIME("2017-01-01

23:59")) 0

DAYS_BETWEEN(DATETIME("2017-01-01 23:59"), DATETIME("2017-01-02

23:58")) 0

DAYS_BETWEEN(DATETIME("2017-01-01 23:59"), DATETIME("2017-01-02

23:59")) 1

DATETIME

DATETIME(Text; LocaleOpt; TimeZoneOpt)

Converts text representation of a date and time to number. The resulting timestamp will

correspond to the specified date and time at the specified timezone. If seconds are omitted,

they will be set to zero.

Text – the text value to convert.

LocaleOpt – optional locale identifier, such as "fr_FR". If not specified, user's locale is

used.

TimeZoneOpt – optional time zone identifier, such as "America/New_York".

The conversion uses tries the standard formats for representing dates:

Format "yyyy-MM-dd HH:mm:ss" and the same without seconds, like "2017-04-15 15:

00" or "2017-12-31 23:59:59" (using 24-hour clock).

Standard formats for the specified locale.

JIRA formats, as specified in the JIRA's system settings.

If conversion is unsuccessful, returns an error.

Examples:

DATETIME("2016-01-01 00:01")

DATETIME("31/Dec/16 3:15 pm")

DATETIME("12/31/2016 3:15 PM", "en_US", "America/New_York")

END_OF_MONTH

END_OF_MONTH(DateTime)

Sets the day in the date/time value to the end of the month. Does not change the time value.

Example:

Documentation

Version 1 103

END_OF_MONTH(DATE("2017-04-15")) DATE("2017-04-30")

FORMAT_DATETIME

FORMAT_DATETIME(DateTime, Format, LocaleOpt, TimeZoneOpt)

Advanced function to convert a date/time value into a text. Accepts arbitrary format string and

optional locale and time zone settings. Does not depend on the current user's locale nor time

zone.

DateTime – the value to convert.

Format – the format string. For all the options, please see Java documentation for

.SimpleDateFormat

LocaleOpt – the optional locale identifier. If omitted or , will use JIRA's undefined

system locale. (Not the user's locale!)

TimeZoneOpt – the optional time zone identifier. If omitted or , will use undefined

JIRA's system time zone. (Not the user's time zone!)

Examples:

FORMAT_DATETIME(DATE("2017-04-15"), "EEE, MMM d, `yy", "fr_FR")

"sam., avr. 15, `17"

FORMAT_DATETIME(DATETIME("2016-12-31 23:59"), "yyyy-MM-dd'T'HH:

mm:ss") "2016-12-31T23:59:00"

HOUR

HOUR(DateTime)

Returns the hour in the specified date/time value (from 0 to 23).

Example:

HOUR(DATETIME("2017-01-01 20:15")) 20

HOURS_BETWEEN

HOURS_BETWEEN(DateTime1, DateTime2)

Calculates the number of full hours between two date/time values. Returns negative value if

 occurs earlier than .DateTime2 DateTime1

Examples:

HOURS_BETWEEN(DATE("2017-01-01"), DATE("2017-01-02")) 24

HOURS_BETWEEN(DATETIME("2017-01-01 15:00"), DATETIME("2017-01-01

16:30")) 1

HOURS_BETWEEN(DATETIME("2017-01-01 23:59"), DATETIME("2017-01-02

00:58")) 0

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Documentation

Version 1 104

HOURS_BETWEEN(DATETIME("2017-01-01 23:59"), DATETIME("2017-01-02

00:59")) 1

MAKE_DATE

MAKE_DATE(Year, Month, Day)

Creates a date value based on the numbers defining year, month and day. The time is set to

midnight in the user's time zone.

Example:

MAKE_DATE(2017, 12, 31)

MAKE_DATETIME

MAKE_DATETIME(Year, Month, Day, Hour, Minute, Second)

Creates a date/time value based on the numbers defining year, month, day, hour, minute and

second. The current user's time zone is used. The valid values for are 0–23.Hour

Example:

MAKE_DATETIME(2017, 12, 31, 23, 59, 59)

MINUTE

MINUTE(DateTime)

Returns the minute in the specified date/time value (from 0 to 59).

Example:

MINUTE(DATETIME("2017-01-01 20:15")) 15

MONTH

MONTH(DateTime)

Returns the month in the specified date/time value (from 1 to 12).

Example:

MONTH(DATE("2017-04-15")) 4

MONTHS_BETWEEN

MONTHS_BETWEEN(DateTime1, DateTime2)

Calculates the number of months between two date or date/time values. Returns negative

value if occurs earlier than .DateTime2 DateTime1

Examples:

MONTHS_BETWEEN(DATE("2017-01-01"), DATE("2018-01-01")) 12

MONTHS_BETWEEN(DATE("2017-01-31"), DATE("2017-02-28")) 0

MONTHS_BETWEEN(DATE("2017-02-28"), DATE("2017-04-28")) 2

Documentation

Version 1 105

MONTHS_BETWEEN(DATE("2017-01-01"), DATE("2016-12-01")) -1

NOW

NOW()

Returns the current date and time.

Example:

NOW()

PARSE_DATETIME

PARSE_DATETIME(Text, Format, LocaleOpt, TimeZoneOpt)

Advanced function to convert a text into a date or date/time value. Accepts arbitrary format

string and optional locale and time zone settings. Does not depend on the current user's locale

nor time zone.

Text – the value to convert.

Format – the format string. For all the options, please see Java documentation for

.SimpleDateFormat

LocaleOpt – the optional locale identifier. If omitted or , will use JIRA's undefined

system locale. (Not the user's locale!)

TimeZoneOpt – the optional time zone identifier. If omitted or , will use undefined

JIRA's system time zone. (Not the user's time zone!)

Examples:

PARSE_DATETIME("sam., avr. 15, `17", "EEE, MMM d, `yy", "fr_FR")

 DATE("2017-04-15")

PARSE_DATETIME("2016-12-31T23:59:00", "yyyy-MM-dd'T'HH:mm:ss")

DATETIME("2016-12-31 23:59")

SECOND

SECOND(DateTime)

Returns the second in the specified date/time value.

Example:

SECOND(DATETIME("2017-04-15 15:30:59")) 59

START_OF_MONTH

START_OF_MONTH(DateTime)

Sets the day in the date/time value to the first day of month.

Example:

START_OF_MONTH(DATE("2017-04-15")) DATE("2017-04-01")

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Documentation

Version 1 106

TODAY

TODAY()

Returns the current date with time set to midnight according to the current user's time zone.

Example:

TODAY()

TRUNCATE_TIME

TRUNCATE_TIME(DateTime)

Removes time value from the date/time, setting it to midnight in the current user's time zone.

Example:

TRUNCATE_TIME(DATETIME("2017-01-01 15:15")) DATE("2017-01-01")

TRUNCATE_TO_HOURS

TRUNCATE_TO_HOURS(DateTime)

Removes minutes, seconds and milliseconds from the date/time, setting it to the last even hour

in the current user's time zone.

Example:

TRUNCATE_TO_HOURS(DATETIME("2017-01-01 15:15")) DATE("2017-01-

01 15:00")

TRUNCATE_TO_MINUTES

TRUNCATE_TO_MINUTES(DateTime)

Removes seconds and milliseconds from the date/time, setting it to the last even minute.

Example:

TRUNCATE_TO_MINUTES(DATETIME("2017-01-01 15:15:15")) DATE("2017-

01-01 15:15:00")

TRUNCATE_TO_SECONDS

TRUNCATE_TO_SECONDS(DateTime)

Removes milliseconds from the date/time.

Example:

TRUNCATE_TO_SECONDS(NOW())

WEEKDAY

WEEKDAY(DateTime)

Returns the number of the day in the week, following ISO-8601 standard (1 – Monday, 7 –

Sunday).

Documentation

Version 1 107

Example:

WEEKDAY(DATE("2017-04-23")) 7

YEAR

YEAR(DateTime)

Returns the year in a date or date/time value as a number.

Example:

YEAR(DATE("2017-04-23")) 2017

YEARS_BETWEEN

YEARS_BETWEEN(DateTime1, DateTime2)

Calculates the number of years between two date or date/time values. Returns negative value if

 occurs earlier than .DateTime2 DateTime1

Examples:

YEARS_BETWEEN(DATE("2017-01-01"), DATE("2018-01-01")) 1

YEARS_BETWEEN(DATE("1703-05-27"), DATE("2017-04-23")) 313

YEARS_BETWEEN(DATE("2017-06-01"), DATE("2018-05-31")) 0

Duration Functions

Duration is represented as a number of milliseconds. To create a value or to make sense of a

value, you need the following function to convert a string to a duration and vice versa.

Note that you can add duration to a date or date/time value and treat the result as a new date

/time, but only if the duration is a "calendar duration", not "work duration". Work duration is

when JIRA's settings, like the number of work hours per day, are used – the value really "2d"

becomes 16 hours in JIRA's default setup, and if you add 16 hours to a date, you won't get a

date 2 days later.

CALENDAR_DAYS

CALENDAR_DAYS(Duration)

Returns a number of calendar days represented by the duration value as a decimal number.

May return fractional number of days.

Examples:

CALENDAR_DAYS(DURATION("10d")) 10

CALENDAR_DAYS(DURATION("12h")) 0.5

CALENDAR_HOURS

CALENDAR_HOURS(Duration)

Documentation

Version 1 108

Returns a number of hours represented by the duration value as a decimal number. May return

fractional number of hours.

Examples:

CALENDAR_HOURS(DURATION("10d")) 240

CALENDAR_HOURS(DURATION("12h 45m")) 12.75

CALENDAR_MINUTES

CALENDAR_MINUTES(Duration)

Returns a number of minutes represented by the duration value as a decimal number. May

return fractional number of minutes.

Example:

CALENDAR_MINUTES(DURATION("3h")) 180

CALENDAR_SECONDS

CALENDAR_SECONDS(Duration)

Returns a number of seconds represented by the duration value as a decimal number. May

return fractional number of seconds.

Example:

CALENDAR_SECONDS(DURATION("1h")) 3600

DURATION

DURATION(Text)

Converts a text representation of a calendar duration to a number. The format is provided by

JIRA – the text may be several numbers, each number followed by a symbol to specify the time

unit: for weeks, for days, for hours and for minutes.w d h m

Note that this function ignores JIRA's settings for work time, so DURATION("1w") =

 and .DURATION("7d") DURATION("1d") = DURATION("24h")

Examples:

DURATION("1w 2d 3h 4m")

DURATION("3d")

FORMAT_DURATION

FORMAT_DURATION(Duration)

Converts duration value to the JIRA's format with numbers followed by symbols specifying the

time unit.

Example:

Documentation

Version 1 109

FORMAT_DURATION(DURATION("1w 1d")) "1w 1d"

JIRA_DAYS

JIRA_DAYS(Duration)

Returns a number of work days in the specified duration according to JIRA's settings. (By

default, one day is 8 hours.) May return fractional number.

Example:

JIRA_DAYS(DURATION("24h")) 3

JIRA_DAYS(DURATION("12h")) 1.5

JIRA_DURATION

JIRA_DURATION(Text)

Converts a text representation of a JIRA work duration to a number. The format is provided by

JIRA – the text may be several numbers, each number followed by a symbol to specify the time

unit: for weeks, for days, for hours and for minutes.w d h m

The specified time is work time, according to JIRA's settings. With the default JIRA settings,

 and JIRA_DURATION("1w") = JIRA_DURATION("5d") JIRA_DURATION("1d") =

.JIRA_DURATION("8h")

Examples:

JIRA_DURATION("1w 2d 3h 4m")

JIRA_DURATION("3d")

JIRA_WEEKS

JIRA_WEEKS(Duration)

Returns a number of work weeks in the specified duration according to JIRA's settings. (By

default, one week is 5 work days.) May return fractional number.

Example:

JIRA_WEEKS(JIRA_DURATION("10d")) 2

JIRA_WEEKS(DURATION("5d")) 3

Miscellaneous Functions

ME

ME()

Returns the user key of the current user.

Example:

IF(ME() = "admin"; "You're admin!")

NUMBER

Documentation

Version 1 110

NUMBER(Value)

Converts value to number. This function is rarely needed because conversion to number

happens automatically when needed.

Example:

NUMBER("1.234") 1.234

TEXT

TEXT(Value)

Converts value to text. This function is rarely needed because conversion to text happens

automatically when needed.

Example:

TEXT(1.234) "1.234"

Aggregate Function Reference

All standard aggregate functions are listed on this page.

An aggregate function call contains an expression in curly braces ("{}"), which is calculated for

the item and all sub-items (or, in some cases, for other subset of related items in the structure),

and then the resulting values are aggregated according to the meaning of the aggregate

function.

An aggregate function may have modifiers, which are all listed here.

It is not possible to include both upward-looking and downward-looking aggregate

functions within the same formula. When using one of the two upward-looking

aggregate functions, PARENT and JOIN (when used with an upward-looking

modifier), you cannot include any of the other aggregate functions listed above.

For example, the formula for calculating the percentage of Story Points of an issue

compared to the aggregate Story Points of its parent (story_points / PARENT {SUM
) would fail, because PARENT looks one level up in your hierarchy, {story_points}}

while SUM aggregates the levels below.

We are working to fix this limitation in a future version.

Aggregation Functions

SUM

Sum calculates numerical total for the values calculated for the item and/or its sub-items.

Documentation

Version 1 111

Note that when the value of the expression under aggregation is not numeric (cannot be

 to number), it is ignored.converted (see page 86)

If a certain issue (or another kind of item) is included multiple times in the sub-tree, the

sum will include the value for that issue only . This behavior can be overridden by once
#all modifier.

Accepts modifiers: , , , #all (see page 113) #children (see page 114) #leaves (see page 114)

.#strict (see page 113)

COUNT

Count calculates count of defined (or truthy if #truthy modifier is specified) values for the item

and/or its sub-items.

If a certain issue (or another kind of item) is included multiple times in the sub-tree, it

will be counted only . This behavior can be overridden by #all modifier.once

Accepts modifiers: , , , #all (see page 113) #children (see page 114) #leaves (see page 114)

, .#strict (see page 113) #truthy (see page 113)

AVG

Avg calculates an average of defined values for the item and/or its sub-items. The result for avg

is generally the same as sum/count. Returns nothing in case there are no defined values for

{x}.

Documentation

Version 1 112

If a certain issue (or another kind of item) is included multiple times in the sub-tree, the

average value will include the value for that issue only . This behavior can be once
overridden by #all modifier.

Accepts modifiers: , , , #all (see page 113) #children (see page 114) #leaves (see page 114)

.#strict (see page 113)

MAX

Max calculates maximum of defined values for the item and/or its sub-items. Numeric, date,

duration and text fields can be compared. Text fields are compared lexicographically.

Accepts modifiers: , , .#children (see page 114) #leaves (see page 114) #strict (see page 113)

MIN

Min calculates minimum of defined values for the item and/or its sub-items. Numeric, date,

duration and text fields can be compared. Text fields are compared lexicographically.

Accepts modifiers: , , .#children (see page 114) #leaves (see page 114) #strict (see page 113)

JOIN

Join calculates concatenation of strings. If current row has children and #subtree (see page 115

 modifier is set, join appends values for children wrapping them into characters (braces by)

default). Wrapping characters can be set by and #beforeChildren (see page 116) #afterChildren

 (see example for to see how it works). By default it (see page 116) #subtree (see page 115)

joins all parent string values from root to self value.

Documentation

Version 1 113

Accepts modifiers: , , #ancestors (see page 115) #subtree (see page 115) #children (see page

, , , , 114) #leaves (see page 114) #strict (see page 113) #reverse (see page 115) #separator (see

, , , page 115) #beforeChildren (see page 116) #afterChildren (see page 116) #fromDepth (see

, , .page 116) #toDepth (see page 117) #distinct (see page 117)

PARENT

Parent extracts value from the parent row or from ancestor row by specified depth.

Accepts modifier: .#depth (see page 118)

Aggregation Modifiers

#all

When this modifier is accessible aggregation function applies to distinct items by default.

This modifier turns off distinct.

Example

SUM#all{X}
COUNT#all
{X}

Can be used with: , , .sum (see page 110) count (see page 111) avg (see page 111)

#truthy

Only count row if subexpression produces truthy value.

Example

COUNT
#trut
hy{X}

Can be used with: .count (see page 111)

#strict

Documentation

Version 1 114

Do not process current row item as part of aggregation.

Cannot be used together with (it implies the same effect), #children (see page 114) #ancestors

 (use depth modifiers for that), (together they're (see page 115) #leaves (see page 114)

useless).

Example

JOIN#
stric
t{X}
SUM#s
trict
{X}

Can be used with: , , , sum (see page 110) count (see page 111) avg (see page 111) join (see

, , .page 112) min (see page 112) max (see page 112)

#children

Only process direct children of current row.

Example

JOIN#c
hildre
n{X}
SUM#ch
ildren
{X}

Can be used with: , , , sum (see page 110) count (see page 111) avg (see page 111) join (see

, , .page 112) min (see page 112) max (see page 112)

#leaves

Only process leaves of subtree of current row.

Example

JOIN#
leave
s{X}

Documentation

Version 1 115

SUM#l
eaves
{X}

Can be used with: , , , sum (see page 110) count (see page 111) avg (see page 111) join (see

, , .page 112) min (see page 112) max (see page 112)

#subtree

Process whole subtree of current row. This is default behavior for , sum (see page 110) count

, , , .(see page 111) avg (see page 111) min (see page 112) max (see page 112)

Example

JOIN#
subtr
ee{X}

Can be used with: .join (see page 112)

#ancestors

Only process ancestors of current row. This is default behavior for , join (see page 112) parent

.(see page 113)

Can be used with: .join (see page 112)

#reverse

Reverses the order of row processing.

Example

JOIN#
rever
se{X}

Can be used with: .join (see page 112)

#separator

Defines separator for string joining. This modifier has string parameter, default is ", ".

Example

Documentation

Version 1 116

JOIN#
separ
ator=
"->"{
X}

Can be used with: .join (see page 112)

#beforeChildren

See .#afterChildren (see page 116)

#afterChildren

Defines exit separator between children and parent rows. This modifier has string parameter,

default is "(" for #beforeChildren and ")" for #afterChildren.

Example

JOIN#subtree#be
foreChildren="<
{"#afterChildre
n="}>"{X}

Can be used with: .join (see page 112)

#fromDepth

Specifies position of the row that would be the first in sequence of rows aggregate function

takes as an input.

Position is specified by integer parameter denoted as n below.

Positive values mean absolute depth of row in the structure, e.g. n=1 means root.

Negative values mean depth relative to current row, e.g. n=-1 is direct parent.

Default is 1. n shouldn't be 0.

This modifier doesn't work with any tree types except .#ancestors (see page 115)

Example

JOIN#f
romDep

Documentation

Version 1 117

th=-1{
X}
JOIN#f
romDep
th=2
{X}

Can be used with: .join (see page 112)

#toDepth

Specifies position of the row that would be the last in sequence of rows aggregate function

takes as an input.

Position is specified by integer parameter denoted as n below.

Positive values mean absolute depth of row in the structure, e.g. n=1 means root.

Negative values mean depth relative to current row, e.g. n=-1 is direct parent.

Default is 0. 0 means current row.

This modifier doesn't work with any tree types except .#ancestors (see page 115)

Example

JOIN#
toDep
th=-1
{X}
JOIN#
toDep
th=2
{X}

Can be used with: .join (see page 112)

#distinct

Makes join only concatenate distinct values. Value won't be added more than once if this

modifier is on.

Modifiers and don't work when #beforeChildren (see page 116) #afterChildren (see page 116)

this option is on.

Example

Documentation

Version 1 118

Can be used with: .join (see page 112)

#depth

Denotes the parent that possesses value. This is specified via integer parameter denoted as n

below.

Documentation

Version 1 119

Positive values mean absolute depth of row in the structure, e.g. n=1 means root.

Negative values mean depth relative to current row, e.g. n=-1 is direct parent.

Default is -1. n shouldn't be 0.

Example

PARENT#depth=-1{X} //
default one
PARENT#depth=-2{X} //
"grandparent"
PARENT#depth=1 {X} //
root row
PARENT#depth=2 {X}

Can be used with: .parent (see page 113)

Expr Language Reference

Expr language defines expressions, which are evaluated in the context of an item in some

structure. This article describes the syntax of the language and the rules that govern the

evaluation.

Conventions

Similarity to Excel formula language was a design goal, so if you're unsure how Expr

behaves, think Excel.

The language is case-insensitive.

Whitespace is not meaningful. It is only required to separate word operators and

identifiers, in all other cases there can be arbitrary number of whitespace symbols.

Currently language constructs support only English letters and a few punctuation

symbols. However, values can contain any Unicode symbols.

Comments

At any place where formula allows whitespace you can use comments. Comments can be multi-

lined and one lined.

Multi-lined comment starts with " and ends with and can span multiple lines. Multi-/*" "*/"

lined comments cannot be nested.

Single-line comments start with " and end with the end of line.//"

Values

Documentation

Version 1 120

All expressions, when evaluated, produce either a value or an error. All values in Expr are

either numbers, text, or a special value called . The simplest expression thus is the undefined
literal representation of some fixed value. The forms of these literal representations are

described below.

Undefined

Undefined value is represented by the word undefined.

Undefined value is used when the variable value is not specified. For example, variable

 has value undefined if the issue is unassigned.Assignee

Functions can return this value when the result of function is not specified. For example,

function returns its second argument if the first argument evaluates to a truthy value (see IF

below on that). Otherwise, it returns third argument, but if it wasn't specified, it returns

.undefined

Text

A text value consists of 0 or more Unicode symbols. Its literal representation consists of the

value enclosed in single quotes (') or double quotes ("). Example: represents text "Major"

value . Similarly, represents the same text value.Major 'Major'

If the text value itself contains quotes, you'll need to insert a backslash (\) before them.

Example: represents text value . "Charlie \"Bird\" Parker" Charlie "Bird" Parker

Alternatively, you can use another kind of quotes to enclose the literal representation:

'Charlie "Bird" Parker'.

If you need to use the backslash at the end of text value, you'll need to insert another

backslash before it. Example: represents text value "C:\Users\John\\" C:\Users\John\.

Numbers

Aside from representing some quantity, a number value can also represent points in time and

duration of time. Then you can use Format settings in the to Formula Column (see page 72)

properly display them as dates or durations.

There are two forms of literal representations of numbers:

Documentation

Version 1 121

a whole number: 42

a fractional number: 0.239

Note that only dot (.) can be used as a decimal separator. Comma (,) is used to delimit function

arguments. Thus, will be understood as the maximum of three quantities: , MAX(X, 0,618) X

0, and 618.

Group separators are not supported, so is not a literal representation of number 100 000

100000.

Technical note: internally, numbers are represented as decimal floating-point

numbers with 16 digits of precision and half-even rounding. Most of the operations are

carried out in this form, however, some of the more sophisticated functions, such as

, might first convert the numbers into binary floating-point, calculate the result, SQRT

and then convert it back into decimal floating-point.

Text to Number Conversion

Some functions expect their arguments to be number values. In case an argument is a text

value, we try to interpret it as a number. This can be useful if the value comes from a variable

that represents a text custom field, which contains numbers — e.g., imported from some

external system.

If conversion is successful, that number is used as the value for that argument. If conversion is

not successful, functions can either produce an error, ignore that argument, or substitute some

 default — it depends on the function; see Expr Function Reference (see page 89) for details.

The first step is to accommodate for variations in number formatting. Conversion supports

these formatting symbols:

decimal fraction separators:

comma ,

dot .

digit group separators:

comma ,

dot .

apostrophe '

Documentation

Version 1 122

space

Conversion expects that the text contains 0 or 1 decimal mark, and 0 or more group separators

of the same kind. If text contains any other formatting symbols, conversion fails. Decimal mark

must come after all group separators, otherwise conversion fails.

If text contains only one formatting symbol, and it's a dot (), it is always treated as decimal .

mark. If text contains only one formatting symbol, and it's a comma (), then it is treated as ,

decimal mark if comma is decimal separator mark in ; otherwise, it is JIRA default language

treated as group separator. For instance, if default JIRA language is English, will "101,112"

become 101112, whereas if it is German locale, it will be 101.112. And regardless of language, "

 will become 1100.23: space is interpreted as group separator, and comma can 1 100,23"

only be the decimal fraction separator here.

If group separator is a dot (), then all groups except the first one must have 3 digits, otherwise .

conversion fails.

After determining decimal mark and group separator symbols, conversion removes all group

separator symbols and replaces decimal mark with dot. Note that if text contains several whole

numbers separated by spaces, conversion will think that its' one number, for example, "10 11

 will become 101112. Similarly, will become 101112.12" "10,11,12"

The final step of conversion is to recognize the resulting text as either Expr's literal number

representation or scientific or engineering notation. Examples:

0.239

-1.32e5

12e-3

Falsy and Truthy Values

A value is if it is:falsy

undefined,

number 0,

empty text value (or), or a text value that contains only space characters."" ''

All other values are By convention, when predefined functions or logical operators need truthy.
to construct a truthy value, they use number .1

Variables and functions

Other kind of expressions are variables and function calls.

Identifiers

An identifier consists of letters (Latin alphabet only: a-z, A-Z), digits (0-9), dot () or underscore .

() characters. The first character must be a letter or an underscore._

https://confluence.atlassian.com/adminjiraserver071/choosing-a-default-language-802592304.html

Documentation

Version 1 123

Variables

Variables are represented by identifiers. Each variable is resolved to a value once during

expression evaluation. If the variable cannot be resolved, its value is .undefined

Conceptually, you can think of variable as the cell of some column for the item, in the context of

which the expression is evaluated. As such, it might or might not have a value, and that value

can be either textual or numeric. Variables are defined in the Formula Column (see page 72)

settings and are mapped to a JIRA field or other attribute of an item.

Local Variables

Local variables are similar to Variables, but they are not mapped to the item's attribute or JIRA

field, but rather defined and calculated right in the expression.

The declaration syntax is the following:

WITH <local_variable_name> = <expression> :

<expression_with_local_variable>

Note the colon (":") that separates the expression assigned to the variable and the expression

where variable is used.

A few facts about local variables:

<expression_with_local_variable> may start with another local variable

definition, so you can introduce many local variables. When defining a second variable,

you can use the first variable already, and so on.

Local variables can "shadow" previously defined local and free (mapped) variables with

the same name. If you write " , then when with priority = 10: <expression>"

calculating " , the value of will be 10, even if there was a <expression>" priority

variable attached to the issue's priority in the enclosing scope.

The construct is itself an expression, so you can use it, enclosed in with...

parentheses, anywhere where expression can be used. The name defined in this

expression is not visible outside expression.with...

Function Calls

A function consumes zero or more values, and can produce a value. A function call consists of

a function name (an identifier), followed by its arguments enclosed in parentheses. An

argument can be any expression. Different arguments are separated by commas () or ,

semicolons () — for one function call, all separators must be the same.;

Function call can evaluate only some or even none of the arguments, depending on the

function. This is useful for functions that perform choices, such as : the argument that wasn't IF

chosen is not evaluated, so the whole expression doesn't produce an error when it produces an

error.

Aggregate Function Calls

Documentation

Version 1 124

An aggregate function call takes an expression and calculates it for all sub-items (or for another

sub-set of the structure, as defined in the function's documentation).

An aggregate function may have one or more modifiers that govern aspects of function

execution. Each modifier starts with hash sign ("#"), then comes the name (an identifier) and an

optional equal sign ("=") and a value, which can be a string or numeric constant. If a value is

omitted, it is assumed to be (a representation of in Expr).1 true

An aggregate function must be followed by the expression in the curly braces ("{}"), which

provides the values being aggregated.

You can use whitespace between any elements of the aggregate function calls.

Examples:

SUM{x}

SUM#all{x}

SUM#all#leaves{x}

JOIN#separator=", "{key}

JOIN #separator=", " #fromDepth=0 #toDepth=-1 { Key }

It is an error to use a modifier that the aggregate function does not support.

Single-argument operators

Expression with single-argument (or) operator has the following syntax: unary <op>

.<expression>

<expression> can be any Expr language expression in parentheses. If it is a literal value

representation, a variable, or a function call, parentheses are optional.

If evaluation produces error, the operator also produces error.<expression>

NOT

Instead of , exclamation mark () can also be used.NOT !

The operator produces if evaluates to a truthy value, and otherwise.0 <expression> 1

+ -

The operator first attempts to convert the value of to number. If conversion <expression>

succeeds, produces this number, and produces the negated number. If conversion fails, + -

and the value of is falsy, produces . Otherwise, produces error.<expression> undefined

Logical and arithmetic operators

Two or more expressions can be combined using operators: <expression1> <operator>

. If any subexpression produces error, the operator produces the same error.<expression2>

Logical operators

OR (||, |)

Documentation

Version 1 125

AND (&&, &)

OR examines each expression from left to right, and produces the value of the first expression

that evaluates to a truthy value. If no expression evaluates to a truthy value, returns undefined

. All expressions that come after the first that evaluates to a truthy value are not evaluated. This

prevents from unnecessary computations, and protects from producing error if any of the

subsequent expression produces an error.

AND works in the same way. The only difference is that it looking for the first value.falsy

Examples (assuming the default variable assignment):

assignee || "UNASSIGNED" will produce either issue's assignee user key or text

value " if the issue is unassigned.UNDEFINED"

!assignee && status = "OPEN" will produce if the issue is unassigned and in 1

status , and otherwise.OPEN 0

Comparison operators

All of these operators produce or . These operators can work only on two arguments. They 0 1

start with evaluating both expressions. All comparison operators have the same precedence.

Equality: = (==).

If both values are numbers, returns if they are equal.1

If both values are text, returns if they are equal, ignoring differences in letter forms and 1

leading and trailing whitespace (thus)." cote " = "côte"

If both values are undefined, returns .1

In all other cases returns .0

If one value is a number and the other value can be converted to a number, both

values are treated as numbers. However, if both values are text, they will be treated

as text, even if both can be converted to a number. You can use NUMBER (see page

 function to force a value to be numeric.109)

3.4 = 3.40 1

3.4 = "3.40" 1

"3.4" = "3.40" 0

NUMBER("3.4") = "3.40" 1

Inequality: <> (!=)

Works in the same way as equality operator, but returns where it returns and vice versa.0 1

Ordering

Documentation

Version 1 126

< (less than)

> (greater than)

<= (less than or equal)

>= (greater than or equal)

All operators work on numbers, producing the result of their comparison.

If either of the values is text, attempts to convert it to number. If conversion fails, operators

behave as if the corresponding value was undefined.

If any value is undefined, strict operators (,) produce Non-strict (,) produce , < > 0. <= >= 0

unless values are undefined (because they are equal).both

Arithmetic operators

Arithmetic operators are: addition (), subtraction (-), multiplication () and division (/).+ *

These operators convert their arguments to numbers. A non-empty non-number argument

would produce an error. Falsy non-number values are treated as zero.

Examples:

"" + 1 1

"foo" + 1 error

"" * 1 0

"foo" * 1 error

"" - 1 -1

1/0 error

Precedence of operators

Precedence defines which operators evaluate first: if operator A has lesser precedence than B,

then in expression first B is <expression1> A <expression2> B <expression3>

evaluated, then A.

Single-argument operators are always evaluated first. Other operators in Expr language have

the following precedence:

1 (lowest) OR

2 AND

3 = <> < > <= >=

4 + -

Documentation

Version 1 127

5 (highest) * /

Railroad diagrams

These diagrams display the complete syntax of Expr language.

expression

local-variable-name is an .identifier (see page 122)

logical-expression

comparison-operator is one of these: .= <> < > <= >=

logical-operator is one of these: .AND OR

arithmetic-expression

variable-name is an .identifier (see page 122)

literal is either a , a or number literal (see page 120) text (see page 120) UNDEFINED (see

.page 120)

arithmetic-operator is one of these: .+ - * /

function-call

Documentation

Version 1 128

function-name is an .identifier (see page 122)

aggregation-expression

aggregation-name and are . aggregation-parameter identifiers (see page 122)

aggregation-parameter-value is either a or a text (see page 120) number literal (see page 120)

with optional sign (either or).+ -

Expr Pattern Matching

Expr language provides you with a couple of functions that make it easier to check a text value

against a certain pattern. Functions , , MATCH (see page 96) CASE (see page 90) REPLACE

 and use pattern matching for your convenience.(see page 97) SEARCH (see page 98)

Matching involves a value and a pattern. There are three types of patterns – the type that you

use defines how matching is done.

Exact Matching

The simplest pattern type is just a text value that you expect:

MATCH(value, "Apples")

This match will happen if is, in fact, the text that is used as the pattern.value

Although it's called "exact matching", there are some additional rules that make the matching

easier. The rules are:

All leading and trailing whitespace characters are removed from the value.

Text comparison is case-insensitive, which means will match .APPLES Apples

The value (without leading and trailing spaces) must match the whole pattern.

Exact matching is used by default, if the pattern is not recognized as requiring Wildcard or

Regular Expression matching.

Wildcard Matching

Wildcard patterns let you use symbol " " to specify any number of any characters.*

MATCH(value, "App*")

You can use multiple asterisks to build your pattern.

The same rules as for the exact matching apply:

All leading and trailing whitespace characters are removed from the value.

Text comparison is case-insensitive, which means will match .APPLES App*

The value (without leading and trailing spaces) must match the whole pattern.

Documentation

Version 1 129

Exact matching is used when the pattern is not recognized to be a Regular Expression Pattern

but contains at least one asterisk.

Regular Expression Matching

This type of matching lets you use powerful regular expressions to specify exactly what you

need to match with.

MATCH(value, "/^Ap+.*s$/")

Structure uses regular expressions available with Java. For a full documentation about the

regular expression language, see .Java documentation for Pattern

The regular expression matching is different from other types of matching. The following rules

apply:

Leading and trailing whitespace characters are removed.not

Text comparison is case-insensitive, like with the other types of matching.

The value does not have to fully match the pattern – it is sufficient that at least one

occurrence of the pattern is found in the value. To make your pattern match the whole

text, use "^" and "$" characters in the pattern.

Regular expression matching is turned on if the first and the last characters of the pattern are "/

". (These characters are removed, they are not a part of the pattern.)

Expr Error Codes

Evaluating Expr expression may produce errors. Normally these errors are shown to the user

with a human-readable message. However, you might need to check for a specific error using

 function.ISERR (see page 92)

Error
Code

Name Displayed
As

Description

1 Parse Error ??? The expression is invalid. To fix, review and edit the

expression.

2 Unknown

Function

FUNC? The expression contains a function that is not available

or does not exist. To fix, review used functions in the

expression, see if there are any typos.

3 Bad

Number of

Arguments

ARGS? A function is used with an incorrect number of

arguments. To fix, review the expression and see if all

functions are called with a correct number of

arguments.

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Documentation

Version 1 130

Error
Code

Name Displayed
As

Description

4 Arithmetic

Error

DIV/0 An arithmetic error was encountered. Most often it is

division by zero, but it may also be something else, like

passing a non-integer value to a function that expects

only an integer.

To fix, first, find out what the problem is (you can try

separately calculating parts of the formula). To avoid

division by zero, use function.IF (see page 91)

5 Variable

Error

VAR! An attribute that a variable was bound to produced an

error. To fix, review the attributes bound to the

expression variables and see why they could have

produced an error for the row that shows this error.

6 Function

Execution

Error

FUNC! A function suffered an internal error. Refer to logs for

details.

7 Value

Conversion

Error

VALUE? A value could not be converted to the desired format.

Check the formula, most likely a non-convertible text

value is submitted to a function as a number.

8 Malformed

Regex

REGEX? A text with invalid regular expression was passed to a

matching function. Check the regular expressions that

you use. See Expr Pattern Matching (see page 128)

for details.

9 Internal

Error

ERROR! There's an internal problem with JIRA or Structure.

Refer to the logs for details.

10 Invalid

Value

VALUE! An invalid value was passed as a function argument.

For example, using an unknown unit of time would

produce this error. Check arguments for the functions

that expect specific values.

11 Aggregation

Error

AGGR? The formula contains an unknown aggregate function

or an invalid aggregate function modifier.

Documentation

Version 1 131

1.

2.

3.

Wiki Markup in Formula Columns

Customize your structure, call attention to critical information or color-code data fields using

wiki markup within .formula columns (see page 72)

Wiki markup allows you to:

Specify the text color within a column

Highlight cells with background coloring

Insert images

Add emojis

Using Wiki Markup

To add wiki markup to a formula column:

Click the Add Column button () and select + Formula

Enter a column name.

Include wiki markup language in your formula column, surrounded by double quotes (").

See below for more details.Markup Options (see page 132)

Under the Format menu, select Wiki Markup. (This is important - your content will not

display correctly unless the Wiki Markup format is selected.)

Documentation

Version 1 132

As you save/update the formula, your new column should update automatically. Once you're

finished, click anywhere on your structure to close the Add Column dialogue and see your new

column.

The example above highlights all the Epics in the structure:

Here's the formula we used - just in case you want to try it yourself: If (="Epic"; issuetype

"{panel:bgColor=#ADFF2F}Epic{panel}")

With a few more If statements, you could color-code your entire structure by issue

type. Or you could assign different colors to each Assignee or some other custom

field. The possibilities are endless!

Markup Options

Structure uses the Jira Markup language to enable wiki markup within formula columns.

Using wiki markup, you can add the following elements to a cell:

Custom text formatting

Text, background and border color

Images

Emojis

You can find a complete list of available formatting options and conventions on Jira's Text

.Formatting Notation Help page

All markup language should be included between double quotes (").

http://docs-structure5-1.docker1.almworks.com/secure/StructureBoard.jspa?s=199
https://jira.atlassian.com/secure/WikiRendererHelpAction.jspa?section=all
https://jira.atlassian.com/secure/WikiRendererHelpAction.jspa?section=all

Documentation

Version 1 133

While it is possible to add tables and lists to a formula column, we do not recommend

it. Due to the limited space, these items may not appear as expected.

Export

Wiki Markup can be exported to Excel or printed, using Structure's Export feature.

Your markup should export just as it appears in Structure, with some exceptions:

Colored borders are not exported to Excel or printable.

When exporting to Excel, text cannot be combined with emojis or other images within the

same cell. If both are present, only the text will be exported.

It's fine to mix text and emojis/images in the same column, just not the same cell.

Examples
Example 1: Progress Warnings

In the following example, we have created a simple formula to draw attention to overdue and

upcoming due dates:

When an issue is overdue, a red "OVERDUE” warning appears in the column

When an issue is due within the next 7 days, the columns displays a green “Due Soon”

When there's over a week to go, the issue gets a smiley face

And if the issue doesn't have a due date, it let's you know that too

To accomplish this, we added markup language to a standard statement:If

Documentation

Version 1 134

if (DueDate < today(); "{color:red}OVERDUE{color}"; DAYS_BETWEEN(today(), DueDate)
<=7; "{color:green}Due Soon{color}"; DAYS_BETWEEN(today(), DueDate) >7; ":D";
"{color:blue}Needs Due Date{color}")

We used text to call attention to overdue items, but you could also add a flag: "(flag)"

To learn more about using If statements, DAY_BETWEEN, or any other functions, see Expr
Function Reference (see page 89).

Example 2: Project Markers

In this example, we've created a column to quickly identify each project we're working on. In

this case, each project is marked by a unique star color.

Documentation

Version 1 135

To create this column, we used the special character notations for stars "(*)" - along with color

designations:

If (Project = "SAFe Program"; "(*b)"; Project = "SAFe Team A"; "(*y)"; Project = "SAFe
Team B"; "(*r)"; Project = "Marketing"; "(*g)")

You could apply this same concept to any field, and you don't have to stick with stars.

For example, you may want to color-code issues by team – or insert photos of your

team mascots!

Notes Column

Notes column allows you to add arbitrary text to items in a structure, without having to create

custom fields in JIRA.

The typical use case for Notes column is storing some additional information about the item's

status and use it in a report.

The values in the Notes columns are . This means that:per-structure, per-item

Text entered as Notes for some issue in one structure will not be seen for that issue in

another structure. You may have different notes for the same issue in different

structures.

Documentation

Version 1 136

If an item occurs several times in a structure, they will have the same value in the Notes

column, similar to the issue's fields.

Permissions

The user might have permissions to edit notes even if he or she does not have

permissions to edit the issue.

The data stored in the Notes column is considered to be a property of the selected structure.

That has the following effect on the permissions.

Who can view notes?

To be able to see the notes, the user needs to have:

View access to the structure that stores the notes.

View access to the item (issue, project, etc.)

Who can edit notes?

To be able to edit the notes, the user needs to have:

Edit access to the structure that stores the notes.

View access to the item (issue, project, etc.)

Note that this allows you to create your own structure and leave notes for some issues

that you can't edit.

1.4.6 Searching and Filtering

The Search feature provides several important functions:

Find and highlight issues in your structure.

Filter (see page 139) your structure so that it only displays specific issues.

To access Search function, click the button on the Structure Panel Toolbar.Search

Documentation

Version 1 137

The Search panel will appear below the toolbar. By default, the Search looks for the entered

text in issues' summary or items' names.

The search starts once you start entering the query, refining results as you keep typing. The

non-matching items are greyed-out in order to highlight the matching items.

Once you've found the items you need, you can quickly move focus between the

matching items by pressing and .Ctrl+Alt+] Ctrl+Alt+[

Search function allows you to search for issues inside the currently selected structure in

 modes and use text search for all other item types. To Simple, JQL, and S-JQL (see page 138)

switch between the modes, click the name of the currently selected mode and select the one

you need from the menu.

Documentation

Version 1 138

If data changes on the server, search results are automatically refreshed for the

structure. So issues can be hidden and shown in the structure in realtime.

You can turn on searching on by pressing . If you press it again, you will Ctrl+Alt+/
switch to the next search mode. To close the search panel and cancel the search,

press or click again the search button in the toolbar.Escape

Simple, JQL, and S-JQL Search

In the Search Area, you can specify a , a simple text condition (see page 138) JQL condition

, or a . To switch between these search modes, (see page 139) Structure query (see page 139)

click the name of the currently selected mode and select the one you need from the menu or

press .Ctrl+Alt+/

Simple Search

Simple (text) search mode is selected by default. In this mode, you can specify the following

search conditions:

Condition
Type

Example How it works

Simple

text

structural
hierarchy

Look for items that have mentioned words in the field. all Summary
Each word in the search sentence must be present in the summary

or name, or the summary must have a word that the begins with
specified word. The words may come in any order.

Quoted

excerpt

"the
quick
brown
fox"

Look for the whole phrase in the summary or name (but see below

about Lucene indexes).

Documentation

Version 1 139

Condition
Type

Example How it works

Issue

keys

MARS-1,
MARS-
331

If the text looks like one or more issue keys (delimited by comma or

whitespace), search for exactly these issues.

All issues * Use single asterisk to search for "all items". Only issues from the

projects enabled for Structure are found.

Structure relies on the JIRA search engine to run text searches. The engine is based

on Lucene index which has a few peculiarities that may cause unexpected results. For

example, short words may not be found. The result also depends on the Indexing

Language specified in the JIRA General Configuration.

JQL Search

In the JQL mode, the search condition is treated as a JQL (JIRA Query Language) query. JQL

lets you specify arbitrarily complex conditions to find very specific issues.

When the JQL mode is on, the usual JQL auto-complete suggests fields, operators and values

as you type. Whenever you have a correct JQL in the search field, there is a green tick icon

shown in the input box. When the JQL is incorrect or not complete, the red icon with the

exclamation mark is shown.

More information on JQL is available in the .JIRA documentation

S-JQL Search

In the S-JQL mode, the search condition defines a . S-JQL is a Structure query (see page 251)

special language that allows to search for issues by their relations in the current structure, e.g.,

 matches all top-level issues, matches first two levels, and root root or child of root

 matches all children of critical issues. See child of [priority = Critical] S-JQL

 for more information.documentation (see page 245)

As with the JQL mode, the there is an indicator showing whether the query is correct or not.

Filtering

If you wish to see only the items that match the criteria specified in the search field, click the

 button on the left from the input box.Filter

http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Documentation

Version 1 140

You can use keyboard shortcut or to turn filtering on and off.Ctrl+Alt+; ;

Once Filtering is turned on, you only see the matching items and their parent items. Parent

items of a matching item are always shown to preserve the hierarchy view, even if they don't

match the search criteria. Non-matching items are grayed out.

In the status bar at the bottom you can see the updated items count.

Filtering is just one of many ways to adjust the scope of the items you are seeing. Such

adjustments in Structure are called and you can add them Transformations (see page 147)

clicking the Transformations button.

As you add the filtering - the button is highlighted, showing you that a transformation has been

applied.

You can either remove the filtering completely by clicking the close button on the right of the

search field, or you can hide the search panel by clicking the arrow button next to it.

Filtering mode remains even if you navigate to another page.

Documentation

Version 1 141

Default Quick Transformations

There are six predefined saved filters:

Unresolved (works as a shorthand for filtering using JQL: Resolution is EMPTY)

Assigned to me (JQL: Assignee = currentUser())

By Assignee (items are grouped by Assignee)

By Status (items are grouped by Status)

By Version (items are grouped by FixVersion)

Sub-tasks (Sub-tasks are added underneath tasks)

To apply them, click the button next to the button in the structure panel Filter Transformations
toolbar and select the filter you need.

You can apply these filters and then use search and additional filtering at the same time.

Press ("r", then quickly "r" once again) to turn the Unresolved filter on and off.RR

Pinned Item Mode

You can view only a part of a structure that is related to a specific item, by pinning that item

with a icon on the structure panel toolbar. Structure Panel on the Pin Issue Page (see page 18

 automatically pins the issue being displayed, so you only see the relevant part of the)

structure.

In an item is present in several places in the structure, both instances of this item are shown.

Documentation

Version 1 142

What is Displayed in Pinned Item mode

When the structure widget is in Pinned Issue mode, only the following items are displayed:

The pinned item itself

All parent items of the pinned item, up to the top-level item

All sub-items of the pinned item, down to the deepest level

The items that are "siblings" or located somewhere else in the hierarchy are not displayed.

The items that are not displayed when an item is pinned are not just filtered out, they

are not loaded from the server, which provides quicker page load time.

Turning Pinned Mode On and Off

You can turn Pinned Mode on or off by clicking the Pin button on the toolbar or by using Ctrl+.
keyboard shortcut.

On the Issue Page and JIRA Agile (GreenHopper) Rapid Board page, you can only

pin the issue currently viewed - you cannot pin any other issue from the structure. On

the Structure Board, you can pin any issue.

Limitations Imposed by the Pinned Item Mode

When you have Structure with a pinned issue, you can't change the hierarchy from the pinned

issue upwards. That is, you can add/move/delete sub-issues of the pinned item, but you can't

add items to the pinned item's parents or move pinned item somewhere else.

Documentation

Version 1 143

Even though you can't move parent items when the view is in pinned mode, you still

can select them, edit or apply JIRA operations.

When Pinned Issue Is Missing from Structure

If it happens that the pinned item is missing from structure, the structure widget will not be able

to display any data and will offer to remove Pin:

If you are seeing this on the Issue Page, one you remove the pin you'll be able to add the issue

you are viewing to the structure you have opened in the widget (issue).Place

Identifying Duplicate Items

Structure allows you to have multiple instances of the same item in one structure. This can be

really useful - for example, if there is a bug that breaks several features and you want to show it

under each of these features in your structure.

But in some cases you may want to avoid duplicates, or just have a way to quickly identify

them. Structure provides an easy way to find such items.

If there are duplicating items in a structure, the status bar will show the counter with the number

of such items.

The duplicate counter works for the visible part of the structure only. If you apply filters

on top of the existing structure (for example, transformations) and these filters hide

some of the duplicates leaving just one instance of duplicated item, such issues won't

be treated as duplicates anymore.

Finding Duplicates

Clicking the duplicates counter will open the duplicates panel, which allows to highlight, filter,

pin or quickly navigate between duplicate items.

Documentation

Version 1 144

The status bar counter shows the number of items that have duplicates. The

duplicates panel shows the number of rows these items produce. In the example

above there are two issue with duplicates - one is added twice, the other - three times,

which makes it 5 rows of duplicates.

To highlight duplicate items, select the 'Mark duplicate rows' option. Each duplicate item will

have a duplicate icon (with ‘x2’ written on it) displayed in its row. If you hover over that icon,

you'll see how many instances of this item are shown in the structure.

Once you highlight duplicate items, the highlighting stays even if you close the

Duplicates Panel. To remove the highlighting, open the panel and clear the 'Mark

duplicate rows' checkbox.

Navigating Between Duplicates

Clicking the “Up” and “Down” arrow buttons moves the focus to the next/previous duplicate row.

When you navigate to a duplicate row that is in a collapsed part of a structure, this part of the

structure will be expanded so the duplicate is visible.

Documentation

Version 1 145

Filtering by Duplicates

Clicking the Filter button hides all structure elements that are not duplicates, leaving only

duplicate items and their parents.

When the duplicates panel is closed, the duplicates filter is disabled automatically.

Pinning Duplicates

You can view only a part of a structure that is related to a specific item, by pinning (see page

 that item. Unlike filtering it will show all child issues as well as its parents (filtering will only 141)

keep parents).

If you click the 'x2' icon next to a duplicate, the corresponding item and all its duplicates will be

pinned - only parts of the structure related to these items will be shown.

Documentation

Version 1 146

To pin an item, you can also use the pin button in the duplicates panel or in the structure panel

toolbar (clicking either of them will pin the item currently in focus).

You can both filter and pin duplicates at the same time.

1.4.7 Transformations

As you work with a structure, sometimes you may want to reorganize the issues you are

seeing, so that you can focus on the most important ones. The simplest example of this is

 and Sorting. For example, you may want to see only issues assigned Filtering (see page 139)

to you sorted by progress.

These are the two examples of the functionality. With transformations you Transformations
can locally adjust the structure without changing it for everyone else. All other users will see

this structure without these transformations applied.

Available Transformations

Transformations use the same type of functions as . The main generators (see page 194)

difference is that the transformations can only be applied to the whole structure (while

generators can be inserted under some folder or under a manually added issue) and you

cannot use Insert generators as you already have a set of issues to work with. You can use the

following transformations:

Filter

Documentation

Version 1 147

Sort

Group

Extend

For more details on how they work, please check the documentation on Generators (see page

.194)

Note that there is a difference on how filtering by Sprint works in transformations and

in generators: transformation filter is applied to the whole structure, while filter

generator only to embedded sub-structures.

Working with Transformations

Using Transformations

Sorting and Filtering

Sorting and Filtering are two kind of transformations you can apply really quick.

To your items, simply click the header of the column to sort the structure by this column in sort
ascending order. On every level, the items will be sorted accordingly. To sort in descending

order - click the column header again.

As you add the sorting, the Transformations button is highlighted, showing there are

transformations applied:

To remove the sorting - click the Summary column header.

To apply a , you can run a and then out non-filter search (see page 136) filter (see page 139)

matching items, or you can access the Quick Filters panel through the button on the Filter
panel toolbar and select any of them.

Documentation

Version 1 148

Transformations Panel

All transformations can be added and modified on the transformations panel. To access it, click

the button in the panel toolbar. The panel with the currently applied Transformations
transformations will appear.

Once you add the transformations, they'll be preserved as you switch between

structures if you are using the , not the Structure selection in the widget (see page 36)

Structure menu. This allows you to quickly check several structures focusing on the

issues you need.

There are several things you can do with transformations.

Add

To add a new transformations, click the Add button in the Transformations toolbar and select

one of the available transformations.

Edit

To edit an existing transformation, click the transformation name - for Grouping and Sorting you

can quickly select a column by which you want to sort or group, for Filtering and Extending,

select the type of filter or extender. You can also click the Edit button, to open the

transformation Edit Dialog with all the options. The options you see are the same as generators

.have (see page 204)

Documentation

Version 1 149

Remove a Transformation

To remove a transformation, click the transformation name and select Remove from the menu

that appears.

Hide Transformations Panel

After you've configured your transformations, you can hide the panel, so it doesn't take up the

screen space. Click the up arrow button on the right side of the transformations panel to hide it.

Remove All Transformations

To remove all transformations, click the cross button on the right side of the transformations

panel.

Save Transformations

Users who have Control permission on a structure can save transformations as Quick

, associated with that structure.Transformations (see page 149)

Quick Transformations

Quick Transformations feature lets you set up some transformations to be readily available for

a structure, so they can be turned on and off with a single mouse click. (They are sometimes

called "Quick Filters", although there could be other transformations besides filters.)

Quick Transformations Panel

You can start using quick transformation by showing Quick Transformation panel.

Documentation

Version 1 150

Quick transformation panel shows transformations that are associated with the current

structure. If quick transformations were not customized for the displayed structure, default quick

transformations are shown. Default transformations are also shown when panel contains a

query result or another non-structure content. See for Default Transformations (see page 153)

description of each default transformation.

To activate a quick transformation

Turn on Quick Transformation Panel

Click on the desired transformations

Structure will remember the selected transformations, so next time you open that structure, the

transformations will be already applied.

To deactivate a quick transformation

Click on the transformation you'd like to stop applying, OR

Toggle Quick Transformations Panel or click " " button to close Quick Transformations x

Panel.

When you close Quick Transformations Panel, all quick transformations are

deactivated.

You can use keyboard shortcuts to toggle quick transformations, based on their

position in the transformation list. The shortcut is and then the number (), typed Q 1—9
in quick succession.

Documentation

Version 1 151

The transformations are applied in the order they were turned on. If you need to

change the order in which quick transformations are applied, you can turn off the

transformation that should come last, and then turn it back on.

Alternatively, you can use Transformations panel to reorder currently active

transformations with drag and drop.

Defining Quick Transformations

Quick transformations can be customized for each structure by anyone who has Control
access to the structure. You either or use a filter (see page 136) use a transformation (see

 and then save it as a quick transformation.page 147)

If you don't see a way to add a quick transformation, probably you don't have the

access and you need to ask the structure's owner to add the quick transformation that

you need.

Adding a Quick Filter

To add a Filter transformation, click "Save" on the filtering panel.

Adding an Extender, Grouper or Sorter Transformation

For all other transformations, use the Transformations panel.

Documentation

Version 1 152

Modifying Quick Transformations

If you have access to the structure, you can change the associated quick Control
transformations, remove unused transformations, or change the order in which transformations

appear.

To edit Quick Transformations, click the Pencil icon on the quick transformations panel.

You can remove the default quick transformations for your structure if they are not

needed. It will not affect other structures.

Documentation

Version 1 153

Default Transformations

Default quick transformations are shown whenever a structure does not have customized quick

transformation or when a panel shows query result, clipboard or other non-structure content.

The following transformations are available:

Transformation Effect of applying this transformation

Unresolved Only issues with empty Resolution field are shown.

Assigned to me Only issues assigned to the current user are shown.

By Assignee All top-level issues are grouped by Assignee

By Status All top-level issues are grouped by Status

By Version All top-level issues are grouped by Version

Sub-tasks Sub-tasks are added to the structure under their parent tasks

1.4.8 Two-Panel Mode

When working with Structure on the Structure Board page, you can switch to the two-panel

mode and thus take the full advantage of the screen space.

The left panel always displays the structure widget or search, and on the right panel you can

open one of the following:

Another structure widget, where you can open another structure and work with two

structures side by side, or you can use it to run a text/JQL search or show clipboard.

Issue details (see page 166). As you click an issue in the structure, you can see the

issue details in the panel on the right.

History (see page 182). You can see the list of changes done to the structure and

navigate through them to see the previous versions of the structure.

Add-on Information:

With Structure.Gantt, you can view a Gantt chart in the secondary panel.

With Structure.Pages installed, you can display Confluence page contents.

You can switch to the two-panel mode using the button and menu in the Toggle Panels Main

.Structure Toolbar (see page 42)

Documentation

Version 1 154

1.

2.

You can select from the following options:

Clicking opens the secondary panel with the structure widget. By default, Double Grid
the widget opens with the JQL search. You can switch to text search, clipboard or

another structure by clicking the JQL label.

Clicking opens the for the currently Grid + Details Issue Details Page (see page 166)

selected issue.

Clicking opens .Grid + History Structure History (see page 182)

If you have additional add-ons that utilize the secondary panel, their options will be

displayed below these.

Resizing Secondary Panel

You can divide the horizontal space between a secondary panel and the main panel by

dragging the separating border.

Swapping panels

You can swap panels completely using a corresponding quick action:

Open the quick actions menu by pressing s+q shortcut;

Documentation

Version 1 155

2.

3.

Type 'swap' and find the swap action;

Apply the action by pressing enter.

Structure Widget on Secondary Panel

The structure widget that you open in the secondary panel is fully functional and differs very

little from the widget in the main panel on the left. In both of them you can open structures, run

JQL and Text search and open the clipboard.

Just like the main panel, it has its and the .panel toolbar view menu

You can also use the Main Structure Toolbar actions to work with the secondary panel widget.

The toolbar actions will be applied to the panel that is in focus. The focused panel is highlighted

with a thin blue line at the top.

The toolbar of the secondary panel has one extra function - hide/show the items that exist in

the panel in the right:

This is especially useful when you need to make sure that the structure in the main panel has

all the issues you've found using search in the secondary panel.

Issue Clipboard

The structure widget on the Structure Board allows you to see not only the structures and

search results, but also the clipboard contents. To see what you have in the clipboard, click the

structure name or the search type label and select Clipboard from the menu.

You can open it both on main and secondary panel (if in two-panel mode).

For details about using Issue Clipboard, see .Using Cut, Copy and Paste (see page 162)

1.4.9 Changing Structure

There are several basic operations you can do with a structure. They include:

Adding existing issues and other items (see page 156) to the structure

Moving items (see page 157) inside the structure

Documentation

Version 1 156

Creating new items inside the structure

Removing items (see page 159) from the structure.

There are several ways to make these changes. Some of these operations can be applied to a

 and some to individual items only. See the respective group of items (see page 159)

subsections for more details.

See also: Creating New Items (see page 169)

Adding Existing Issues to Structure

You can add an issue to a structure both from the and from the Structure Board (see page 16)

.Issue Page (see page 20)

On the Structure Board open the text or JQL search on a , find secondary panel (see page 153)

the issues you need and add them to a structure using , drag-and-drop (see page 160) copy

./paste (see page 162)

Instead of search you can also open a structure, which contains the items you are looking for

and add them to your structure from there.

You can also add multiple items at once. To do that, select the items you need (see page 40)

and add them using , .drag-and-drop (see page 160) copy/paste (see page 162)

On an Issue Page, select the structure where you need to add an issues and use the Place

 button.(see page 20)

Documentation

Version 1 157

Moving Items within Structure

Basic Moves

Using the Structure toolbar or your keyboard, you can move items up or down within a

structure, or change their location within the hierarchy, one position at a time.

To move an item, simply highlight it in your structure and use one of the following commands.

Operation Keyboard
Shortcut

What it does

Move Up Ctrl + Up Without changing the item's parent, moves the item up and places

it before the previous child - if possible.

Move

Down

Ctrl +

Down

Without changing the item's parent, moves the item down and

places it after the next child - if possible.

Level Up /

Outdent

Ctrl + Left Move the item one level up. This will place the item after its

parent.

Level

Down /

Indent

Ctrl +

Right

Move the item to be a sub-issue of its current preceding sibling.

 Mac Users: Use Cmd instead of Ctrl.

When you move an item that has sub-items, the whole sub-tree is moved.

Advanced Moves

To move items more than one space at a time, use Drag-and-Drop or Cut & Paste.

Drag-and-Drop

Using the mouse, you can items anywhere in the structure, Drag-and-Drop (see page 160)

even moving them from beneath one parent item to another.

Documentation

Version 1 158

To move an item with the mouse, use the Drag and Drop Handle on the far left of the item's

row.

Cut & Paste

Cut & Paste (see page 162) also allows you to move items to any location within the structure.

It can even be used to copy the hierarchy from one structure to another.

Moving items with Drag-and-Drop or Cut & Paste can be .undone (see page 165)

Moving Multiple Items

You can select multiple items and move them all together, using any of the methods mentioned

above. Just keep in mind the following rules:

Moving items with the toolbar or keyboard (Move Up/Down and Level Up/Down) only

works if all of the selected items are at the same level in the hierarchy and under the

same parent.

Drag-and-Drop and Copy & Paste support multiple-item moves in any configuration.

See also: Selecting Multiple Items (see page 40)

Back-to-Back Moves

When you make changes in a structure, they are uploaded to the server asynchronously,

allowing you to continue working, regardless of any network delay. If you need to make several

moves, one after another, you can do so without having to wait for each change to take effect

on the server side.

If changes are still being processed, the icon will appear in the status bar.synchronization

Documentation

Version 1 159

Moving Items with Automation

If you used to build all or part of a structure, the content it adds Automation (see page 192)

cannot be moved as freely as content which has been manually added to a structure. If you

attempt to move an item in your structure in a way that does not fit within your generators'

rules, you will receive an error message.

In order to move items freely within a generated structure, you may need to enable Manual

.Adjustments (see page 209)

Removing Items from Structure

To remove an item from the current structure, select this item and press button on the Delete
keyboard or click button on the toolbar. The item is removed with all its children item.Delete

You can and remove them all in one action.select multiple items (see page 40)

Removing an issue from a structure does not delete the issue itself. It just removes it

from the current structure.

Removing items can be .undone (see page 165)

Changing Multiple Items

You can apply most of the changes to multiple items in one action. Select multiple items (see

 and use toolbar, keyboard shortcut or drag and drop.page 40)

Documentation

Version 1 160

Some actions may have limitations of applicability when multiple items are selected. For

example, if you select both a parent items and a sub-items, the "Outdent" action will not be

possible.

The following actions work with the multi-selection:

Drag and drop (see page 160) lets you move a selection of items within a structure or

add them to a structure from the , such as Clipboard or secondary panels (see page 153)

Search Results.

Cut and paste (see page 162) allow you to move items both within a structure and

between different structures.

Remove button (see page 159) or key lets you remove multiple items from the Delete
structure.

Toolbar buttons , , , are allowed for multiple items Move Up Move Down Indent Outdent
only if all items in the selection are at the same level in hierarchy and have the same

parent item.

Bulk Change (see page 180) button lets you use JIRA bulk change wizard with selection

of issues from the structure.

See for details about working with multi-selection.Selecting Multiple Items (see page 40)

Using Drag and Drop

Drag and drop allows you to quickly move or copy items within the structure or add items to a

structure using the .secondary panel (see page 153)

Moving Items

To grab an item, move your mouse pointer over the Drag and Drop Handle, at the far left of the

item's row. Press and hold the handle as you move the issue to it's new location.

As you move the item over the grid, the structure will rearrange itself to show the possible

positions for the dragged items. Once the item is in the correct place, release the mouse button

and the item will be moved.

Depending on how you move an item, a couple of different things can happen:

Documentation

Version 1 161

Moving Up or Down - Moves items up and down the hierarchy without changing the

indentation level, if possible.

Moving Left or Right - Changes indentation level of the moved items, if possible.

Holding the allows you to grab an item from anywhere on the row (except on shift key
a link). This is especially useful if you need to outdent an item, since the drag handle

is usually close to the edge of the screen.

After dragging has started, you can release the shift key.

Copying Items

To copy an item within the same structure (creating a second instance of the item), hold the Ctrl
key as you drag it (key for Mac).Alt

To copy an item from one structure to another (using), simply Two-Panel Mode (see page 153)

drag and drop the item. If you want to move the item from one structure to another (so it's

removed from the original structure) hold the key as you drag it (key for Mac).Ctrl Alt

Dragging Multiple Items

To move more than one issue at a time, first (click the select multiple issues (see page 40)

gray dot at the beginning of each row) and then move them using the Drag and Drop Handle of

any of the selected items.

If you have multiple items selected, but start dragging an item that's not included in the

multiple selection, only that item is dragged.

Cancelling Drag

If you need to cancel drag and drop without moving the item, press the key.Escape

Drag and drop can also be .undone (see page 165)

Scrolling Structure While Dragging

To move an item to a location not visible in the current panel, drag the item to the top or bottom

edge of the structure widget and the structure will be scrolled up or down. The further you move

the dragged item, the faster the the screen will scroll.

Documentation

Version 1 162

1.

2.

Using may be more effective than Drag and Drop if you Cut & Paste (see page 162)

need to move items to a distant position.

Using Cut, Copy and Paste

While is a nice and visual way to rearrange items, it is not always drag and drop (see page 160)

effective for dragging drag items across large structures. Copy and paste solves this problem:

once you copy items to the clipboard, you can scroll through the structure until you find exactly

where you want to paste them.

When you copy or cut issues using the toolbar or Ctrl+C / Ctrl+X (Command+C / Command+X

for Mac), the selected items are placed into the clipboard. When you paste with Ctrl+V

(Command+V), items are added immediately the currently focused item.after

To paste items the currently focused item (as its children), press Ctrl+Shift+V under
(Command+Shift+V).

See for details about multi-selection.Selecting Multiple Items (see page 40)

Copy / Paste Scenarios

There are two main scenarios for using the :Issue Clipboard (see page 155)

If you have any text selected on the page, the keyboard shortcuts will Copy/Cut
operate on that text, not the items in your structure. The text will be copied to the

system clipboard, and the Structure clipboard will not be affected.

Moving Items Between Structures

The contents of the Structure clipboard is preserved in the , which current browser window
allows you to copy/cut items in one structure and paste them into another.

To copy items (with their sub-items) from one structure to another:

Step 1 - Cut/Copy

First add the desired items to the clipboard:

Open the structure you wish to cut/copy from.

Documentation

Version 1 163

2.

3.

4.

1.

2.

3.

1.

2.

3.

Select the items you want to cut or copy. Either select a single item, or use multiple select

.(see page 40)

Click the button on the structure toolbar (or press or Cut/Copy Ctrl+x/Ctrl+c
).Command+x/Command+c

The selected items will be added to the clipboard and marked with a small scissors icon

for cut or a clipboard icon for copied .

Cut items are not removed from the structure until you paste them into another

structure.

When you an item that contains sub-items, these sub-items are not copy
automatically copied with their parent. You need to select them explicitly. To copy an

item and all of its children:

Select a parent item

Press Shift+Arrow Right (this selects an item and all of the sub-issues)

Press the Copy button

When you an item, its sub-items are automatically cut and copied to the clipboard.cut

Step 2 - Paste

After you have cut/copied the items, you can now paste them into any other structure:

In the same browser window, switch to a desired structure (you can use Structure

Board or).any other JIRA page with Structure (see page 15)

In the structure grid, select the item after which the items from the clipboard should be

placed.

Click the button on the toolbar (or press or) to place the items Paste Ctrl+v Command+v
at the same indentation level. To place the items the selected item (as its under
children), press (on Mac).Ctrl+Shift+v Command+Shift+v

If any of the items you are pasting are already in the new structure, those existing items will not

be affected. New copies of the items will be created as you paste.

The Paste operation can be .undone (see page 165)

Documentation

Version 1 164

1.

2.

3.

1.

2.

3.

If you need to copy the same set of issues to several different structures, you can

open the in the and Issue Clipboard (see page 155) secondary panel (see page 153)

use to move the issues, instead of Paste. In this case, drag-and-drop (see page 160)

the issues will not be removed from the clipboard.

Moving Items Within a Structure

You can use Copy/Cut and Paste to move items within a structure. This is particularly useful

when moving several items across a large structure, where can drag-and-drop (see page 160)

be more difficult to manage.

To move an item within a structure:

Copy/Cut

First add the desired items to the clipboard:

Select the items you want to move. Either select a single item, or use multiple selection

.(see page 40)

To move the item, click the button on the structure toolbar (or press or Cut Ctrl+x
). To create a second copy of the item within the structure, use theCommand+x Copy

button (or or).Ctrl+c Command+c

The selected items will be added into the clipboard and marked with a small scissors icon

 (for cuts) or a clipboard icon

(for copies).

Cut items are not removed from the structure until you paste them to a new location.

When you an item that contains sub-items, these sub-items are not copy
automatically copied with their parent. You need to select them explicitly. To copy an

item and all of its children:

Select a parent item

Press Shift+Arrow Right (this selects an item and all of the sub-issues)

Press the Copy button

Documentation

Version 1 165

1.

2.

3.

When you an item, its sub-items are automatically cut and copied to the clipboard.cut

Paste

After you have cut/copied issues, you can paste them to any place in the structure:

To view the contents of your , you can open it in the Clipboard secondary panel (see

. However, this is not necessary.page 153)

In the structure, select the item after which the items from the clipboard should be placed.

Click the button on the toolbar (or press or) to place the items Paste Ctrl+v Command+v
at the same indentation level. To place the items the selected item (as the under
children), press (or on Mac).Ctrl+Shift+v Command+Shift+v

The Paste operation can be .undone (see page 165)

Undoing Changes

Structure lets you undo a potentially destructive operation if you realize that you have made a

mistake or that the result is not what you expected. These operations can be undone:

Adding (see page 156) items from search results;

Removing (see page 159) items from a structure;

Drag-and-Drop (see page 160);

The Paste operation of a sequence.Cut & Paste (see page 162)

When you perform an operation that can be undone, a corresponding hyperlink appears in the

footer at the bottom of the Structure widget. For example, if you drag and drop some items, the

link will read "Undo Drag and Drop". If you click the link, your changes are reverted, and the link

itself changes to a "redo" link, allowing you to reapply the operation.

When you , a notification pop-up with an "undo" link also appears remove items (see page 159)

at the top of the page.

Currently only the last operation can be undone, but we are working on the new

functionality for Undo and it will be added in the future versions.

Documentation

Version 1 166

If the operation being undone has been uploaded to the server already, then a new

operation (or several operations) will be uploaded in order to revert the changes. You

will see both the original operation and the undo operation in the structure history (see

.page 182)

1.4.10 Working with Issues

Structure allows you to view and edit issues without leaving the Structure widget.Select one of

the following articles to see how you can work with issues from within a structure.

Viewing Issue Details

As you work with a structure or search results on the Structure Board, you can open the full

issue information in the Issue Details Panel on the right.

To open the Issue Details Panel, click the issue link (key or summary) or select it in the Toggle
 menu:Panels

You can define what happens when you click the issue link in a structure. By default,

the Issue Details panel is opened. It can be set to open the standard JIRA issue page

instead, or do nothing.

To change the default action, go to the menu and select your Toggle Panels
preference in the section.Item Link Action

Documentation

Version 1 167

Working with an Issue

In the details panel, you can work with the issue in the same way you can within the Jira Issue

Navigator: , , , , , edit view and add comments share view history view development information

and more. For specific information on working with and editing issues, please refer to the Jira

.documentation

To see details for another issue in the structure, simply by select another issue (see page 39)

clicking it or moving to it with the arrow keys.

To close the issue details panel, click the close button in the top right corner.

You can also open the issue page in a separate browser tab or window by pressing

 (Mac: or while clicking the issue key or summary link.Ctrl Cmd) Shift

Separate View for Issue Details

In order to provide enough room to view all the information in the Issue Details Panel, the

Structure panel automatically switches to a compact view (with only and Key Summary
columns visible) when the details panel is opened.

Structure will switch back to your previous view when the details panel is closed.

You can adjust the default views in .View Settings (see page 220)

Resizing the Issue Details Panel

You can divide the horizontal space between the details panel and the main panel by dragging

the separating border. Structure remembers the ratio of the details panel width to the window

width, and it will maintain that ratio when you open Structure Board again or resize your

browser's window.

https://confluence.atlassian.com/display/JIRA/Editing+an+Issue
https://confluence.atlassian.com/display/JIRA/Commenting+on+an+Issue
https://confluence.atlassian.com/display/JIRA/Emailing+an+Issue
https://confluence.atlassian.com/display/JIRA/Viewing+an+Issue%27s+Change+History
https://confluence.atlassian.com/display/JIRA/Viewing+the+Code+Development+Information+for+an+Issue
https://confluence.atlassian.com/display/JIRA/Working+with+an+Issue
https://confluence.atlassian.com/display/JIRA/Working+with+an+Issue

Documentation

Version 1 168

Details panel width is remembered for the selected view. Thus, if you select another

view and adjust the details panel width, the original width will be restored when you

select the original view.

Details and Secondary Panels

If you have the open, when you click an issue in the main secondary panel (see page 153)

panel, the will be hidden while the details panel is open. To secondary panel (see page 153)

restore the Secondary Panel, close the Issue Details Panel.

Using the Keyboard

Use or to show/hide the details panel.o Shift+o

As with the , you can switch keyboard focus between panels secondary panel (see page 153)

using the (backslash) shortcut. When the focus is in the Issue Details Panel, keys like or \
(also) scroll the details panel, while all other PgUp, PgDn, Home, End, or , , ,

 work as usual (including and which select the nextStructure shortcuts (see page 278) j k,

/previous issue in the structure). All shortcuts available to you on the Issue Page should also

work as usual: (comma) should open the field selector, should open the Edit Issue dialog, , e
etc.

When you open the details panel with , the details panel is automatically focused. o
 does not switch focus.Shift+o

Documentation

Version 1 169

1.

2.

3.

4.

Creating New Issues

You can quickly create new issues and folders right in Structure, or you can use the standard

"Create Issue" dialog and have new issues added to your structure automatically.

Create a New Issue in Structure

To create a new issue beneath the currently selected item:

Use the button in the toolbar.Add

Enter the Issue Summary in the top entry box of the New Issue panel (to the right of the

arrow).

To copy attributes (project, issue type, assignee, version information, etc.) from the last

selected issue, make sure the checkbox is selected. To enter all new Categories
information, uncheck this box.

Press or click to finish editing and create the new issue on the server.Enter Done

Keyboard Shortcut

Save some time! To create a new issue, use the keyboard shortcut: .Enter

To create a new sub-issue of the currently selected item, use the shortcut: Shift+Enter
.

Documentation

Version 1 170

1.

2.

3.

4.

Press to cancel creating a new issue.Escape

Categories: Copy from...

When you choose the "Copy from..." option, the following fields are copied from the last

selected issue:

Project and Issue Type

Parent Issue, if the cloned issue is a JIRA sub-task

Component, Affects Versions, Fix Versions, Environment, Assignee, Priority, Security

Level

All custom fields that are by the fields configuration for that particular Project required
and Issue Type

Please note that the archived versions are skipped when copying Affects Versions, Fix

Versions and version-based custom fields.

Editing Other Fields during Creation

The New Issue panel only allows you to select the project and the issue type (or copy some

fields from another issue). If you need to edit other fields:

Before you start creating the new issue, add the columns you need to edit to your current

view

Click to open the New Issue panelAdd

To get to the fields you need to edit, hold while using the arrow keys to move Ctrl+Alt
between the available columns

Once you have finished editing the columns, hold Ctrl+Alt and press the Down arrow to

return to the New Issue pane.

You can also edit other fields by clicking the button, which opens theSwitch to Dialog "Create

.Issue" dialog (see page 171)

If you have any required fields, you must enter a value into those fields (or have

default values defined). Otherwise, you will be unable to create the new issue.

To correct this, follow the steps above and make sure all required fields are filled in.

Documentation

Version 1 171

Creating Sub-Tasks

It is not possible to create a Jira sub-task from scratch in Structure. However, if you have an

existing sub-task in your structure, you can create another sub-task with the same parent using

the option.Copy from..

This refers to the Jira sub-task issue type, not Structure sub-issues.

Create Issues Using the "Create Issue" Dialog

If you need to update fields not currently in your view or that are not editable, click the Switch
 at the bottom of the New Issue panel.To Dialog

This will switch you to Jira's dialog, which allows you to enter information into Create Issue
fields just as you can when creating a new issue directly from Jira. Once you finish entering

information and click , the new issue is automatically added to the structure.Create

Documentation

Version 1 172

If you don't want the new issue added to the current structure, click at Don't Add to Structure
the bottom of the dialog.

To switch back to the Structure New Issue panel, click This will Switch to Panel.
preserve all entered data and populate existing columns if possible. You can also

switch back to dialog mode at any time. The system will remember the last-used mode

(dialog or panel) and use it the next time you start creating a new issue.

Creating Epics

When creating Epics, the Epic Name custom field is required. To simplify the process of

creating multiple epics, Structure will copy the new epic's summary to its Epic Name field, if the

latter is empty. This way you can simply type an epic name into the Summary field, and

proceed to the next issue.

Documentation

Version 1 173

The copying only happens once, when an epic is created. You can change the summary or the

epic name at a later time, if you want them to be distinct. Alternatively, you can also add the

Epic Name column to the table and enter new epic names explicitly.

Additional Keyboard Shortcuts

Immediately after you have press or or to start editing a new issue, Enter Shift+Enter Insert
you can also use the keyboard to change the creation mode.

Use the following keyboard shortcuts :while the summary field is still empty

Enter or Tab Cycle through Project, Issue Type and Summary field. When Project or Type

field is selected, use arrows or start typing to select a project or type.

Ctrl+Enter /

Cmd+Enter

Toggles cloning mode (checkbox).Categories: Copy

Alt+Enter /

Option+Enter

Switches editor to dialog mode and back to panel.

If you have already entered the summary, you can use the mouse to change the

creation mode, project or issue type.

Uploading New Issue to the Server

After you create a new issue, Structure only displays the Summary field until it receives

confirmation from Jira that the issue has been created on the server. Once confirmation is

received, the remaining columns for the issue will be loaded.

While the new issue is being uploaded to the server, you can start creating the next

issue.

Editing Issues

You can quickly edit issues from within Structure, without leaving the current page.To edit a

value displayed in the Structure widget, do one of the following:

Double-click that value

Select the issue and click the button on the toolbarEdit

Documentation

Version 1 174

Select the issue and use a keyboard shortcut – or Tab F2

If the value is a link (like in the Summary or Assignee fields), you can still double-click

it – the browser will not open the link and will start editing instead.

Edit Mode

Once you have entered the Edit Mode, you can edit one or more issues simply by clicking the

values you need to edit, or navigating to them with special keyboard shortcuts (see Using

).Keyboard in Edit Mode (see page 176)

When working in Edit Mode:

A field editor appears over the cell you are editing

The active column's name appears in bold in the table header

The button on the toolbar is toggled on Edit

Using the field editor, enter the new information you want in each field. Once you have finished

editing a value (or multiple values), click .Done

Learn More

Editing works on every page where Structure widget is displayed; however, there are some

limitations when .editing issues from the Structure Gadget (see page 179)

In order to edit an issue's fields, you need Edit Issue permission for that issue. If you

do not have the correct permission, a will be displayed read-only flag (see page 71)

at the far left of the item row.

Entering Edit Mode

You use the Edit Mode when you are editing an existing issue or creating a new issue (see

. To edit a value displayed in the Structure widget, do one of the following:page 169)

Documentation

Version 1 175

double-click that value;

select the issue and click button on the toolbar;Edit

select the issue and use a keyboard shortcut – or Tab F2.

If the value is a link (like in the Summary or Assignee fields), you can still double-click

it: the browser will not open the link but will start editing instead.

If you are already in the Edit Mode, you can simply the value you need to edit, or navigate click
there with special keyboard shortcuts (see).Using Keyboard in Edit Mode (see page 176)

In the Edit Mode:

a field editor is shown in the currently edited cell;

the edited column is highlighted in the table header;

Edit button on the toolbar is toggled on.

Changing Fields

When editing a field, make the change with the field editor and click (or hit) to have Done Enter
the change saved on the server. If you'd like to change several fields at once, click the other

field you need to change or use , , or to navigate and edit other Tab Shift+Tab Ctrl+Alt+arrow
fields. The changes will be saved on the server as soon as you have finished editing, or

switched to editing another issue.

If your JIRA is configured to send e-mail notifications about changes, then a notification will be

sent as soon as you have finished editing an issue - see On E-mail Notifications (see page 180)

.

You can hit to cancel changes that you have done to the edited field and exit Edit Escape
Mode. Click link to restore the original value of the field and stay in the Edit Mode Revert Field
for further editing.

Documentation

Version 1 176

Hitting only reverts the value of the currently edited field. Changes to other Escape
fields remain. So if you edit fields Summary, Assignee and Components, and hit

Escape while editing Components, the changes to Summary and Assignee will still be

uploaded!

The Field Editor

The editor for each field is the same as the one used on the Edit Issue page, but is designed to

be a bit more compact.

All help texts, descriptions and field labels are not shown. Hover mouse pointer over the

input field to see help and field description.

Normally, the editor is aligned with the top left corner of the edited cell. However, if it

does not fit horizontally on the page, its position is adjusted and a small blue triangle is

shown to mark the place where the edited cell starts. (You can also look at the table

header to see which field is being edited.)

Allowed Changes

In the Edit Mode, you can change fields that are added to the Edit Screen for the edited issue.

If a field is not on the Edit Screen, or if it can't be edited directly (such as the Status or

Resolution fields), the editor won't be shown or it will display a corresponding error.

Additionally, each field may have particular limitations – such as Original Estimate being not

editable after work has been logged (in JIRA's legacy time tracking mode).

Using Keyboard in Edit Mode

You can use keyboard shortcuts to quickly edit issues in the Structure widget.

Entering Edit Mode

Keyboard
Shortcut

Action

Tab or F2 Edit issue. The editing starts for the Summary field of the currently selected

issue, or for the field that was edited previously.

Enter
Insert or

Shift+Enter

Enters Edit Mode for a new issue or sub-issue.

Documentation

Version 1 177

Keyboard Shortcuts in the Edit Mode

Keyboard
Shortcut

Action

Enter
Ctrl+Enter (in
large text fields)

Exit Edit Mode and save all values on the server.

Escape
(hit twice in
combo boxes
and drop-downs)

Revert the field to the value that was there before editing has started and

exit Edit Mode. Note that if there are pending changes in other fields, they

will be saved on the server.

Tab Edit next editable field. If the currently edited field is the last editable field

for the selected issue, start editing next issue.

Shift+Tab Edit previous editable field. If the currently edited field is the first editable

field for the selected issue, start editing previous issue.

Ctrl+Alt+ Edit the same field of the next editable issue.

Ctrl+Alt+ Edit the same field of the previous editable issue.

Ctrl+Alt+ Edit next editable field. Unlike , this combination will not move editing Tab
to the next issue.

Ctrl+Alt+ Edit previous editable field. Unlike , this combination will not Shift+Tab
move editing to the previous issue.

 or Alt+
(in drop-downs)

Opens drop-down list or selects the next value in the list. If the drop-down

is shown, use to select a value or to cancel selection.Enter Escape

Alt+
(in date/time
fields)

Opens date picker. Use arrows to navigate dates in the date picker and

use to select a date or to close date picker.Enter Escape

 and Move between multiple fields on the same editor (for example, between

the two editors of a Cascade custom field). Does not work if the input is a

text field.

Documentation

Version 1 178

Keyboard
Shortcut

Action

 and

(for checkboxes
and radio
buttons)

Move between multiple fields on the same editor (for example, between

the checkboxes of a Multiple Checkboxes custom field).

Space Select / unselect a checkbox or a radio button.

, , , Shift+ Shift+ Select / unselect values in a Multi-Select custom field.

Note that key moves editing to the next cell, so if you have multiple input fields on Tab
a single field editor, you need to use arrow keys to switch between them.

See Also: Keyboard Shortcuts (see page 278)

Correcting Input Errors

If you enter an incorrect value when editing a field, or if there are any other problems saving

that value on the server, Structure widget will display a warning message and mark the cells

with the problems.

Click the warning message or the cell with the error to enter Edit Mode, see problem details

and correct the error. You can:

correct the value and hit or click to try to save the values on the server Enter Done
again, or

click to restore a previous value of the field, known to be valid, orRevert Field

click to cancel all changes to this issue, including possible changes to Cancel Changes
other fields.

Documentation

Version 1 179

You can edit other issues and work with the Structure widget before fixing the editing

problem. However, it is advised to correct the error as soon as possible.

Input Errors when Creating a New Issue

If the error happens when saving a new issue on the server, saving any further changes on the

server is suspended – until the error is fixed or the creation of the new issue is cancelled. This

is a necessary measure as the success of the following changes may depend on the success

of the creation of that new issue.

When you have errors in the fields of a new issue, fix them as soon as possible or

cancel the creation of that issue. Otherwise, any further changes are not uploaded

until the problem is fixed and you risk losing them!

You can cancel creation of a new issue if you select it and click button or hit Delete
 key.Delete

Editing from Gadget

Structure Dashboard Gadget allows editing issues too, but due to some incompatibilities

between field editors and gadget framework, not all fields can be edited.

The following JIRA fields are editable from Structure Gadget:

Summary

Assignee

Issue Type

Priority

Reporter

Security Level

Original Estimate

Remaining Estimate

To edit other fields, open Structure Board or issue page or any other page with the structure.

To be able to edit the fields in the gadget, the user should have permissions to edit

them and the fields should be present on the Edit Screen.

Documentation

Version 1 180

1.

2.

Structure Notes (see page 135) can also be edited in Structure Gadget.

On E-mail Notifications

Usually, when an issue is edited, an e-mail notification is sent to everyone involved with that

issue.

When editing an issue with the Structure widget, the changes are saved on the server and the

e-mail notification is sent when you:

hit button;Done

or start editing another issue.

So if you switch from editing one field of an issue to editing another field of the same issue

immediately, no update will have happened and no mail will have been sent yet.

If you need to change several fields of an issue and avoid multiple e-mails being sent,

edit one field then navigate to the next field. Only hit or when you have Done Enter
finished editing all fields.

To switch from editing one field to editing another field, you can:

click on another field that you need to edit;

use Tab, Shift-Tab, Ctrl+Alt+arrows to move to the keyboard shortcuts (see page 278)

next/previous fields.

So if you edit a field, click Done, then edit another field - that's two edits and there will be two

notifications. If you edit a field, then edit another field, and only then click Done - that's one edit

and one notification.

Bulk Change

With Structure, you can quickly and open JIRA's standard select multiple issues (see page 40)

bulk change wizard for those issues.

Select issues by clicking on issue selectors, or pressing , , or other Space Shift+Space
 for selecting issues.Keyboard Shortcuts (see page 278)

Click action on the panel.Bulk Edit

Documentation

Version 1 181

2.

3.

4.

1.

2.

3.

4.

5.

6.

7.

8.

Standard JIRA bulk operation wizard opens. Select the action you'd like to take and

proceed.

At the end, the browser will be redirected back to Structure Board.

Cloning Multiple Issues

Structure allows you to copy the whole structure and clone all issues in the structure. See

.Copying Structure and Cloning Issues (see page 225)

If you need to clone only some of the issue in the structure, you can use the following

procedure:

Select issues you'd like to clone using .multiple selection (see page 40)

Use action on the toolbar (or hit Ctrl+C / Command+C) to copy the issues to the Copy
.Issue Clipboard (see page 162)

Use menu and create a new temporary structure, let's call Structure | Create Structure
it .T1

Open the new structure and use action to add issues from clipboard.Paste

Copy and clone structure – see T1 Copying Structure and Cloning Issues (see page 225)

. Let's name the resulting copy .T2

Open , select all issues (use Ctrl+A / Command+A).T2

Use issue clipboard in the same way to copy cloned issues back to the structure where

they are needed.

Delete structures and .T1 T2

Using JIRA Actions

Structure widget lets you use JIRA actions available for the issues from the JIRA's Action &

Operations Drop-Down and JIRA keyboard shortcuts for the most frequent actions.

Using Actions Drop-Down

Structure widget has drop-down menu with actions and operations available for the selected

issue - just as the JIRA's Issue Navigator.

Documentation

Version 1 182

1.

2.

To use an action:

Click on the at the right side of the widget in the issue's row, or select the Gear Button
issue with the keyboard and hit .Alt+Down

Select the action with the mouse or use keys and then to select Up/Down Arrow Enter
the action with the keyboard.

Using JIRA Shortcuts

Most JIRA shortcuts that are available on the Issue Navigator page also work in the structure

widget. Just select an issue and hit the shortcut.

The most useful shortcut is "." (dot) - available since JIRA 4.2 - which lets you type in

the name of the action you need performed.

Calling an action usually brings up a dialog or moves the browser to another page. Please pay

attention to the dialog title or the window title to see that you're applying the action to the

correct issue.

On the , keyboard shortcuts are always applied to the Issue Page (see page 18)

viewed issue - regardless of the selection in the structure!

No Page Reload

In many cases Structure is able to proceed without page reload after you have applied a JIRA

action to an issue. The applied changes are immediately visible in the Structure widget, and

that gives you a very smooth experience of working with a collection of issues.

Whether a page is reloaded after an action is applied depends on which page are you

using to work with issues, and what action is being applied. On the Structure Board

, most actions do not require page reload.(see page 16)

1.4.11 Viewing History of a Structure

Documentation

Version 1 183

1.4.11 Viewing History of a Structure

Structure plugin records every change that you or other users make to a structure. The History

View lets you see those changes and previous versions of your structures.

To turn on the History View, click the menu button and select . Toggle Panels Grid + History
The list of recorded changes will appear in the panel on the right.History

Structure History has been introduced in Structure version 1.4. All changes made with

earlier versions of Structure plugin have not been recorded.

History does not work for dynamic parts of the structure. Changes done to issues

added to the structure by will not be stored. However, the generators (see page 194)

addition, moving and removal of the generators themselves is recorded.

Reading History View

By default, 20 most recent changes are loaded. If there are more, you can click the Show More

button at the bottom of the list to load earlier changes.

New changes are loaded and added to the top of the list as they happen.

For each change, the following information is shown:

The avatar and the name of the user who has made the change. In JIRA 4.4 and up you

can hover your mouse over the user avatar to see the user details.

If the change has been made by a synchronizer, the synchronizer's name is

shown. User avatar displays the user account that the synchronizer was running

under.

Documentation

Version 1 184

The nature of the change – how many issues were affected, were they added, removed

or moved.

The date and time when the change was made.

When you click a particular change, the main panel of the widget shows the structure as it was

when that change was made. The affected issues are highlighted, and the structure expands

and scrolls as needed to bring them into view.

Use the and keyboard shortcuts to navigate to an earlier or later change.Ctrl+] Ctrl+[

If issues were removed, they are shown in their position before the removal.

Moved issues are shown in their new position by default, and their original position is marked

by a red horizontal line. Use the small toggle button in the history section to show moved issues

in their original position instead.

Limitations of the History View

History only tracks the structure changes, not the changes of JIRA fields. All columns

with issue fields show current values – the values that the issue had when the not
structure change was made.

You cannot edit issues, create new issues or change structure when viewing history.

The history cannot be modified. (The administrator can clear the entire Structure

history.)

Documentation

Version 1 185

Printing a Previous Structure Version

You can when viewing a previous version of the structure. Open Printable Page (see page 187)

The printable page will show the structure as it was after the selected change has been

applied.

Note that all limitations apply: the current values of the fields will be displayed and Progress

and other aggregate columns will not be displayed.

Exporting a Previous Structure Version to XLS Format

Like with the printable page, you can . The XLS export structure to XLS (Excel) (see page 188)

file will contain structure as it was after the selected change has been applied.

1.4.12 Full Screen Mode

When working with the Structure Board you can turn on Full Screen mode to give more screen

space to your data. Full Screen mode can be toggled using the menu or by Toggle Panels
pressing Z on your keyboard.

In Full Screen mode the JIRA application header is hidden and the main Structure toolbar

becomes more compact. You can collapse the main toolbar by clicking the Collapse button to

save even more screen space.

Documentation

Version 1 186

Bring the mouse cursor over the collapsed toolbar and the toolbar will show up temporarily,

allowing you to perform a quick action.

Documentation

Version 1 187

1.4.13 Printing Structure

Printable page lets you print the current structure from the browser.Click the button on Export
the structure toolbar and select .Printable Page

Documentation

Version 1 188

The structure spreadsheet will open in a separate browser window or tab. The view fully copies

the structure widget appearance - you can see the same issues as in the structure. For

example, if some sub-issues are hidden, you will not see them on the printable page either.

The columns displayed on the printable page will be the same as in the structure widget,

however, the widths of the columns will be set by the browser. To change the columns on the

printable page, change them in the structure widget and open the page again.

Summary column on the printable page displays only the summary field, without issue

description. If you’d like to print description, add a separate Description column to the structure

widget.

Depending on the number of columns, and the amount of text, it may be necessary to adjust

font size before printing.

It's a good idea to print a single sample page to decide whether font size needs

changing.

When ready to print, click Print button on the printable page or use your browser's Print menu.

1.4.14 Exporting Structure to XLS (Excel)

You can download the structure that you see on the screen as an XLS file and open it in

Microsoft Excel or in other applications that support this format.Click the button in the Export
toolbar and select .Export to Excel

The browser will download a new XLS file, which you can save or open. The XLS file will

contain all the issues that are present in the structure and the hierarchy will be preserved.

The XLS file has the same columns as the structure widget. Like with the printable page, the

Summary column displays only the Summary field, without issue description, but indented to

show how sub-issues are nested. If you'd like to export issue description, add a separate

Description column to the structure widget.

Compatibility

Documentation

Version 1 189

Compatibility

The exported file is compatible with Microsoft Excel 2003, 2008 and 2010.

Note that XLS format allows up to 65536 rows in the spreadsheet, so a larger

structure wouldn't fit - use filtering to hide some of the issues, if you have more than

that.

Likewise, if you have issues that are more than 15 levels deep in the hierarchy (have

more than 14 "parents" and "grand-parents"), in Excel they will all be shown on level

15, due to a technical limit.

Row Groups

The rows are grouped together using Excel grouping feature to form structure in the

spreadsheet – you can expand and collapse sub-issues under a certain parent issue.

The maximum depth of grouping in XLS file is 8, so if you have a deeper structure, it still will be

exported but the grouping will work only for the top 8 levels.

Not all spreadsheet applications that support XLS format also support row grouping

feature. At the time of writing, Open Office does support it, but Google Docs don't.

Columns

The columns are formatted in the best way suitable for a spreadsheet.

Column
Type

Notes

Issue Key The cell with an issue key is a link to the actual issue.

Summary Cells in the Summary column have indentation just like on the Structure

Widget. Note that if you change the format of a cell there, you might lose the

indentation level.

Progress Progress field contains a fractional number from 0 to 1, formatted as a percent

value.

Documentation

Version 1 190

Column
Type

Notes

Description,

Environment

and large

text fields

The text might not fit in the column. You can increase column size or use

 option in Excel to have a large text Format Cells | Alignment | Wrap Text
take more than one line, increasing the row height. Note that a cell might not

accommodate a very large text and you might see only the first part of it.

Dates Date values are displayed in your local date format.

Estimates,

Time

Worked

The duration fields contain actual numbers (fractional number of days), which

you can sum or otherwise process. The display format is , where HH HH:MM
is the number of hours and MM is the number of minutes. So an estimation of

5 days will be displayed as (if you have 8-hour days).40:00

Standard

custom

fields

Standard custom fields are rendered according to their type.

Plugin-

provided

custom

fields

Custom fields from other plugins are displayed as they are rendered.

Note for Plugin Developers

If your plugin provides a new custom field type, please ensure that the field is

displayed with the best compatibility with the other plugins, including Structure. In your

column view velocity template, check for and/or $displayParams.textOnly

 and/or – all those $displayParams.excel_view $displayParams.nolink

parameters will be set to by Structure and may also be used by other plugins. true

See and JIRA sources for examples.CommonVelocityKeys.java

Printing

The XLS file is set up for a standard printing configuration:

Page orientation is Landscape.

Documentation

Version 1 191

The content is fit horizontally on the page (you might need to change that if you have too

many columns or large content).

Paper size is set to if your account locale is US or Canada, otherwise it is set to Letter A4
.

Make sure you see Print Preview before sending the document for printing. If you don't like how

it looks, consider using .Printable page (see page 187)

1.4.15 Real-Time Collaboration

Structure widget is a real-time collaboration tool.The hierarchy displayed in the widget is kept

up-to-date with the JIRA server, so if someone else changes the structure on the server, you

will see the web page update within several seconds. Items that have been added, removed, or

moved are highlighted for a second with a flashing yellow background.

In the same fashion, the values of the issue are maintained up-to-date: if someone edits an

issue or otherwise changes it, the structure widget will update the displayed fields within a few

seconds. A value that has been changed is highlighted for a second with a flashing yellow

background.

This feature lets you collaborate with other people who may work with the same structure on

different computers.

Structure keeps data up-to-date by polling the server with short requests every few

seconds when the application is ready. If structure widget detects that the browser is

inactive it will reduce polling frequency to conserve network traffic.

On all pages with the Structure widget, except for the Dashboard, when user inactivity

is detected (there's no using of keyboard or mouse for at least 5 minutes), the polling

of the server stops. It resumes as soon as the user moves the mouse or touches the

keyboard (when the browser's window is active). This allows session cookies to

properly expire after some inactivity period.

In some cases you would like to open a Structure Board and have it continuously

display up-to-date information without any user activity – for example, to show a

structure on a heads-up display. To have Structure always poll the server, press xx
("x" two times) to display additional actions on the Main Structure Toolbar (see page

 and turn on Continuous Polling with the button 42)

Documentation

Version 1 192

1.

2.

1.5 Automation

Automation is a powerful feature that lets you create . Unlike a manually dynamic structures
created structure, a dynamic structure can update itself when there are changes in JIRA. You

can make parts of your manually created structure dynamic – for example, automatically place

all issues that match a query under a manually added folder.

Automation works through – special rules which define, how the issues should be generators
organised. Generators are added right inside the structure just like other items and their scope

is defined by their position in the structure.

With generators you create a structure "skeleton" - the rules based on which your structure

should be built, and only the skeleton is saved, not the issues. This means the structure is

generated when you open the structure - hence the .Generators

Once you open some structure, the automation will start checking for relevant changes in your

JIRA and update your structure as necessary, ensuring that the structure you are seeing is up-

to-date. So there is no need to reload the page to see the latest updates.

1.5.1 Types of Generators

 Insert. (see page 194) Insert generators allow you to automatically add issues to the

structure. It can be the results of a JQL or text query, Epics or Stories from an Agile
board, or an entire structure. If some issue is updated and no longer satisfies the query,

it's not shown anymore.

Filter. (see page 195) If you want to remove some of the issues after you've built the

structure (for example, remove all closed issues), you can use the and Filter Generator
specify the query that describes the issues that you want to keep - the rest will be

removed from the structure.

Sort. (see page 201) To arrange your issues in a certain order you can use the Sort

generator.

Group. (see page 202) With this function you can break a list of issues into groups

based on your JIRA fields.

Extend. (see page 203) Using the extend functions you can pull in issues related to

those that are already in the structure. You can extend with sub-issues, JIRA links and

Epic links (if you are using JIRA Agile).

1.5.2 How to Add a Generator

Normally, generators are not shown – you need to switch on the button to Automation
be able to see and configure generators.

Documentation

Version 1 193

2.

3.

4.

5.

6.

1.

2.

3.

As you click the button, you will see the top level item with the structure name appear at

the of the structure - this item works a parent for the whole structure.Root

Select where you want to add your generator - you can select the item if you want Root
the generator to be applied to the whole structure, or select some static item if you want

the generator to work under this item only.

You can only add generators under static parts of the the structure. You can not

add them under items, which are added by other generators.

Now click the icon next to the button and select the type of generator you + Automation
need.

For some generators you will need to select some options. Once you did that, click Apply
. You will see the generator added to the structure.

Click the button to hide the generators from the structure.Automation

1.5.3 How to Edit a Generator

If you want to edit some existing generator, first switch on the Automation Editing mode

by pressing the Automation button.

Find the generator you want to edit.

Documentation

Version 1 194

3.

4.

5.

6.

1.

2.

3.

To change the scope of the generator, simply move it to the new place in the structure,

just as you would move any other item. You can use drag-and-drop, or copy/paste.

You can not move the generator under an item, that was added by a generator.

Only the static items added manually.

To change the generator settings, double-click the generator or use the button in the Edit
structure toolbar.

Make the required changes and click to save to them.Apply

Click the button to hide the generators.Automation

1.5.4 How to Remove a Generator

If you want to remove some existing generator, first switch on the Automation Editing

mode by pressing the Automation button.

Select the generator you want to delete and press or use button in the Delete Delete
toolbar.

Click the button to hide the generators.Automation

1.5.5 Generators

There are several types of generators, that are available by default:

Insert

Insert generators allow you to automatically add issues to the structure. The issues can be the

result of a JQL or text query, Epics or Stories from an Agile board, or an entire structure.

As you add an Insert generator, you can choose from the following options:

Agile Board. Will add epics or stories from the Agile board that you select.

JQL Query. Will add results of the JQL query.

Text Query. Will add results of a text search.

Please note that both for text and JQL options, only issues from the projects

for which will be added.Structure is enabled (see page 298)

Documentation

Version 1 195

Structure. Will add the selected structure into the current structure. This option is

especially useful when several teams work with their own structures, and you want to

create a structure with an overview of them all.

When you insert a structure into another structure, it's always a good idea to

create a special folder for this structure and insert it there. Thus you'll be able

to see where the inserted structure begins and ends.

If you have allowed for this generator, you editing via structure (see page 204)

can update the inserted structure right from your master structure. For

example, if you have inserted structure A into structure B, as the users work

with structure A, you will see all the changes reflected in structure B. And the

other way around - if you open structure B and start modifying structure A in it,

the actual structure A will be updated too.

Since the generators run every time you open the structure, the list of issues added by

the inserter is always up-to-date. If some issues no longer pass the query criteria, they

won't be added. Also, if you already have the structure open, the generator will be

tracking the changes in Jira and add/remove issues as necessary.

Filter

The Filter generator allows you to hide from your structure issues that don't pass certain

criteria. You can use JQL, Text and queries.S-JQL (see page 245)

Once you add this generator, you will only see the items from the structure that pass the query

and their parents. The parents are necessary to show the issues without breaking the

hierarchy.

Additional Options

All filters have an option to show not only matching issues, but also all their descendant.

Select the option in the generator settings to Show all sub-items of matching items
enable this.

JQL Filter has an option that allows you to keep non-issues as you apply the filter. Since

the folders and other types of items are not returned by the JQL, this is the only way to

tell the filter not to remove them.

Documentation

Version 1 196

1.

2.

Filtering by Sprint (and predefined Hide Closed Sprints) is limited to inserted structure

(s), not to the whole structure. Also, as these filters apply to Sprint folders rather than

issues themselves, Show all sub-items of matching items is made redundant.

Inserter/Extender Duplicates Filter

This filter should be used when you want to add a number of issues into your structure using an

Inserter and then arrange them into a hierarchy based on the links which exist between them.

Here is how you can do it:

The Inserter adds a number of issues on the top level.

The Link Extender adds the issues which are linked to them as children.

If some of the children have already been added to the top level by the Inserter, you will get

duplicates - an issue at the top level also added as a child.

The Inserter/Extender Duplicate Filter will remove such issues and will only keep the children.

Please see examples below for a more detailed explanation.

Basic Example

Imagine we have a project with issues Story 1, Story 2, Story 3, and Story 4, and some of the

issues are blocking other issues:

Story 1 is blocked by Story 2

Story 2 is blocked by Story 3 and Story 4

In our structure we want to see all issues from our project arranged based on the existing

"Blocks" links.

After you add all four issues by a JQL Inserter and add a Links Extender, you will get the

following hierarchy:

Documentation

Version 1 197

You can see that the issues are now duplicating as the Extender just adds the children under

parents, not moves them.

Now let's add the Duplicates Filter:

As a result we get a structure with the hierarchy and no duplicates:

Documentation

Version 1 198

Multiple Parents Example

We have the same situation as in the example above, but we have one story that blocks two

other stories, so it should be shown under both of them:

Story 1 is blocked by Story 2 and Story 3

Story 2 and Story 3 are blocked by Story 4

So without Duplicate Filter it looks like this:

Documentation

Version 1 199

And with the filter applied all the duplicates are removed. Please note that Story 4 is present in

two place to reflect the hierarchy and in this case these two instances are not duplicating each

other:

Documentation

Version 1 200

Example With Link Cycles

If there are link cycles between the issues, the Filter will remove one of the branches and will

keep the other to make sure all the issues added by the inserter and extender are in the

structure.

In this example Story 1 blocks Story 2 and Story 2 blocks Story 1.

Without the filter we get the following structure:

Documentation

Version 1 201

And as we add the Filter, one of the branches with the cycle gets removed:

Sort

Documentation

Version 1 202

Rank. If you use JIRA Agile and add sorting by Rank, Structure can update the Rank as a user

moves issues up and down inside the Structure.

Manual. If you are working with a structure where issues were added by the Insert Generator
based on some JQL query, by default you will not be able to re-order issues in such a structure.

To be able to do that, you need to add the .Manual Sorting Generator

Group

Structure lets you group by most standard Jira fields, custom fields provided by Jira and other

issue attributes:

Standard fields: Affects Version, Assignee, Component, Epic, Epic Status, Epic/Theme,

Fix Version, Flagged, Issue Type, Labels, Priority, Project, Reporter, Resolution, Status,

Sprint.

JIRA custom fields: fields that give you a list of values to choose from, such as radio

button, list single choice, checkboxes, user picker, labels, select list.

Text attributes: built-in and custom text fields.

Portfolio parent link: you can group issues by their parent issue as defined in Portfolio

for Jira.

Tempo Account: you can group issues by Account custom field defined in Tempo for

Jira.

Issue links: you can group issues by their linked issues. You can select link type and

direction, so that, for example, you can group issues under their respective blockers

(issues that block them).

Customer Request Type: you can group issues by Customer Request Type defined in

Jira Service Desk

The fields that cannot be grouped by are dates and numbers.

Groups can be nested. For example you can take a list of issues and group them by fixVersion
and then by Assignee. Thus you will see the existing fixVersions on the top level, Assignees on

the second and then the issues themselves on the third, grouped accordingly.

If you enable editing via Structure in the generator settings, Structure can update the fields by

which the issues are grouped when you drag-and-drop issues from one group to another.

Updating a field may not always be possible. For example, Status field can be updated only if

the update is allowed by the workflow and there are no required fields or dialogs to show. If the

update made via drag-and-drop fails, the structure will return to the previous state (the issue

will jump back).

Documentation

Version 1 203

Extend

The Extend generator allows you to pull issues into the structure hierarchy based on Issue

Links, Epic Links and Sub-task relationships.

Linked issues

The linked issues extender allows you to pull in issues that are linked to issues already in the

structure.

Select the link type and direction from the drop-down lists.

You can also choose to limit the levels on which the linked issues extender acts.

The default option is , meaning the extender will extend issues at the All levels up to 10
first 10 levels of the hierarchy, starting from the level where the extender itself is located.

The option means that the extender will extend issues at any level in the All levels
hierarchy.

The option restricts the extender to operating on issues at the same Current level only
level in the hierarchy as the extender itself.

The option allows you to specify a range of levels at which the Manual levels range
extender should operate.

As with other generators, you can enable and the links will be updated as editing via Structure
you move issues in your structure.

Stories under Epics

The Epic links extender pulls in stories belonging to epics already in your structure.

Documentation

Version 1 204

As with the links extender, you can choose the hierarchy levels at which the Epic links extender

operates.

As with other generators, you can enable and the Epic links will be editing via Structure
updated as you move stories in your structure.

Sub-tasks

The Sub-tasks extender pulls in sub-tasks belonging to issues already in your structure. You

can choose the types of sub-task to be pulled in.

As with the links extender, you can choose the hierarchy levels at which the Sub-tasks

extender operates.

As with other generators, you can enable and sub-tasks will be assigned to editing via Structure
new parents as you move them in your structure.

Child issues from Portfolio for JIRA

The Portfolio extender pulls in child issues using the Parent Link field from the Portfolio for JIRA

add-on.

As with the the other extenders, you can choose the hierarchy levels at which the Portfolio for

JIRA extender operates.

As with other generators, you can enable and the Portfolio parent links will editing via Structure
be updated as you move issues in your structure.

1.5.6 Generators Options

Even though the generators do different things, there are a couple of settings most of them

share:

Permissions to change JIRA data via changes in structure

The scope of the generator (the levels where it works)

Editing Issues via Generators

When you use the , or generators, by default the structure will be Group Extend Sort by Rank
able to update some JIRA data as you move issues in the structure:

For the grouper it will update the field by which you group as you move an issue

between the groups. For example, if you have issues grouped by assignee, as you move

an issue from one group to another, it will be re-assigend.

For the extender it will update the JIRA, Epic links or parent of a sub-task as you move a

child from one parent to another. For example, if you move a story from one epic, under

the other, the epic field of the story will be updated.

Documentation

Version 1 205

For the sorter by rank it will update the Agile Rank as you move an issue up or down.

If you want to disable this, deselect the checkbox in the Allow changes via Structure
generator settings.

Defining Generator Scope

The scope of the generators is defined by its position in the structure and the option.Levels

If you place the generator under the top-level root item, the generator will be applied to the

whole structure. If you place it under some static item in the structure, the generator will only

affect the descendants of this item.

To limit the scope further you can set on which levels the generator should run.

All levels means it will be applied to all descendants of the parent item.

Current level only means it will be applied on the level, where the generator is added.

Manual levels range allows you to define the specific levels, where the generator

should work.

The levels created by Group generators are not taken into account when applying the

specified manual levels limitation.

The From and To fields define the range of levels to which the generator will be

applied. For example, if you want to pull in issue linked to the issues on level 2, you

need to set the field to 2 and to 2, not 3. Setting the value to 3 will make From To
extender add issues linked to the ones on level 2 and add the issues linked then to the

ones that were just added.

Documentation

Version 1 206

1.

2.

3.

This option is especially useful when you are defining generators for the hierarchy,

where on different levels you have different types of relations. For example, the top

level and the 2nd are connected with issue links, the 2nd to the 3rd with epic links, and

on the 4th level you have sub-tasks.

In this case you will have three generators added under the root of the structure with

the following settings:Levels

Links extender () working only on the top level - Linked Issues Current level
only

Agile extender () working on the second level - Stories under Epics Manual
: from 2 to 2levels range

Sub-tasks extender working on the third level - : from 3 to Manual levels range
3

1.5.7 Paused Automation

To avoid unnecessary high resource consumption, Structure moderates generation time for

every structure by limiting it to a fixed value. If a structure is not generated within the existing

time limit, the generation process is paused and a structure is marked as timed out.

A timed out structure’s Generators stop working and all their content is removed, leaving only a

structure’s skeleton visible. The notification banner will be shown to a user in that case:

If a timed out structure is addressed in the ‘structure()’ JQL function, the JQL search of

that query will return an error message.

Resuming Automation

Automation is paused due to one or several Generators, that for some reason can’t add all of

their requested content in time. To restore Automation, those Generators need to be deleted or

edited. To find out which of Generators are working too slow, click on the notification More

Documentation

Version 1 207

banner and additional info will be shown, displaying the overall percentage of time that each

Generator took before Automation was paused. The highest number will indicate the slowest

Generator.

After a Generator is deleted or edited, click on the banner to resume Automation. If a Resume
structure still takes too long to generate, Automation will not be resumed and the notification

banner will update the ‘More’ section with a relevant percentage. More actions from a user will

be required, until all of the existing Generators will work within the time limit.

Deleting a Generator from a structure itself doesn’t resume Automation, only when the

‘Resume’ button is clicked. So you can perform multiple actions before that if needed.

When Automation is resumed, a structure will be updated with content and the banner’s

message will be changed accordingly. You can close the banner after that.

If Automation is paused by a Generator that you consider being configured reasonably, you can

increase the default time limit of 30 seconds and let a structure generate for a longer time

period.

Changing Allowed Generation Time for a Structure

The setting for the Automation time limit is located at | | Structure Manage Structures
. If Automation is paused in a structure, you will also notice that the ‘Paused Configure

automation’ indicator is shown for that structure.

Documentation

Version 1 208

It is also possible to search for structures with paused Automation by selecting the

‘Paused’ filter on the left.

After a new time limit is set, click to apply it.Update

A few things to keep in mind:

A generation time limit can’t be less than 5 seconds and more than a system-wide hard

limit;

Although the value is entered in seconds, it can be of several minutes;

‘Control’ structure permission is required to change the time limit.

Changing Default Generation Time Limit

To change default structure generation time for all structures, go to |Administration Structure
| and click in the section. Defaults Change Structure Automation Defaults

Only Jira administrators can change that setting.

If the time limit was manually set for a specific structure, it will not be changed to a default one.

Only existing structures with default time limit settings will be affected.

System-Wide Hard Limit

The system-wide generation time limit is initially set for 10 minutes. It can be adjusted by using

Script Runner or other similar tools or by changing the structure.gfs.

 system property, which accepts integer number of seconds.generationTimeHardLimit

The generation time limit in a structure is only taken into account if it is less than the

system-wide hard limit, otherwise it is ignored and the system-wide hard limit is used

instead.

Documentation

Version 1 209

1.

2.

1.6 Manual Adjustments

Manual Adjustments allow you to move dynamic content within a structure, regardless of the

Automation used to create the structure.

If you used to build all or part of a structure, the content it adds to Automation (see page 192)

your structure cannot be moved as freely as content which has been manually added to a

structure. This is because Automation uses generators to dynamically add content from Jira,

and then continuously checks that content against Jira to keep both up-to-date. If you attempt

to move an item in your structure in a way that does not fit within your generators' rules, you will

receive an error message.

There may be times, however, when you need to move those dynamic items around freely,

regardless of your generator rules. To do so, you need to enable Manual Adjustments.

1.6.1 Enabling Manual Adjustments

When Manual Adjustments are enabled, you can move items anywhere within your structure,

regardless of the generators used to create it. For example, you can drag items into a custom

folder, move tasks under a different project, or create your own custom hierarchy – just as you

can if you create a structure from scratch.

To enable Manual Adjustments:

Go to in the top menu and select Structure Manage Structures

Select the structure you wish to update, and under Options select Allow manual
adjustments of generated content

Documentation

Version 1 210

If you are unable to enable/disable manual adjustments, you may not have the

appropriate permissions. Speak to your Jira administrator.

Once you have enabled Manual Adjustments, any move you make will continue to be checked

against your existing generators. However, now you can have two different outcomes:

If the move fits within the generators' rules, your content will be moved just as it was

previously, and that move will be reflected in Jira.

If the move does not fit with the generators' rules, your content will be moved using

Manual Adjustments, but that move will not be reflected in Jira.

Mark Adjusted Content

You can see which items have been moved with Manual Adjustments by turning on the Mark

Manual Adjustments feature. Click the button and select Toggle Panels Mark Manual
.Adjustments

Once this is enabled, any manually adjusted content within your structure will be marked with

the Manual Adjustment icon.

Documentation

Version 1 211

1.6.2 Manual Adjustments are NOT Reflected in Jira

When Manual Adjustments is enabled, some changes may not be reflected in Jira. This is

because those changes do not fit within the rules of the generator(s) you are using. You can

move items all you want for the purposes of your structure, but they will remain in their original

location within Jira. If you created a new structure with the exact same generators, those issues

would appear just as they had before you made manual adjustments.

1.6.3 Special Considerations When Using Manual Adjustments

Because Manual Adjustments are applied after Automation, certain types of moves may have

different results than moving items within a manually-created structure. Please be aware of the

following situations that may arise when using Manual Adjustments.

Moving Grouped Content - If your structure is built using the Insert and Group

generators, and you move all the issues out of a group, that group (now empty) will

remain within your structure. This happens because the Group generator is run before

the Manual Adjustment, so the folder remains in place, even though the issues were

moved.

Moving Extended Content - If your structure is built using the Insert and Extend

generators, and you move one issue under another, no link will be created between the

two issues. To create a link between the two issues, copy the original issue to the new

location (hold the ‘alt’ key while dragging the issue).

For more information, see Order of Operations with Manual Adjustments (see page 212)

1.6.4 Why is Manual Adjustment Necessary?

When you use to build a structure, you are not placing specific Automation (see page 192)

tasks into your structure. Instead, you are creating a "skeleton" for your structure. Each time

you open the structure, it is filled with the current content from Jira that fits the generator(s)

 used to build the structure.(see page 194)

Documentation

Version 1 212

1.

2.

3.

1.

2.

3.

This means your structure will always reflect the most recent changes to Jira, and changes you

make within your structure can also update Jira. It also means some restrictions need to be in

place, so content isn't moved in a way that violates the Automation rules and makes it

impossible to continue syncing content with Jira. Manual Adjustment makes it possible to

bypass these rules, so you can customize any structure (regardless of how it's created) to fit

your needs.

To learn more about how items can be moved within generated content, see Generators
.Options (see page 204)

Manual Adjustment works with structures built using Automation. It does not affect

structures built manually or using Synchronizers, since those structures are not

updated based on Jira.

1.6.5 Order of Operations with Manual Adjustments

The following Order of Operations is applied each time you open or refresh a structure with

manual adjustments:

Run Generators – Structure runs your automation rules to import and organize Jira

issues within your structure.

Manual Adjustments – Structure applies any manual adjustments over top of the

generated content.

Transformations – Structure applies transformations after both generators and manual

adjustments are made.

Manual Adjustments are applied AFTER generators. This means if anything changes within

your Jira instance, it could also change (or even remove) your manual adjustment.

Here's an example:

You use a JQL Insert to add issues to your structure.

You then move Issue A under Issue X. You can't normally move issues within a JQL

generator, so this requires a manual adjustment.

Since automation does not place issues into your structure, but rather creates

rules for populating the structure (see for more Automation (see page 192)

details), manual adjustments do not actually move issues. Instead Structure

creates a new rule, explaining where those items should be in relation to the

generated content. In this case, it creates a rule saying, "After all the generators

are run, place Issue A under Issue X."

Documentation

Version 1 213

3. You make a change to Issue X, so it no longer fits within your Generator rules. The next

time your generators run, Issue X will no longer be placed in the structure – so Issue A

can't be moved beneath it. Issue A will remain in it's original location.

Adding New Generators After Manual Adjustment

If you add additional generators to your structure after applying a manual adjustment, Structure

will attempt to place manually adjusted items appropriately based on the existing and new

generators.

As you move it within the new set of generators:

If it fulfills the generator’s requirements, the manual adjustment will be removed and the

item will be synced with Jira.

If it does not fulfill the requirements, it will continue to be a manually adjusted item.

1.6.6 Undoing Manual Adjustments

To undo a single manual adjustment, simply drag the manually-adjusted item back to its

original position.

To undo all manual adjustments, in the top menu go to , locate Structure | Manage Structure
the structure you want to change, and click .Remove Adjustments

Removing all adjustments cannot be undone.

1.7 Managing Structures

Structure Plugin lets you have several independent structures in JIRA. Manage Structures page

lets you view, search for, create, and delete structures as well as change their settings.

Documentation

Version 1 214

To open Manage Structures page, go to menu in the top navigation bar, and then Structure
select .Manage Structures

Manage Structure page contains the following tabs:

Current – shows only the structure you're currently working with.

Favorite – lists structures that you have marked as your .favorite (see page 13)

My – lists structures created by you.

Popular – lists structures that are marked as favorite by at least 2 users, ordered by

their .popularity (see page 13)

Search – allows you to .find structure by name, owner or ID (see page 214)

All – this tab lists all structures visible to you.

Since anonymous users can't create structures and can't mark structures as their

favorites, and tabs are not shown when you are not logged in.Favorite My

More about managing structures:

1.7.1 Locating a Structure

To find a specific structure, use menu and select tab.Structure | Manage Structures Search

Documentation

Version 1 215

1.

2.

Finding Structures by Name, Access Level or Owner

To search for structures by their properties:

Enter any of the search parameters. Parameters are:

Name Only structures that contain the specified text in their name will be

shown. You can use a part of the word that you know should be in the

structure's name.

Owner Only structures that are owned by the specified user will be shown.

Permission
Level

Lets you select the structures that you can Edit or Control, according to

the selected permissions level. (For example, if you select Edit
permission level, you will see all structures that you can edit and control,

but you will not see structures that you can only view.)

Click . If no parameters were specified, all structures visible to you will be shown.Search

You can search by structure owner only if you have the permission to browse users.

Finding a Structure by Its ID

To perform a search by structure's numeric ID:

Click tab.Search by the structure ID

Documentation

Version 1 216
1.

Enter the structure ID. (It must be a number.)

Click . If there's a structure which has the specified ID and you have the Search
permission to view it, it will be shown.

1.7.2 Structure Details

Every structure has the following parameters:

Name (

)required
Name is used to identify the structure in the drop-downs like the Structure
menu in the top navigation bar.

Description Used to describe the meaning of the structure to the users.

Owner The owner of the structure. Only JIRA administrators can change the owner.

Permissions Define who can view, edit or configure the structure. See Structure

 for details.Permissions (see page 217)

Require
Edit Issue
Permission

flag

When Require Edit Issue permission on parent issue to rearrange sub-issues
flag is set, additional permission constraints are applied to figure out what

changes the user is allowed to make. See Structure Permissions (see page

 for details.217)

You can specify structure details when and when Creating New Structures (see page 217)

.Editing Structure Details (see page 216)

Editing Structure Details

To edit of a structure:details (see page 216)

Documentation

Version 1 217

1.

2.

Open Manage Structure page by using menu.Structure | Manage Structures

Locate the structure you need to change and click on link in the Configure Operations
column.

If you do not see link, then you probably do not have Control permission on Configure
that structure.

1.7.3 Creating New Structures

To create a new structure, use menu or click Structure | Create Structure Create Structure
button on the Manage Structures page.

You need to specify at least the name of the new structure, and optionally description,

permissions and other parameters. See for description of the Structure Details (see page 216)

structure parameters.

When you create a new structure, you become the owner of the structure. Structure owner

always has full access to the structure - see .Structure Permissions (see page 217)

Only logged in users who have access to the Structure Plugin are allowed to create

new structures. See .Who Has Access to the Structure (see page 299)

1.7.4 Structure Permissions

Every structure has a list of permission rules, which define who is allowed to see, edit or

configure the structure.

Access Levels

Each user has one of the following access levels to a structure:

None The user does not see the structure at all and does not know that it exists.

View The user can view the structure but cannot make changes.

Edit The user can view the structure and can rearrange issues in the structure, add

issues to the structure and remove issues from the structure. The user cannot,

however, create or modify .Generators (see page 194)

Documentation

Version 1 218

Edit
Generators

The user has full edit access to the structure, including modifying generators.

Control The user can view, edit and configure the structure - including changing

structure permission rules and configuring synchronizers.

Default Access

By default, all users have access level.None

The structure's owner and JIRA administrators always have access level.Control

Therefore, if you create a new structure and do not specify any permission rules, it will be a

private structure that only you and JIRA administrators will be able to see and modify.

Permission Rules

Users who have permission on a structure can define permission rules by Control Editing

.Structure Details (see page 216)

Permission rules list is an ordered list that's used to calculate the access level for a given user.

Each rule has a that is matched against the user, and which is set if condition access level
the condition matches. The conditions are applied from top to bottom, and the last matching

.rule has precedence

The following conditions are supported by permission rules:

Anyone Matches any user, including anonymous (not logged in). This condition can be

used to set a default permission for everyone.

Group(G) Matches users that belong to the group G.

Project
Role(R,P)

Matches users that have role R in project P.

Additionally, there is a special rule type , which works by going Apply Permissions From
through the permission rules from a different structure. You can apply permission rules only

from structures with Control access level for you.

Examples

Anyone can view, developers can edit, only the owner and admins can control:

Documentation

Version 1 219

1. View for Anyone

2. Edit for jira-developers (Group)

Any logged in user can edit, except for the users from structure-noaccess group, who

can't even view the structure. Project administrators are allowed to control the structure:

1. Edit for jira-users (Group)

2. None for structure-noaccess (Group)

3. Control for Administrators of Mars Colony (Project Role)

Incorrect configuration: everyone is given View access level

1. Control for jira-developers (Group)

2. Edit for jira-users (Group)

3. View for Anyone

Although the configuration looks ok at first glance, remember that the last matching
. So regardless of whether the user is part of jira-developers or jira-rule has precedence

users group, their access level will be set to View by the last rule.

Edit Issue JIRA Permission and Editing Structure

If you set flag on the Require Edit Issue Permission on Parent Issue Structure Details (see

 page, additional per-issue permissions checks will be performed to decide whether page 216)

the user is allowed to change the structure.

If the flag is on, the user must have Edit Issue permission on a parent issue to adjust its sub-

issues. In other words, direct sub-issues (or children issues) are treated as if they are part of

the parent issue, and therefore adding sub-issues, removing sub-issues and rearranging sub-

issues is actually changing the parent issue - for which the Edit Issue permission is required.

The user must also have access level to the structure to be able to make Edit
changes at all.

Note the following:

Top-level issues do not have a parent issue, and therefore are not affected by this flag:

the user can add/rearrange issues at the top level of the structure if they have Edit

access level.

Documentation

Version 1 220

If issue A has sub-issue B, and B has sub-issue C, then to be able to move or remove C

from the structure, the user needs Edit Issue permission on B - not on A. In other words,

the Edit Issue permission is required only for the direct parent issue.

Permissions Caching

Structure plugin maintains a cache of users permissions with regards to each structure. In most

cases, the cache is recalculated automatically, but in some cases Structure plugin may miss a

change in a user's groups or roles. The result could be that the changed permissions take

effect several minutes later (but only with regards to). A Structure Permissions (see page 217)

user can force the cache to be recalculated by doing from the browser. Typically, hard refresh
it's done by holding or or both and clicking the button.Ctrl Shift Refresh

1.7.5 Customizing View Settings

A structure's view settings determine which views are offered to the users in the Views Menu

 when they are using that structure, and which view is the default. Initially, each (see page 46)

structure has default view settings, defined globally for all structures.

A view is called with a structure if it is part of the Views Menu, as defined associated
by the structure's view settings.

You can customize view settings if you have access level to the structure – open Control
 page and locate the structure, then click link.Manage Structures Views

You can change the default global view settings if you are a JIRA administrator – open

 tab and click in Default View Settings section.Administration | Structure | Defaults Change

Documentation

Version 1 221

View Settings page

Switching Between Default and Customized View Settings

To customize view settings for the structure, select radio button. The default Customized
settings are copied and you can adjust them up to your needs.

To revert to default view settings, select radio button.Default

Configuring Views Menu

Views Menu section on the view settings page lets you configure Views Menu (see page 46)

for each type of JIRA pages where Structure widget is present.

To add a view to the menu, select the view in the drop-down and click .Add view Add

Documentation

Version 1 222

1.

2.

To remove a view from the menu, click button.Remove

To change a view's position in the menu, drag the view by the drag handle at the left of

the view bar.

To restrict a view's appearance in the menu to some specific pages, click Offered on:
line and select the pages where you'd like this view to be used.

Configuring Default View

In the section, you can select which view from those added to the menu is the Default Views
default for a given JIRA page (Structure Board, Structure Board with Issue Details, Issue Page

and Project Page). Pick one view from those offered in the drop-down.

If views menu configured above does not have any views for a specific page (for

example, no views for Issue Page), you won't be able to configure the default view for

it.

Changes take effect when you press button.Apply

1.7.6 Copying a Structure

With the action, you can create a full copy of a structure, and, optionally, clone every Copy
issue in the structure.

If you need to copy only a part of a structure, create a new empty structure and use

 to copy a part of the structure.Issue Clipboard (see page 162)

To create structure copy:

Open page using top navigation menu.Manage Structures Structure

Find the structure you'd like to copy and click link in the Operations column.Copy

If you don't see in the Operations column, then you probably don't have Copy
permissions to create new structures.

Documentation

Version 1 223

2.

3.

4.

5.

6.

7.

The page will show you the information about the structure, including its Copy Structure
size and the number of issues, generators, and synchronizers it contains. If the structure

contains automation, you can click the link in the section to Calculate Visible Content
execute the generators and see the generated content statistics.

Choose how to handle generators and generated content, if the structure has any. The

following options are available:

Copy generators to the resulting structure – the new structure will contain copies

of the generators from the original structure, which will generate the same content.

This is the default.

Replace all generators with the generated content – the new structure will contain

a snapshot of the original structure at the time of copying, with no automation

installed.

Do not copy generators – the new structure will contain only the non-automated

content from the original structure. The generators and generated parts will not be

copied.

Choose if you'd like to copy synchronizers, if the structure has any. If you don't see Copy
 option, then you probably don't have a permission to create Synchronizers

synchronizers. See for more details.Copying Synchronizers (see page 229)

Choose if you'd like to clone issues.

When cloning issues, .enter additional parameters for the cloning process (see page 225)

Press or .Copy Structure Start Cloning

Documentation

Version 1 224

Copying Structure As-Is vs. Cloning Issues

 Copy Structure Copy Structure & Clone Issues

Selected answer for

Clone Issues?
No Yes

New structure created? Yes Yes

New structure

contains:

same JIRA issues as the

original structure

clones (copies) of the issues from

original structure

Quick? Yes No, background process is launched

to do issue cloning

Permissions required: View access to the original

structure

 Create Structure
permission

View access to the original structure

 permissionCreate Structure
 global JIRA permissionBulk Change

A number of project-level

permissions

For details about configuring and running cloning, see Copying Structure and Cloning Issues

.(see page 225)

New Structure

The new structure is created with the following properties:

Structure name is automatically set to "Copy of ()".<old structure name> <date of copy>

Structure description is copied.

View settings are copied.

You become the owner of the copied structure.

If you have access level to the original structure, permission rules are copied. Control
Otherwise, permission rules for the new structure are empty (it is a private structure). To

share the new structure, add .permission rules (see page 217)

You can immediately edit new structure's properties on the screen with the copy result.

Documentation

Version 1 225

Copying Structure and Cloning Issues

When , you can turn on parameter and have copying a structure (see page 222) Clone Issues
Structure plugin create a copy (clone) of every issue in the original structure.

How Issue Cloning Works

Each issue in the original structure is cloned by creating a new issue with the same summary,

description, and the same value for every other field, including custom fields. There are a few

exceptions to this rule, however:

The field is not copied. The cloned issues are always created in the initial status, Status
according to each issue's project and workflow scheme.

If a field is not present on the Create Issue screen, its value is not copied. The cloned

issues will have the default value for that field instead.

Archived versions are removed from , , and custom fields Affects Versions Fix Versions
that have versions as values.

If you clone issues to a different project, and some custom fields of the original issues

are not available in that project, the values of those custom fields are not copied.

If you clone issues to a different project, and some field values of the original issues are

not available in that project, those values are removed. For example, this may happen to

the field, or to the fields that take versions as values.Components

Cloning issues to a different project may even be impossible, for example, when a certain field

is required in the target project, but absent (or not required) in the source project. If this is the

case, you will need to either change the target project restrictions or make sure that every issue

in the copied structure satisfies them.

In any case, Structure does its best to verify that it can indeed clone each issue in the original

structure it begins the actual cloning. If Structure detects a potential data loss, for before
example, because one of the custom fields is absent in the target project, it warns you and lets

you decide whether you want to continue. If even a single issue cannot be cloned (for example,

if you do not have the permission for a certain project), then the operation stops Create Issues
before creating any clones.

On a rare occasion when permissions or other restrictions are changed while the

cloning operation is in progress, the operation may still fail after the initial checks.

The field is not copied. The cloned issues are always created in the initial Status
status, according to each issue's project and workflow scheme.

Documentation

Version 1 226

Cloning Parameters

Additional parameters may be specified for the cloning process:

Create in
Project

Lets you specify a project for the new issues, different from the project the

issues currently belong to. If not specified, every new issue is created in the

same project as the original issue.

Summary
Prefix
Summary
Suffix

Let you modify the summary of the clones. If the resulting summary gets

longer than the JIRA limit (255 characters), it will be truncated.

Labels Space-delimited labels to be added to the cloned issues. (Already existing

labels are preserved.)

Documentation

Version 1 227

Link Back If specified, every new issue will be linked with its original issue.

Copy
comments

If selected, all comments are also copied. If not selected, new issues will

have no comments.

Copy
attachments

If selected, attachments are copied (the actual files are copied on JIRA

server).

Clone JIRA
sub-tasks of
the cloned
issues

Let's say the copied structure contains issue A-1. In JIRA, A-1 has a subtask

A-2. But this subtask is not in the structure. If this option is selected, A-2 will

also be cloned. If the option is not selected, A-1 will be cloned without the

subtask.

Copy issue
links

If selected, all issue links and remote issue links will be copied. If a link exists

between two issues, which both are cloned, then the new link will be created

between clones of the original issues.

If you use option, then the links of the type selected for Link Back
linking back to original issues will .not be copied

If you have JIRA Agile (GreenHopper) 6.1 or later installed, its Scrum board

Epic-Story relationships are also copied when you select this option. The rule

is the same as for issue links:

If you clone an epic together with its stories, the cloned stories will be

added to the cloned epic.

If you clone the stories alone, the clones will be added to the original

epic.

Copy
watchers

If selected, the users watching an original issue will be added to the watcher

list of the clone.

Notifications If selected, an email may be issued for every created issue, depending on the

JIRA notification scheme for the issue's project.

Required Permissions

To be able to clone structured issues you need global permission.Bulk Change

Documentation

Version 1 228

1.

2.

3.

4.

Because the result of cloning is a new structure, you also need to be allowed to create

new structures. (Configured by JIRA administrator - see Administrator's Guide (see page

.)301)

You need to have permission in the projects where clones are created. If Create Issue
you specify option, the issues will be created only in the specified Create in Project
project. Otherwise, clones are created in the same projects as their respective original

issues.

Users in the field of the original issues will have to have Assignee Assignable User
permission in the target project – otherwise, issue clone cannot be assigned to that user

and will be assigned by default.

If you don't have permission, you won't be able to set the value of Modify Reporter
 field in the cloned issues. Instead of the original reporter, you will be the Reporter

reporter of the issue clones.

You need to have permission to copy comments, Add Comments Link Issues
permission to copy issue links or use , permission to Link Back Create Attachments
copy attachments, permission to copy watcher lists, and Manage Watchers Edit Issue
permission to copy GreenHopper's Epic-Story relationships.

Executing Bulk Cloning

When you press button, a background process starts on JIRA server, which Start Cloning
performs the following:

Copy original structure's hierarchy and store it in memory.

Check all necessary permissions required for cloning.

Clone all issues.

Create a structure and fill it up with the cloned issues.

At step 2 the cloner process might discover some problems. If critical problems are discovered,

an error message is shown and process is aborted. If non-critical problems are discovered,

then warnings are shown and user input is required. The warnings may suggest that cloning

may continue, but the resulting issues might not be exact copies. After your confirmation, the

process continues.

Cloning issues is potentially a long operation. Cloning a structure with tens of

thousands of issues may take an hour or more. Cloning smaller structures usually

takes reasonable time.

Documentation

Version 1 229

As cloning proceeds, progress bar is shown on the screen. When cloning is done, the resulting

structure is opened for modification of its name and permissions.

Checking Clone Progress

When cloning has started, you can navigate away from the cloning progress page. To see the

progress and get back to the progress screen, open page and locate your Manage Structures
structure. It should show that the structure is being copied.

When cloning is completed, or if there are warnings or questions from the cloning process, the

link will read "Waiting for input". Click the link to open cloning progress page.

Cancelling Cloning

You can cancel cloning process from the cloning progress page by pressing link.Cancel

Issues that have already been created by the cloning process will be assembled into a special

structure marked " " in the structure name. You can use [Cancelled Cloning Result] Bulk Change

 to quickly delete the unwanted issues.(see page 180)

Cloning Queue

Cloning issues can place considerable load on JIRA server. To avoid overloading server with

cloning jobs, there is a limit to the number of cloning processes that can happen

simultaneously. If this limit is exceeded, your cloning process will initially be in "waiting" state,

pending for other cloning processes to finish.

Copying Synchronizers

When that has synchronizers, you can use the option copying a structure Copy Synchronizers
to make Structure plugin create a copy of every synchronizer installed in the original structure.

If you don't see the option, then you probably have no Copy Synchronizers
permission to create synchronizers.

https://wiki.almworks.com/display/structuremaster/Copying+a+Structure

Documentation

Version 1 230

Synchronizers Copying Parameters

You can decide to leave the original ownership of a synchronizer (" " parameter) or Run As
make yourself a new owner for each of the copied synchronizers.

Only JIRA administrators can change synchronizer ownership.

Making yourself the new owner means that all synchronizers in the copied structure

will run under your account.

Required Permissions

To be able to copy synchronizers you need a permission to create and configure synchronizers

.(see page 302)

Copied Synchronizers

When structure copying is complete, all of the copied synchronizers become disabled until you

run manually. To use them, you need to review their configuration, adjust if Resync & Enable
necessary, and run .Resync & Enable

1.7.7 Archiving a Structure

With the action you can make a structure read-only and hide it from search results and Archive
menus (including structure selector on the).Issue Page (see page 18)

Read-only means that users cannot add, remove or move issues in the archived structure.

Documentation

Version 1 231

1.

2.

3.

1.

2.

3.

The issues that the structure contains are not affected in any way. They remain in JIRA and

can still be a part of another structure.

To archive a structure:

Open page using top navigation menu.Manage Structures Structure

Find the structure you'd like to archive and click link in the Operations column.Archive

You need access level to be able to archive a structure.Control

Review the structure you are about to archive and confirm the operation. You can

 the structure in future.Unarchive

If there are any synchronizers installed for the structure you archive, they will be

disabled.

Unarchiving Structure

You can the archived structure to make it editable and visible in all menus.Unarchive

To unarchive a structure:

Open page using the top navigation menu.Manage Structures Structure

Select tab on the left side or search for structures on the tab with an Archived Search
option checked.Show Archived

Find the structure you'd like to unarchive and click link in the Operations Unarchive
column.

You need access level to be able to unarchive a structure.Control

If there are any synchronizers installed for the structure you unarchive, you probably

need to review the synchronizers configuration and maybe resync and enable them.

Searching for Archived structures

You can find an archived structure on some tabs of page:Manage Structures

On the tab.Archived

Documentation

Version 1 232

1.

2.

3.

On the tab if your favorites list contains any of archived structures.Favorite

On the tab when searching for structures by structure parameters with the option Search
checked.Show Archived

On the tab when searching for structures by the structure ID.Search

Synchronizers

If there are any synchronizers installed for the structure you archive, they will be disabled. After

unarchiving you will probably need to review the synchronizers configuration and maybe resync

and enable them.

Until the structure is unarchived you cannot resync and enable synchronizers.

Nevertheless, you can an archived structure if you have a special Export (see page 335)

permission to control synchronizers.

1.7.8 Deleting a Structure

When you delete a structure, the following information is deleted:

The hierarchical list of issues from the structure

Structure details - name, description, permissions

Synchronizers installed into structure

The issues that the structure contains are not affected in any way. They remain in JIRA and still

can be part of another structure.

If there's any synchronizer installed for the structure you delete, it will not have a

chance to react. So, if removing an issue from the structure should cause

synchronization (such as removal of the links, done by the Links Synchronizer (see

), you might need to first manually delete issues from the Structure to let the page 349)

synchronizer do its job, and then delete the structure itself.

To delete a structure:

Open page using top navigation menu.Manage Structures Structure

Find the structure you'd like to delete and click link in the Operations column.Delete

You need access level to be able to delete a structure. See Control Structure

.Permissions (see page 217)

Documentation

Version 1 233

3. Review the structure you are about to delete and confirm the operation. There's no
Undo!

1.8 Managing Views

A view is a named configuration of the columns in the Structure widget. There are a number of

pre-installed views that come with the Structure plugin, and the users may create and share

more views.

You can find and select a View via . You can also Views Menu (see page 46) save changes,

 in the same Views drop-down. For other create a new view and share a view (see page 53)

operations with the views, you need to open dialog:Manage Views

See the following sections for details on view management:

1.8.1 Locating a View

To do anything with a view, first you need to find it.

You can use search box in the , and find a view by name. You Views drop-down (see page 46)

can also open dialog and find the view on one of its tabs:Manage Views

Documentation

Version 1 234

The following tabs are present:

Current tab displays only the view that is currently selected in the Views menu. You can

quickly go to the current view's details from this tab.

Managed tab displays all views that you can – that is, you have full Manage
administrative access to those views.

Associated tab displays all views that are associated with the currently viewed structure

(by the structure administrator).

Search tab allows you to find views or list all views.

When you have located the view, you can click its name to switch to that view in the Structure

widget. The view will also appear in section of the Also Recently Used Views Menu (see page

.46)

To see and edit View details, click button that appears when you move mouse pointer Detalis
over the view record.

1.8.2 Changing View Settings

When you have in the Manage Views dialog, click the located a view (see page 233) Details
button to open the View Details page in the same dialog:

Documentation

Version 1 235

View Details page shows a number of tabs:

Properties tab lets you change the name and the description of the view, as well as

select whether is enabled by default.Horizontal Scrolling (see page 51)

Sharing tab lets you view and modify sharing permissions for the view – see View

.Sharing and Permissions (see page 236)

Associations tab shows the structures which are associated with the view (have this

view in their Views drop-down). See .Associating Views with Structures (see page 238)

Advanced tab shows some technical information about the view.

Delete tab lets you .delete this view (see page 238)

The tabs and the scope of functionality available may be limited, depending on your

access level to the view.

Renaming a View and Changing Other Properties

When you change view name, description, sharing permissions or anything on the Advanced

tab, the changes are not saved until you click the button. After you have saved Save Changes
the changes, they take effect for you and anyone else who has access to the view.

Documentation

Version 1 236

Associations tab is different – it contains only links to structures. The associations between

structures and views are managed by the structure administrator on the Manage Structure (see

 page.page 213)

1.8.3 View Sharing and Permissions

Like structures, views can be shared with different levels of access for each group of users.

There are four levels of access to a view:

None The view is not visible nor usable by the user.

Use Read-only access: the user can use the view, but cannot modify it.

Update The user can use the view, and also save view adjustments as the new version of

the view. The user cannot modify view name or sharing permissions.

Manage The user can change any of the view's properties and also can delete it.

View owner and JIRA administrators always have access to a view.Manage

People who have only permission for a view still Use can add, remove or rearrange

, but they won't be able to save the modified configuration as columns (see page 48)

a new version of the view. They will be able, however to use link to create a Save As
new view with the modified configuration.

Changing permissions

If you have access to a view, you can modify its permissions on the tab of the Manage Sharing
view details dialog.

Documentation

Version 1 237

For each level of access, you can define categories of users who have this type of access:

Nobody

Specific user groups

Specific roles in specific projects

Everyone (including anonymous users)

Note that higher-level access implies all lower-level access. So everyone who can

 a view, can also and it - no need to add those users at all three Manage Update Use
levels!

Private and Public Views

When a view is not shared with anyone, it's called . You can quickly make a view private view
private by clicking link – this will have the effect of removing all permission Make Private
assignments.

When is given at least permission for a view, it is called . You can everyone Use public view
quickly make view public by clicking link on the the tab and also in the Make Public Sharing

 – this will give permission on that view to everyone.Views Menu (see page 46) Use

Documentation

Version 1 238

1.

2.

3.

4.

You need to have global permission to be able to share Create Shared Objects
views.

1.8.4 Associating Views with Structures

Views, which are associated with a structure, can be easily accessed from the Views Menu

 when that structure is used – they are always located in the (see page 46) Associated Views
section of the menu.

Views are associated with a structure by a structure administrator (someone who has Control
access level to it) on the on the page – see Manage Structures Customizing View Settings

 for details. Also, JIRA administrator may specify (see page 220) global default view settings

, which define associated views for structures that don't have customized view (see page 305)

settings.

When you look at a view in the dialog, tab lists all structures that View Details Associations
have this view in their view settings. If you have access level to some of those Manage
structures, you can quickly jump to page for those structures to change the View Settings
settings.

View settings (associations between a view and a structure) are a property of the

structure, not the view. The tab on the View Details dialog is provided Associations
for convenience.

1.8.5 Copying a View

There's currently no way to directly copy a view, but you can use function to create a Save As
new view based on the existing view configuration:

On the Structure Board, select a view you'd like to copy so it is your current view. You

can use or to find the Views Menu (see page 46) Manage Views dialog (see page 233)

view you need.

If you don't have local adjustments to the view, make some – for example, add a column,

or change column order. (Note that just resizing a column does not change view

configuration.)

Open views drop-down menu and use link to create a new view.Save As (see page 53)

Use dialog to review the new view's description and sharing permissions.Manage Views

1.8.6 Deleting a View

To delete a view:

Documentation

Version 1 239

1.

2.

3.

1.

2.

3.

4.

Open dialog.Manage Views

Locate a view (see page 233) you'd like to delete and click the view record or Details
button.

Open tab and use Delete button to delete the view.Delete

Deleting a view cannot be reverted.

Open tab and take a look at the list of structures that are associated Associations
with this view. The associations won't stop you from deleting the view, but you might

want to discuss the matter with administrators of those structures.

1.9 Template Structures and Projects

Template structure is a structure that you copy & clone to get the real, "workable" structures.

Technically, template structures are ordinary structures, containing ordinary issues. It is up to

you to designate a structure to be a template and configure it accordingly.

1.9.1 Configuring Template Structures

Here are some suggestions about configuring template structures:

Clearly designate them as a template - for example, have "[Template]" marker as a part

of the structure's name.

Give permissions to change the template structure only to those users who really need it.

If needed, create another JIRA group for them (or ask JIRA administrator to do so).

Do not install any synchronizers on the template structure (unless you want the template

to change, of course... which would be a quite unusual case).

Do not mark template issues as template in the issue summary. If you need to mark

template issues somehow, use a label, which you will be able to remove from cloned

templates via Bulk Change.

If you need to remove template issues from a JQL search, you can add to JQL: AND

. See NOT (issue in structure('template structure name')) structure()

.JQL function (see page 245)

1.9.2 Creating Issues and a Structure from Template

Documentation

Version 1 240

1.

2.

1.

2.

1.9.2 Creating Issues and a Structure from Template

Once you have a template structure, you can use action from the Copy (see page 222)

 page and turn on option. For details about Manage Structures Clone Issues (see page 225)

configuring and running cloning operation, refer to Copying Structure and Cloning Issues (see

 article.page 225)

After you have created a new structure with new issues from template, you might want to:

Rename the new structure and give it a meaningful name.

Assign permissions for the new structure, if they are different from template structure

permissions.

Open the new structure to make sure it looks good.

Do a on all issues - for example, to remove a template Bulk Change (see page 180)

marker.

1.9.3 Template Projects

In the same manner, you can create a template project with template issues, and put them all

into a template structure.

When you need to create a new project based on the template project, do the following:

Manually create an empty new project.

Create new structure and issues from template structure, as advised above. When

configuring cloning parameters, specify the new project in the Create in Project
parameter.

1.10 Sharing a Perspective

Structure Perspectives is a feature that lets you store the way you see a structure in the form of

a permanent link which can be published or sent to another person.

To create a perspective:

Open Structure Board (see page 16)

Click the "Share perspective" button. A message with the link will appear:

Documentation

Version 1 241

2.

3.

1.

1.

2.

3.

Copy the link and save it, publish it, or send it to persons you want to share it with.

To use a perspective:

Follow the link you've received. This will open a Structure Board in Perspective mode,

that is, the Structure Board will look mostly the way it looked when the perspective was

created.

A special will be automatically selected. It Perspective View (see page 233)

represents the column configuration that was in use when the perspective was

created. It is temporary and read-only. You can modify it, make it permanent by

saving it under a new name, or switch back to some other view.

When creating a perspective, please consider the following:

If you send the link to someone who has no access to the Structure Plugin in general, or

to the individual structure for which the perspective was created, they won't be able to

use your link.

If the structure contains issues accessible to you but not to the recipient, they will not see

them in the structure, even in Perspective mode.

Issue hierarchy is not stored in the perspective. A structure opened in Perspective mode

will always show the current issue hierarchy (it will contain all the changes that were

made after the perspective was created).

You can open structure history and select the latest change before creating a

perspective. This way, users will always see structure in history mode when

opening your perspective.

Documentation

Version 1 242

3.

4.

5.

If a perspective is not accessed for some time, it may be automatically removed from the

system. This behavior can be configured or disabled by JIRA administrators via Structure

.Maintenance (see page 312)

Once created, a perspective becomes accessible to any person who has access to the

structure for which that perspective was created.

1.11 Structure Activity Stream

JIRA's dashboard gadget lets you see recent activity in JIRA and other Activity Stream
connected systems. The activity stream can be filtered (for example, by project) to show you

only the changes that concern you or your team. In addition, tab on the issue page Activity
displays recent activity that has affected the viewed issue.

With the Structure plugin installed, Activity Stream gadget may be configured to include

changes made to structures. The activity stream on the issue page automatically includes all

changes to all structures that affect the position of the viewed issue.

To activate the Structure stream, select the Structure option in the Available Streams section of

the Activity Stream gadget configuration.

1.11.1 Available Filters

The following filters are available for the Structure activity stream:

Structure
Use it to see changes only in a specific structure or structures, or to exclude specific

structures from the stream. If this filter is not used, changes to all structures are shown.

Ancestor Issue Key
This filter can be used together with the filter if you are interested in changes Structure
within a specific part of a specific structure, located "under" the specified issue (if the

changed issue is not located under the specified issue, the change will not be shown).

You can enter several issue keys separated by spaces.

Synchronizer
You can include or exclude changes made by a synchronizer (either by any synchronizer

or by specific synchronizers). Since synchronizers might make a lot of changes, this

might be useful to filter out their "noise". Vice versa, you could verify that a synchronizer

works as expected with an activity stream and this filter.

Activity
All changes to a structure fall into three categories: adding issues to structure, removing

issues from structure and moving issues within structure. This filter lets you include or

exclude the particular types of changes.

Documentation

Version 1 243

All Global Filters are supported by Structure Stream as well – you can filter structure

changes by and .Project, Issue Key, Update Date Username

1.11.2 Reading Activity Stream

Changes in the Structure activity stream are ordered chronologically, newest first. For each

change a short summary is displayed, containing:

the full name of the user who made the change;

for changes made by a synchronizer, the name of the synchronizer;

the number of affected issues, and whether they were they added, removed or moved;

if filter is used, the number of affected issues in each of the selected projects;Project

if filter is used, the affected issues among those selected in the filter;Issue Key

the name of the changed structure.

When viewing activity stream in the Full View, the following is also shown:

the parent path of the affected issues;

the original and the new parent path for the moved issues;

Documentation

Version 1 244

if the issues were moved within the same parent issue, the direction of the move

(upwards / downwards);

when the change was made.

Parent Path is a sequence of issue keys: first, a top-level issue, then its sub-issue,

then sub-sub-issue, and so on until the parent of the affected issue is displayed. Hover

mouse over an issue key to view the issue's summary, or click it to go to that issue.

On this screenshot, items 1, 2 and 3 are Structure activities.

In the Full View, click on the time of the change to open that change on the Structure

Board in the .History View (see page 182)

1.11.3 Activity Streams Performance

Structure's activity stream is optimized to quickly provide data for the most common activity

requests from Dashboard, Issue Activity, User Activity and Project Activity page.

Documentation

Version 1 245

It is possible however, if you use a complex search query on a JIRA instance with large history

of structure changes, that querying database will take longer time than Activity Streams allows

and you will not see any results. (There should be a message that "one of the activity streams

providers took long time to provide an answer".)

If that is the case, try to reduce the amount of conditions you are using or contact support for

help.

1.12 Structured JQL

Structure not only displays hierarchy of items, it allows to search items based on their relative

positions in the hierarchy. The language used to express such queries is called Structured JQL
or (where JQL stands for JIRA Query Language).Structured JQL queries are available S-JQL
in these places:

inside JQL function — that allows to search for issues in structure on the structure()

Issue Navigator, see ;structure() JQL function (see page 275)

in the Search Area on the Structure Widget — see Simple, JQL, and S-JQL Search (see

;page 138)

in the ;S-JQL Filter generator (see page 195)

in the workflow validator or condition — see .Workflow Integration (see page 316)

To quickly find a solution to a common structure querying problem, consult S-JQL Cookbook

, which contains a number of examples. To build your own query, start off with (see page 245)

the closest example and modify the query as needed.

Consult for a comprehensive description of the language and S-JQL Reference (see page 251)

 JQL function.structure()

1.12.1 S-JQL Cookbook

Here are the most common examples of using S-JQL.

1. Find issues added to a structure

Goal: Suppose that you are using a structure named "My todo list" as a collection of issues,

and you want to see in the Issue Navigator all issues added to this structure.

How to achieve: In the Issue Navigator, switch to and run the following Advanced Searching

query:

issue in structure("My todo list")

http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Documentation

Version 1 246

If you want to find issues added to the , you can omit the Default Structure (see page 13)

structure name:

issue in structure()

^ up to the list of examples (see page 245)

2. Quick Filter for JIRA Agile's (GreenHopper) Scrum Board to display only
low-level issues in a structure

Setup: Suppose that you are using a structure named "Project work breakdown" to organize

tasks under higher-level "container" issues that provide an overview of your team's work. In this

setting, the actual tasks are at the bottom level of the hierarchy. Also, suppose you are using

JIRA Agile's Scrum Board to manage your sprints.

Goal: You want to see only the actual tasks in backlog, hiding the container issues.

How to achieve: Add a to your JIRA Agile (GreenHopper) board with the following Quick Filter

JQL:

issue in structure("Project work breakdown", leaf)

If your structure is organized such that lower levels matter to you on the JIRA Agile board, two
you'll search for leaf issues and their parents with this JQL:

issue in structure("Project work breakdown", "leaf or parent of
leaf")

^ up to the list of examples (see page 245)

3. Retrieve all Epics in a certain status and all of their children

Setup: You have a structure named "Enterprise Portfolio" with Epics on the top level, Stories

beneath them, and Tasks with their Sub-Tasks occupying the lower levels of the hierarchy.

Goal: You need to see Epics in status with all of their children.Assigned

How to achieve: In the Issue Navigator, switch to and run the following Advanced Searching

query:

https://confluence.atlassian.com/display/GH/Configuring+Quick+Filters
http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Documentation

Version 1 247

issue in structure("Enterprise Portfolio", "issueOrAncestor in
[type = Epic and status = Assigned]")

If you want to see these issues in the structure, go to and type Structure Board (see page 16)

this query in the in the JQL mode.Search Area (see page 136)

Also, you can type only the last part of the query if you use S-JQL search mode (see page 139)

:

issueOrAncestor in [type = Epic and status = Assigned]

^ up to the list of examples (see page 245)

4. Find Test Cases associated with Stories in an active sprint

Setup: Suppose that you have a structure named "Enterprise Portfolio Testing", where you

have Epics on the top level, Stories on the second level, then come Test Sub-Tasks, and finally

Test Cases.

You are also using JIRA Agile (Greenhopper) to manage your sprints, which contain Stories.

The fact that a Test Case is associated with an Story is recorded only in the structure.

Goal: You need to find those Test Cases that are associated with Stories in an active sprint.

How to achieve: You can use Issue Navigator's capability or open the Advanced Searching

structure on the and use its in the Structure Board (see page 16) Search Area (see page 136)

JQL mode to run this query:

issue in structure("Enterprise Portfolio Testing", "[type = 'Test
Case'] and ancestor in [type = Story and sprint in openSprints()]"
)

Or, you can type only the last part of the query if you use S-JQL search mode (see page 139)

on the Structure Board:

[type = 'Test Case'] and ancestor in [type = Story and sprint in
openSprints()]

^ up to the list of examples (see page 245)

http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Documentation

Version 1 248

5. Find all issues that are blocking critical issues

Setup: Suppose that you have a structure named "Dependency structure" where parent-child

relationship corresponds to dependency: each child blocks its parent. (You might have

configured a to synchronize this structure with the Links Synchronizer (see page 349)

"Dependency" JIRA issue link.)

Let's also suppose that you consider critical those issues that have priority .Critical

Goal: You want to see all issues that are blocking critical issues, according to the structure.

How to achieve: You'll need to find children of critical issues. You can use Issue Navigator's

 capability or open the structure on the Advanced Searching Structure Board (see page 16)

and use its in the JQL mode to run this query:Search Area (see page 136)

issue in structure("Dependency structure", "child of [priority =
Critical]")

Or, you can type only the last part of the query if you use S-JQL search mode (see page 139)

on the Structure Board:

child of [priority = Critical]

^ up to the list of examples (see page 245)

6. Find all unassigned issues in a part of a project

Setup: Suppose that you use a structure named "Project work breakdown" to break down your

project into smaller pieces, so that if you have an issue somewhere in the structure, all of its

children at all levels constitute a separate part of a project.

Goal: You are focusing on a part of a project under the issue with key , and you PROJ-123

want to see unassigned issues in that part of the project.

How to achieve: Use this JQL query to find all unassigned descendants of :PROJ-123

issue in structure("Project work breakdown", "[assignee is empty]
and descendant of PROJ-123")

^ up to the list of examples (see page 245)

http://confluence.atlassian.com/display/JIRA/Advanced+Searching

Documentation

Version 1 249

7. Top-level view on unfinished parts of a project

Setup: Let's continue with the "Project work breakdown" structure from the previous example.

Suppose that there are several top-level issues representing different parts of the project.

Goal: You want to have a view on the parts of the project that are yet unfinished.

How to achieve: In the Structure terms, you need to see the root issues that have unresolved

descendants. To have a persistent view, create a with the following JQL:Saved Filter

issue in structure("Project work breakdown", "root and
descendants in [resolution is empty]")

^ up to the list of examples (see page 245)

8. Find violations of the rule "Tasks must be under Epics or Stories"

Setup: You have a structure named "Planning" where you put issues of types Epic, Story, and

Task. Your team follows the convention that Tasks are always put under Epics or Stories.

However, as humans are fallible, sometimes a Task ends up being in a wrong place — either

on the top level, or under another Task.

Goal: You need to find Tasks that violate the rule, so that you can put them in the right place.

How to achieve: In the on the , Search Area (see page 136) Structure Board (see page 16)

run the following :JQL search (see page 139)

issue in structure("Planning", "[type = Task] and parent not in
[type in (Epic, Story)]")

^ up to the list of examples (see page 245)

9. Find violations of the rule "An issue cannot be resolved if it has
unresolved children"

Setup: Suppose that "Planning" is a work breakdown structure. Your team follows the

convention that an issue cannot be resolved unless all of its children are resolved.

Goal: You need to find the issues violating this rule.

How to achieve: In the on the , Search Area (see page 136) Structure Board (see page 16)

run the following :S-JQL search (see page 139)

https://confluence.atlassian.com/display/JIRA/Using+Filters

Documentation

Version 1 250

[resolution is not empty] and child in [resolution is empty]

^ up to the list of examples (see page 245)

10. Find issues that can be resolved because all their children are resolved

Setup: Suppose that "Planning" is a work breakdown structure. Your team follows the

convention that once all children of an issue are resolved, the issue can be resolved as well.

The best solution for this would be to use a , but Status Rollup Synchronizer (see page 358)

suppose that for some reason you want to do it manually.

Goal: You need a way to manually resolve those issues that have all of their children resolved.

How to achieve: Open the structure on the . When you paste Structure Board (see page 16)

the query given below into the (ensure that the Search Area (see page 136) JQL mode (see

 is selected), the issues that you can resolve will be shown. You can resolve them page 139)

one by one. Here's the query you need:

issue in structure("Planning", "[resolution is empty] and not
(child is empty or child in [resolution is empty])")

^ up to the list of examples (see page 245)

11. Get a view of a second (third, ...) level of the hierarchy

Setup: There is a large structure named "Joint Effort" where different users track their issues

on several levels: Customer Relations department works with the top-level issues, Project

Managers break them down in several issues on the second level, Team Members work with

issues under second-level issues.

Goal: Each user wants to see only the relevant part of the structure. Customer Relations

department wants to filter out lower-level issues to focus on the top-level ones, and Project

Managers sometimes want to focus on just the second-level issues in the context of their

parent requests.

How to achieve: use the on the Search Area (see page 136) Structure Board (see page 16)

to run the specific queries (ensure that the is selected.) Toggle the S-JQL mode (see page 139)

 button to hide the issues on the lower levels.Filter (see page)

To see top-level issues, run this query:

root

Documentation

Version 1 251

To see second-level issues (top-level issues will be still displayed, but greyed out), run this

query:

child of root

If you would need to dig even deeper, to see the third level but not the lower ones, you'd use

this query:

child of (child of root)

^ up to the list of examples (see page 245)

12. Get the contents of a folder

Setup: There is a structure with a folder named "Next Release". Issues are placed there

manually and then queried via S-JQL for planning purposes (as an Agile board filter, for

example).

Goal: The users want to see all issues that are located under the specified folder.

How to achieve: In the Issue Navigator, switch to and run the following Advanced Searching

query:

issue in structure("My Structure", "descendant of folder('next
release')")

Note that the folder name is case-insensitive.

^ up to the list of examples (see page 245)

1.12.2 S-JQL Reference

Structure query is a hierarchical condition on the items added to the structure. Structure query

is expressed in the Structured JQL language (S-JQL), described in this article.

Parts of this article assume that you are familiar with capability of Advanced Searching

JIRA.

List of Structured JQL topics:

Multiple instances of items

http://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://confluence.atlassian.com/display/JIRA/Advanced+Searching

Documentation

Version 1 252

Multiple instances of items

If there are multiple instances of an item in the structure, some of these instances might match

the query, and some might not.

Consider the following structure:

TS-239
 TS-42
TS-123
 TS-239

Here, issue TS-239 is present two times — one at the root position, and another under another

issue. Query will match the first instance but not the second one.root

This difference is visible when you are filtering in the Structure Widget (see Filtering (see page

). However, matches an issue if of its 139) structure() JQL function (see page 275) at least one
instances in the structure matches the S-JQL query. In this example, issue in structure

 will return (root) TS-239, TS-123.

Constraints

Structure query consists of . A constraint matches items in the structure. In the constraints
simplest case, the whole structure query consists of a single constraint; for now, we will

consider only this case.

There are two types of constraints: and constraints.basic relational

^ up to the list of S-JQL topics (see page 251)

Basic constraint

A basic constraint matches items that satisfy a condition — regardless of their relative positions

to other items.

JQL constraint

JQL constraint matches all issues in the structure that satisfy a JQL query. To specify it, specify

the JQL query enclosed in square brackets:

[status = Open]

Documentation

Version 1 253

leaf and root

This basic constraint matches items that are located at special positions within the structure.

leaf

root

The first constraint matches items at the bottom level of the hierarchy, i.e., items that do not

have children (sub-items).

The second constraint matches items at the top level of the hierarchy, i.e., items that do not

have a parent.

Specific issue

This kind of basic constraint matches just the referenced issues. If some of the issues are not

contained within the structure, they are ignored. If none of the issues are contained within the

structure, the constraint matches no issues.

You can specify a comma-separated list of issue keys:

TS-129, TS-239

One issue key:

TS-129

Issue ID (or a list of them):

19320

Function constraint (folder, item)

Functions in S-JQL play the same role as in JQL: it is an extension point, so any vendor can

develop their own functions to match items in a custom way.

Documentation

Version 1 254

Structure comes bundled with a few functions: (matching all folders or folders by name) folder
and (matching all items of the specified type or items by name).item

Syntax

A function constraint has a and zero or more , depending on the function you name arguments
are using:

folder(Urgent)

In the example above, function name is and its argument is folder Urgent.

You can insert any amount of spaces around the name and arguments:

folder (Urgent)

Multiple function arguments should be separated by commas:

item(Status, In Progress)

If an argument contains commas or parentheses, you need to enclose it in "double quotes" or

'single quotes':

item(Status, "Done, Sealed, and Delivered")
folder("NU (non-urgent) issues")

The former example matches Status items in structure that are named Done, Sealed, and
If this name wasn't enclosed in quotes, the query would mean that function is Delivered. item

given four arguments: , , and .Status Done Sealed and Delivered
The latter example matches folders named If quotes were not used, NU (non-urgent) issues.
the query would be incorrect because the first closing parenthesis would be understood as the

end of 's arguments.folder

If your argument contains quotes, you need to use another type of quotes to enclose it.

Suppose that you need to match a version named :3.0, 3.0.1 "Armageddon"

item(version, '3.0, 3.0.1 "Armageddon"')

Documentation

Version 1 255

You can also escape the quotes using backslash (\). Suppose that the version is named 3.0
Beta 1 "Armageddon's Near":

item(version, '3.0 Beta 1 "Armageddon\'s Near"')

If you need to use backslash character on its own, you can escape it with another backslash

(\\). Suppose that you need to match a folder named :\ (backslash) and related characters

folder ('\\ (backslash) and related characters')

Note that if you don't need to enclose your argument in quotes, then you don't need to escape

quotes or backslashes contained within it:

folder (Joe's)
folder (\)

Finally, if there's only one argument and the argument doesn't contain spaces (or is enclosed in

quotes), you can omit the parentheses:

folder Urgent
folder "Not urgent"

folder()

This function matches folder items in the structure, optionally filtering them by name.

Without arguments, this function matches all folders:

folder()

With one argument, this function matches folders by name (that you see in the Summary
column). A folder is matched if its name the text specified in the first argument. starts with
Difference between capital and small letters is ignored.

For example, the following queries match folders named , , My issues Issues for Carol

and ; and do not match folders named or Non-issues Is suing Issuance:

Documentation

Version 1 256

folder issue
folder Issue

If you specify several words separated by spaces, will match only folders containing all folder

of these words.

If you're familiar with how works, then it's Simple Search in structure (see page)

useful to think of this argument in the same way as of the simple query. The only

difference is that doesn't recognize issue keys.folder

There's an advanced matching option for those who like to use regular expressions.

To tell that you are specifying a regular expression, enclose it in slashes ():folder /

folder /i.*ue/

If the argument starts with a slash but doesn't end with a slash, regular expression matching

doesn't occur, and it's matched as a simple text. If you need to write a simple text search where

a text starts and ends with a slash, escape the leading slash with a backslash ():\

folder \/???/

The query in the example above matches folder /???/.

Another advanced topic is how to query for the exact word (e.g., match but notissue

issues).

This is called . Strict searching is turned on when the starts and strict searching search text
ends with a double quote ("). Note, however, that quotes are stripped off from function

arguments, since quoting is also used to allow specifying spaces or parentheses in the search

text. Thus you'll need to enclose the search text in single quotes ('):

folder '"issue"'

item()

This function matches items of the specified type in the structure,

optionally filtering them by name. It is a generalization of folder()

function to other item types.

Documentation

Version 1 257

1.

2.

The function takes two arguments: and (optional). The second argument works item type name
in the same way as the argument for function.folder()

You can reference either standard item types (provided by Structure plugin) or item types

provided by third-party plugins.

If you need to match items of all types, use asterisk (*). The following query finds all items that

have the word “Infrastructure” in their Summary, regardless of their type:

item(*, Infrastructure)

Structure provides the following item types:

issue
project
version
project-component
issuetype
status
resolution
priority
label
user
group
date
cf-option
folder
generator
loop-marker
sprint
missing
tempo-account (when Tempo Timesheets plugin is available)

Structure.Pages plugin provides the following item types:

page

Item types provided by third-party plugins are specified similarly. Here's how function item()

looks up item types:

It tries to interpret argument as referring to an item type provided by Structure type name
and looks it up in the list above.

https://wiki.almworks.com/display/pages/Structure.Pages+Extension

Documentation

Version 1 258

2.

3.

If not found, it looks at all item types provided by all plugins (including Structure itself)

and checks if the type name the specified text . “As a word” means ends with as a word
that will match Confluence page item type, but won't. More specifically, the page age

considered word boundaries are hyphen (-), underscore (_) and colon (:).

It is an error to specify item type ambiguously, i.e. if there are two item types matching

the description. The following forms of argument allow to specify item type item type
more precisely.

Fully qualified item type name, e.g. com.almworks.jira.structure:type-issue

or . com.almworks.structure.pages:type-confluence-page

More generally, the form is .<plugin key>:<type name>

Shortened form of the fully qualified item type name, e.g., or structure:issue

.pages:page

More generally, the form is .<plugin key part>:<type name part>

When function looks up item type for the argument, and the argument contains item()

colon (:), the function first tries to interpret is as a fully quailified name. Only if nothing is

found, it tries to interpret it as a shortened form.

Don't confuse “ and “matching items of some type” matching issues that have field
. For example, matches , value equal to that item” item(status, Open) status Open

not . If you need the latter, use JQL constraint: issues with status Open [status =

.Open]

Empty constraint

An empty constraint matching no items:

empty

This constraint plays the same role as JQL's keyword. It is intended to be used as a EMPTY sub-

 in relational constraints, which are discussed further.constraint (see page 263)

^ up to the list of S-JQL topics (see page 251)

Negation

Any constraint, basic or relational, can be negated using keyword . This produces a NOT

constraint that matches all items that the original constraint doesn't:

Documentation

Version 1 259

not root

matches all items that are not top-level items in the structure.

You can always enclose a constraint in parentheses to ease understanding. So, all items in the

structure except issues and are matched by this structure query:TS-129 TS-239

not (TS-129, TS-239)

^ up to the list of S-JQL topics (see page 251)

Relational constraint

A basic constraint matches items that satisfy a condition. A relational constraint matches items

 items that satisfy a condition. corresponds to a relationship between related to Related
positions of items in the structure, like parent-child.

For example,

TS-129

is a basic constraint that matches a single issue ;TS-129

child in TS-129

is a relational constraint matching items that have as a child (sub-item).TS-129

Relational constraint has the form . Here, relation operator subConstraint

 is a constraint on the relatives of items to be matched; other parts of subConstraint

relational constraint are discussed in the following sections.

Note that the form of relational constraint is similar to the form of JQL clause, field

.operator value

Indeed, let's describe in English a JQL query : it matches type in (Epic, Story)

issues having that is values .type in Epic, Story
Now, let's describe in English a structure query : it parent in [type = Epic]

matches items having that is constraint " ".parent in type = Epic

As you can see, the form that can be used to describe the structure query is similar to

that of JQL.

Documentation

Version 1 260

^ up to the list of S-JQL topics (see page 251)

Relations

S-JQL has the following relations:

child: item is a child (sub-item) of another item in the structure.

parent: item is a parent of another item in the structure.

descendant: item is a descendant (sub- or sub-sub-...-item) of another item in the

structure.

ancestor: item is an ancestor (parent, parent-of-parent, or parent-of-parent-...-of-

parent) of another item in the structure.

sibling: item is a sibling of another item in the structure. Two items are considered

siblings if they are under the same parent item.

prevSibling: item is a previous (preceding) sibling of another item in the structure.

item is a preceding sibling of item if it is a sibling of and is higher than (A B B A B A
comes before .)B

nextSibling: item is a next (following) sibling of another item in the structure.

item is a following sibling of item if it is a sibling of and is lower than (comes A B B A B A
after .)B

self and are relations of an item (or an issue) to itself. Their role is explained issue

later, in the section, because at first one has to and relationself issue (see page 264)

learn how operators and sub-constraints work.

There are also combinations of and with all other relations, listed for issue self

completeness below:

childOrSelf childOrIssue

parentOrSelf parentOrIssue

descendantOrSelf descendantOrIssue

ancestorOrSelf ancestorOrIssue

siblingOrSelf siblingOrIssue

prevSiblingOrSelf prevSiblingOrIssue

Documentation

Version 1 261

1.

2.

nextSiblingOrSelf nextSiblingOrIssue

Those familiar with XPath may have recognized these relations; indeed, they work like

the corresponding XPath axes.

^ up to the list of S-JQL topics (see page 251)

Operators

These are the operators used in S-JQL:

IN, NOT IN, IS, IS NOT, =, !=, OF

operator specifies how is applied to :subConstraint relation

IN, , and put constraint on the relatives of a matched item.IS =

For example, consider

child in (TS-129, TS-239)

Here, is , so an item's relative in question is its child in the structure. relation child

Thus, an item matches if .at least one of its children is or TS-129 TS-239

There is no difference between these three operators, unlike JQL. Different

forms exist to allow for more natural-looking queries with some sub-constraints.

NOT IN, , and are negated versions of , , and . That is, an item is IS NOT != IN IS =

matched if it any item matching .is not related to subConstraint

As an important consequence, item that has no relatives is matched.

For example, consider

Documentation

Version 1 262

2.

3.

child not in (TS-129, TS-239)

An item matches if . So, this constraint matches all items no child is nor TS-129 TS-239

that either have no children or do not have any of these two items among their children.

Using one of these operators in a relational constraint is the same as using IN

(or , or) and negating the whole relational constraint. Thus, the constraint IS =

above is equivalent to

not (child in (TS-129, TS-239))

But, using one of these operators is the same as using operator very not IN

and negating !subConstraint

First, is not the same as . having relatives other than X not having relatives X
Think of it as of relationships in a human family: having a relative other than

brother (e.g., a sister) is the same as not having a brother, because one not
may have both a sister and a brother.

Second, an item with no relatives is not matched by the transformed query.

For example,

child in (not (TS-129, TS-239))

matches all items that have at least one child that is neither nor TS-129 TS-239

. That is, the only items that are not matched are leaves and those that have

only or as children.TS-129 TS-239

OF matches the relatives of items that satisfy .subConstraint

For example, consider

child of (TS-129, TS-239)

Documentation

Version 1 263

3.

An item matches if .it is a child of either or TS-129 TS-239

To have a model of how operators (,) and work and to understand the difference IN IS = OF

between them, consider the table below. Suppose that we take all items in the structure and put

each of them, one by one, in column . For each item, we take all of its relatives and put item
each of them, one by one, in column . Thus we get pairs of items. We examine each relative
pair, and if one of the components satisfies , we add the other component to the subConstraint
result set. Which component is added, depends on the operator:

operator item relative

in add to result set satisfies subConstraint

of satisfies subConstraint add to result set

One may note that for any relation, there is a corresponding "inverse": for example,

 is the inverse of , and vice versa. A relational constraint that uses child parent

operator (,) is equivalent to a relational constraint that uses an inverse relation IN IS =

with operator . That is,OF

child in (TS-129, TS-239)

is the same as

parent of (TS-129, TS-239)

Again, different forms of expressing the same constraint exist to allow for more natural-

looking queries.

^ up to the list of S-JQL topics (see page 251)

Sub-constraints

Any constraint can be used as a sub-constraint, whether basic, relational, or a combination of

.those (see page 265)

For example,

Documentation

Version 1 264

child of root

selects items on the second level of the hierarchy. To select items on the third level of the

hierarchy, you can once again use relation and the previous query as :child subConstraint

child of (child of root)

There is a special basic constraint, , which matches no items. It is used as a sub-empty

constraint to match items that have no relatives as per .relation

For example, let's take relation and see what the corresponding relational constraints child

with different operators mean.

child is empty matches all items that have no children (equivalent of)leaf

child is not empty matches all items that have at least one child (equivalent of not

)leaf

child of empty matches all items that are not children of other items (equivalent of

)root

Of course, using or is more convenient, but you can apply to any other leaf root empty

relation. For instance, matches an item if it is the only child of its parent.sibling is empty

^ up to the list of S-JQL topics (see page 251)

self and issues relations: adding sub-constraint matches to the result set

A relational constraint with relation behaves exactly as its sub-constraint, possibly self

negated if operator (,) is used.NOT IN IS NOT !=

Thus,

self in [status = Open]

is equivalent to

[status = Open]

Similarly,

Documentation

Version 1 265

self not in [status = Open]

is equivalent to

not [status = Open]

When combined with another relation, allows to add the items matched by self

 to the resulting set. For example,subConstraint

descendant of TS-129

returns all of the children of at all levels, but does not return itself. To add TS-129 TS-129 TS-

, use :129 descendantOrSelf

descendantOrSelf of TS-129

issue relation

issue is a special case of relation that only matches issues. For instance, if on the top self

level of the structure you have folders and issues, and you want to hide all folders, you can

write this:

descendantOrIssue of root

This query matches all top-level issues and all their sub-items.

^ up to the list of S-JQL topics (see page 251)

Combining constraints with Boolean operators

We can now define a structure query as a , that is, a Boolean combination of constraints
structure query consists of constraints connected with and . When two constraints are AND OR

connected with , together they will match issues that are matched by both constraints. This AND

allows you to limit the results. Likewise, when two constraints are connected by , together OR

they will match issues that are matched by at least one of the constraints. This allows you to

expand the results.

Note that has higher precedence than . That means that the Structure queryAND OR

Documentation

Version 1 266

leaf or (parent of leaf) and [status = Open]

matches all issues that are either leaves, or are parents of leaves in status . In order to Open
also constrain leaf issues to be in the status , you need to use parentheses:Open

(leaf or (parent of leaf)) and [status = Open]

^ up to the list of S-JQL topics (see page 251)

Railroad diagrams

As a final piece of reference, here's the S-JQL syntax in the form of .railroad diagrams

S-JQL keywords are not case-sensitive, and all underscores in keywords are optional.

structure-query

S-JQL admits using and in place of , as well as and in place of .&& & AND || | OR

constraint

http://en.wikipedia.org/wiki/Railroad_diagram

Documentation

Version 1 267

basic-constraint

jql-query is any valid JQL query.

issue-key is any valid JIRA issue key.

issue-id is any valid JIRA issue ID.

constraint-name is the name of the function constraint: either bundled with Structure (

, , or) or provided by a Structure extension (plugin).folder item row_id

constraint-argument is one of the following:

either a sequence of non-whitespace characters

or quoted text (inside "double quotes" or 'single quotes'), where quotes can be

escaped via backslash: , ; backslash itself can be escaped: .\" \' \\

See also .Function constraint - Syntax (see page)

relation

Documentation

Version 1 268

S-JQL admits using and in place of .|| | OR

operator

^ up to the list of S-JQL topics (see page 251)

List of S-JQL keywords

In this article, all S-JQL keywords are listed in all of their spelling variants. This is intended for

developers creating their own S-JQL function, because function name must not coincide with

the existing keyword.

Documentation

Version 1 269

!
!=
&
&&
(
)
,
=
[
]
ancestor
ancestor_or_issue
ancestor_or_issues
ancestor_or_self
ancestorOrIssue
ancestorOrIssues
ancestorOrSelf
ancestors
ancestors_or_issue
ancestors_or_issues
ancestors_or_self
ancestorsOrIssue
ancestorsOrIssues
ancestorsOrSelf
and
child
child_or_issue
child_or_issues
child_or_self
childOrIssue
childOrIssues
childOrSelf
children
children_or_issue
children_or_issues
children_or_self
childrenOrIssue
childrenOrIssues
childrenOrSelf
descendant
descendant_or_issue
descendant_or_issues
descendant_or_self
descendantOrIssue
descendantOrIssues
descendantOrSelf
descendants
descendants_or_issue
descendants_or_issues
descendants_or_self

Documentation

Version 1 270

descendantsOrIssue
descendantsOrIssues
descendantsOrSelf
empty
following_sibling
following_sibling_or_issue
following_sibling_or_issues
following_sibling_or_self
following_siblings
following_siblings_or_issue
following_siblings_or_issues
following_siblings_or_self
followingSibling
followingSiblingOrIssue
followingSiblingOrIssues
followingSiblingOrSelf
followingSiblings
followingSiblingsOrIssue
followingSiblingsOrIssues
followingSiblingsOrSelf
in
is
issue
issue_or_ancestor
issue_or_ancestors
issue_or_child
issue_or_children
issue_or_descendant
issue_or_descendants
issue_or_following_sibling
issue_or_following_siblings
issue_or_next_sibling
issue_or_next_siblings
issue_or_parent
issue_or_parents
issue_or_preceding_sibling
issue_or_preceding_siblings
issue_or_prev_sibling
issue_or_prev_siblings
issue_or_previous_sibling
issue_or_previous_siblings
issue_or_sibling
issue_or_siblings
issue_or_sub_issue
issue_or_sub_issues
issueOrAncestor
issueOrAncestors
issueOrChild
issueOrChildren
issueOrDescendant
issueOrDescendants

Documentation

Version 1 271

issueOrFollowingSibling
issueOrFollowingSiblings
issueOrNextSibling
issueOrNextSiblings
issueOrParent
issueOrParents
issueOrPrecedingSibling
issueOrPrecedingSiblings
issueOrPreviousSibling
issueOrPreviousSiblings
issueOrPrevSibling
issueOrPrevSiblings
issueOrSibling
issueOrSiblings
issueOrSubIssue
issueOrSubIssues
issues
issues_or_ancestor
issues_or_ancestors
issues_or_child
issues_or_children
issues_or_descendant
issues_or_descendants
issues_or_following_sibling
issues_or_following_siblings
issues_or_next_sibling
issues_or_next_siblings
issues_or_parent
issues_or_parents
issues_or_preceding_sibling
issues_or_preceding_siblings
issues_or_prev_sibling
issues_or_prev_siblings
issues_or_previous_sibling
issues_or_previous_siblings
issues_or_sibling
issues_or_siblings
issues_or_sub_issue
issues_or_sub_issues
issuesOrAncestor
issuesOrAncestors
issuesOrChild
issuesOrChildren
issuesOrDescendant
issuesOrDescendants
issuesOrFollowingSibling
issuesOrFollowingSiblings
issuesOrNextSibling
issuesOrNextSiblings
issuesOrParent
issuesOrParents

Documentation

Version 1 272

issuesOrPrecedingSibling
issuesOrPrecedingSiblings
issuesOrPreviousSibling
issuesOrPreviousSiblings
issuesOrPrevSibling
issuesOrPrevSiblings
issuesOrSibling
issuesOrSiblings
issuesOrSubIssue
issuesOrSubIssues
leaf
leaves
next_sibling
next_sibling_or_issue
next_sibling_or_issues
next_sibling_or_self
next_siblings
next_siblings_or_issue
next_siblings_or_issues
next_siblings_or_self
nextSibling
nextSiblingOrIssue
nextSiblingOrIssues
nextSiblingOrSelf
nextSiblings
nextSiblingsOrIssue
nextSiblingsOrIssues
nextSiblingsOrSelf
not
null
of
or
parent
parent_or_issue
parent_or_issues
parent_or_self
parentOrIssue
parentOrIssues
parentOrSelf
parents
parents_or_issue
parents_or_issues
parents_or_self
parentsOrIssue
parentsOrIssues
parentsOrSelf
preceding_sibling
preceding_sibling_or_issue
preceding_sibling_or_issues
preceding_sibling_or_self
preceding_siblings

Documentation

Version 1 273

preceding_siblings_or_issue
preceding_siblings_or_issues
preceding_siblings_or_self
precedingSibling
precedingSiblingOrIssue
precedingSiblingOrIssues
precedingSiblingOrSelf
precedingSiblings
precedingSiblingsOrIssue
precedingSiblingsOrIssues
precedingSiblingsOrSelf
prev_sibling
prev_sibling_or_issue
prev_sibling_or_issues
prev_sibling_or_self
prev_siblings
prev_siblings_or_issue
prev_siblings_or_issues
prev_siblings_or_self
previous_sibling
previous_sibling_or_issue
previous_sibling_or_issues
previous_sibling_or_self
previous_siblings
previous_siblings_or_issue
previous_siblings_or_issues
previous_siblings_or_self
previousSibling
previousSiblingOrIssue
previousSiblingOrIssues
previousSiblingOrSelf
previousSiblings
previousSiblingsOrIssue
previousSiblingsOrIssues
previousSiblingsOrSelf
prevSibling
prevSiblingOrIssue
prevSiblingOrIssues
prevSiblingOrSelf
prevSiblings
prevSiblingsOrIssue
prevSiblingsOrIssues
prevSiblingsOrSelf
root
roots
self
self_or_ancestor
self_or_ancestors
self_or_child
self_or_children
self_or_descendant

Documentation

Version 1 274

self_or_descendants
self_or_following_sibling
self_or_following_siblings
self_or_next_sibling
self_or_next_siblings
self_or_parent
self_or_parents
self_or_preceding_sibling
self_or_preceding_siblings
self_or_prev_sibling
self_or_prev_siblings
self_or_previous_sibling
self_or_previous_siblings
self_or_sibling
self_or_siblings
self_or_sub_issue
self_or_sub_issues
selfOrAncestor
selfOrAncestors
selfOrChild
selfOrChildren
selfOrDescendant
selfOrDescendants
selfOrFollowingSibling
selfOrFollowingSiblings
selfOrNextSibling
selfOrNextSiblings
selfOrParent
selfOrParents
selfOrPrecedingSibling
selfOrPrecedingSiblings
selfOrPreviousSibling
selfOrPreviousSiblings
selfOrPrevSibling
selfOrPrevSiblings
selfOrSibling
selfOrSiblings
selfOrSubIssue
selfOrSubIssues
sibling
sibling_or_issue
sibling_or_issues
sibling_or_self
siblingOrIssue
siblingOrIssues
siblingOrSelf
siblings
siblings_or_issue
siblings_or_issues
siblings_or_self
siblingsOrIssue

Documentation

Version 1 275

siblingsOrIssues
siblingsOrSelf
sub_issue
sub_issue_or_issue
sub_issue_or_issues
sub_issue_or_self
sub_issues
sub_issues_or_issue
sub_issues_or_issues
sub_issues_or_self
subIssue
subIssueOrIssue
subIssueOrIssues
subIssueOrSelf
subIssues
subIssuesOrIssue
subIssuesOrIssues
subIssuesOrSelf
|
||

1.12.3 structure() JQL function

Structure adds JQL function that lets you search for issues that are added to a structure()

structure, with the possibility to add constraints on their relationships.You can use this function

in any place in JIRA where you can use JQL: in the Issue Navigator, in a Saved Filter, as an

Agile Board query etc. For more information, see JIRA documentation on Advanced Searching

and .Advanced Searching Functions

If a user does not have , they will not be able to access to structure (see page 299)

create new queries with the function and existing queries will have structure()

 function return an empty set. However, the user will still see structure()

 function offered in the JQL completion drop-down.structure()

To specify a structure condition in JQL, use the following format:

issue in structure(structureNameopt, structureQueryopt)

Function arguments:

structureName Optional The name of the structure. If you omit the structure name,

system-wide will be searched.Default Structure (see page 13)

https://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://confluence.atlassian.com/display/JIRA/Advanced+Searching+Functions

Documentation

Version 1 276

structureQuery Optional Use this parameter to select only a part of the structure. This

parameter specifies a in a language similar to Structure Query
JQL, Structured JQL (see page 245).

You can use structure ID instead of the structure name. You can see structure ID in

the URL of the Structure Board if you open page and click Manage Structure
structure name.

Function arguments need to be quoted if they contain spaces or non-letters

As dictated by the syntax of JQL, you'll need to enclose structure name or structure query in

'single quotes' or "double quotes" if they contain spaces or non-letters.

What if structure name or structure query itself contains quotes?

If structure name or structure query contains quotes of one kind, you need to enclose them with

a different kind of quotes. That is, if structure query contains double quote, you'll need to

enclose it in single quotes. Alternatively, you can escape quote with a backslash: .\"

Example 1

Suppose you need to find all issues that are directly under issues in status Awaiting
Deployment.

In plain JQL, issues in this status can be found via this query: Status = "Awaiting

. Note that since status name contains spaces, JQL requires us to enclose it in Deployment"

quotes.

According to , the corresponding Structure query would be S-JQL Reference (see page 251)

child of [Status = "Awaiting Deployment"].

That means that you need to enclose this Structure query with single quotes:

issue in structure("My personal structure", 'child of [Status =
"Awaiting Deployment"]')

Note that the following will work:not

Documentation

Version 1 277

issue in structure("My personal structure", "child of
[Status = "Awaiting Deployment"]")

Example 2: escaping with backslash

In the following example, the query returns issues that are directly under issues assigned to fix

version named .3.0 "Armageddon"

issue in structure("My personal structure", "child of [fixVersion
= '3.0 \"Armageddon\"']")

Backward compatibility with structure() JQL function prior to Structure 2.4

Prior to Structure 2.4, JQL function did not take structure query as an argument; structure()

you could specify only one issue key or ID, and you would get the referenced issue along with

all of its children at all levels. As you might have noticed, this old-style usage can be interpreted

as a structure query, but according to the rules of S-JQL, it would return just the referenced

issue without its children. To maintain backward compatibility, any structure query in Structure

2.4 that consists of a single basic constraint that references issues by their keys or IDs matches

not only these issues, but all of their children as well.

That means that if you were using JQL of the form

issue in structure("My personal structure", TS-129)

then in Structure 2.4 this query will still return and all of its children at all levels TS-129

(provided that is added to the structure.)TS-129

If this backward compatibility bites you (if, say, you need to check whether an issue is added to

a structure), prepend the structure query with :issue in

issue in structure("My personal structure", "issue in TS-129")

This JQL will match only if it is in the structure.TS-129

Documentation

Version 1 278

1.13 Keyboard Shortcuts

Structure provides a number of keyboard shortcuts that you can use to speed up your work.

These reference cards describe the shortcuts for Mac OS X and PC keyboards.

1.13.1 Keyboard Shortcuts (PC)

Navigation

Action Shortcut

Select Issue Left-Click

Show/Hide Issue

Details

o

Previous Issue or k

Next Issue or j

Expand Sub-

Issues

Collapse Sub-

Issues

For Large

Structure

PgUp PgDn Home

End

Add Column tt

Expand All ++

Collapse All --

Changing Structure

Action Shortcut

Move Up Ctrl+

Move Down Ctrl+

Indent Ctrl+

Outdent Ctrl+

Drag and Drop Shift+Drag

New Issue Enter

New Sub-Issue Insert +or Shift

Enter

Remove from Structure Delete

Select between Folder

/Issue/Page

(in Add dialog)

Alt+ or Alt+

Changing Issues

Action Shortcut

Edit Field Double-Click

Documentation

Version 1 279

Structure Views

Action Shortcut

Switch View vv

Save View vs

Save View As vss

Revert Changes to View vr

Searching & Adding to Structure

Action Shortcut

Switch Structure ss

Add Issue Ctrl+Enter

Standard JIRA Actions

Action Shortcut

Operations Dialog .

Edit Issue e

Comment on Issue m

Assign Issue a

Assign to Me i

Edit Issue Labels l

Actions Drop-Down Alt+

Action Shortcut

Edit Summary Tab or F2

Finish & Save Enter +or Ctrl Enter

Cancel Field

Changes

Esc

Edit Next Field Tab + +or Ctrl Alt

Edit Previous

Field

Shift+ + +Tab or Ctrl Alt

Edit Next Issue Ctrl+ +Alt

Edit Previous

Issue

Ctrl+ +Alt

Selecting Issues

Action Shortcut

Toggle Selection Space

Select All Ctrl+a

Select All Sub-Issues Shift+

Deselect All Sub-Issues Shift+

Expand Selection Down

(Up)

Shift+ (+)Shift

Bulk Selection Shift+PgUp

+Shift PgDn

+Shift Home

+Shift End

Documentation

Version 1 280

Action Shortcut

Clear Selection Escape

Advanced

Action Shortcut

Hide/Show Resolved rr

Cut (Prepare to Move) Ctrl+x

Paste (Move) Ctrl+v

Paste Sub-Issue (Move) Ctrl+ +Shift

v

Fix/Unfix View on Issue Ctrl+.

Switch Panel \

View Full-Size Image (see

page 70)

ii

Show/Hide Issue Details

without

Switching Panel

Shift+o

Show Automation ~

1.13.2 Keyboard Shortcuts (Mac)

Navigation

Action Shortcut

Select Issue Left-Click

Changing Structure

Action Shortcut

Move Up

Documentation

Version 1 281

Action Shortcut

Show/Hide Issue Details o

Previous Issue or k

Next Issue or j

Expand Sub-Issues

Collapse Sub-Issues

For Large Structure

Add Column tt

Expand All ++

Collapse All –

Change Structure xx

Structure Views

Action Shortcut

Switch View vv

Save View vs

Save View As vss

Revert Changes to View vr

Action Shortcut

Move Down

Indent

Outdent

Drag and Drop Drag

New Issue

New Sub-Issue

Remove from Structure

Changing Issues

Action Shortcut

Edit Field Double-Click

Edit Summary tab

Finish & Save or

Cancel Field Changes esc

Edit Next Field tab or

Edit Previous Field tab or

Edit Next Issue

Edit Previous Issue

Documentation

Version 1 282

Standard JIRA Actions

Action Shortcut

Operations Dialog .

Edit Issue e

Comment on Issue m

Assign Issue a

Assign Issue to Me i

Edit Issue Labels l

Actions Drop-Down

Selecting Issues

Action Shortcut

Toggle Selection space

Select All a

Select All Sub-Issues

Deselect All Sub-Issues

Expand Selection Down (Up) ()

Bulk Selection

Cancel Selection esc

Advanced

Action Shortcut

Hide/Show Resolved rr

Cut (Prepare to Move) x

Paste (Move) v

Paste Sub-Issue (Move) v

Fix/Unfix View on Issue .

View Full-Size Image (see page 70) ii

Show/Hide Issue Details without

Switching Panel

o

1.13.3 Quick Action Lookup

Documentation

Version 1 283

1.13.3 Quick Action Lookup

You can use a special keyboard combination – – to pull up the "Action Lookup" input box. s,q

In that input box you can start typing what you need to do and it will suggest available "actions"

that match the description.

It also shows keyboard shortcut associated with the action.

1.14 Getting Help

Click link at the bottom right corner of the Structure Widget to bring up Structure Info
Information panel. It contains information about Structure version and useful links.

Documentation

Version 1 284

Feel free to write back to ALM Works if you have any questions, feature requests or problems:

Post support request and have us resolve it as soon as possible.

Suggest an idea on our UserVoice forum.

Write to developers just to say hi or with any comments or questions.

http://almworks.com/structure/support-request
http://almworks.com/structure/suggest-idea

Documentation

Version 1 285

1.

2.

3.

1.

2.

3.

2 Structure Administrator's
Guide

This section contains information for JIRA administrators about installing and configuring

Structure plugin.

Quick steps to get Structure working:

Installing Structure (see page 285)

Setting Up Structure License (see page 292)

Getting Started with Structure (see page 297)

Contents:

2.1 Installing Structure

Structure is installed like most other plugins.

Before installing Structure in production, make sure your JIRA meets the Memory

.Guidelines (see page 287)

Open Plugin Manager, search for "Structure" by ALM Works on the Atlassian

Marketplace and install from there.

Alternatively, you can download the plugin JAR manually from the download

 and either place it into subdirectory under your page plugins/installed-plugins
JIRA home (then restart JIRA) or use "Upload Plugin" link in the Plugin

Manager.

Press button to finish the installation by Get Started installing a license key (see page

.292)

Congratulations! You can now spread the word and help users get started with Structure – see

.Getting Started with Structure (see page 297)

If Structure Plugin Remains Disabled

https://wiki.almworks.com/display/structure/Download
https://wiki.almworks.com/display/structure/Download

Documentation

Version 1 286

1.

2.

It is possible that after you install Structure or enable it from the Plugin Manager, the

plugin remains disabled. An error may or may not be shown. If you refresh Plugin

Manager page within 5-10 seconds and Structure is disabled, you've got this problem.

See article for possible causes and Structure plugin won't start (see page 483)

solutions.

Next: Set up Structure license key (see page 292)

2.1.1 Migrating Data from Structure 2 to Structure 3

Unlike previous versions, Structure 3.0 uses the main JIRA database to store its data. You

need to migrate the data from Structure 2 in order to continue working with it in Structure 3.

Additionally, this feature can be used to restore structures from a backup made with Structure

2.

Structure 2 had a separate Backup / Restore functionality because Structure data was

kept separately. With Structure 3, all data is backed up with the usual JIRA backup.

However, we plan to reinstate Backup / Restore / Migrate feature in the future versions

of Structure 3.

Creating a Backup of Structure 2.x Data

If you still have Structure 2.x installed, create a backup of the current Structure data. You

can either use menu or do a cold Administration | Structure | Structure Backup
backup by copying the entire sub-directory under JIRA home while structure/

Structure plugin is disabled. See for details.Backing Up Structure (see page 307)

If you already have Structure 3.x installed, use Administration | Structure | Export
 page. It allows you to create a backup zip with all Structure 2.x data Structure 2.x Data

and then opens page, allowing you to immediately import the backup Restore Structure
into Structure 3.x database.

Restoring Structure Data from 2.x Backup

Use menu and use any Structure 2.x Administration | Structure | Restore Structure
backup made earlier. Note that it should be placed in the directory on your import/

server.

Documentation

Version 1 287

2.

1.

2.

3.

1.

2.

3.

4.

If you used "Export Structure 2.x Data" menu, you will be taken to the restore

automatically.

After Data Migration

Upgrade Testy

If you have Structure.Testy installed, download and install the latest version of Structure.Testy,

compatible with Structure.

Upgrading "Global Structure"

If you're using "Global Structure" structure, which was created by default in Structure 2.x, you

need to make sure that there's an "owner" of that structure. Otherwise, Automation (see page

 will not work there.192)

Open .Structure | Manage Structure

Find Global Structure and check if it has non-empty Owner.

If it doesn't have an owner, click , and set yourself as the owner.Configure

2.1.2 Memory Guidelines

On a production system, it is a good idea to check if you have enough free memory in JIRA's

Java process before installing Structure (any other plugin too).

Assessing Available Memory

Open menu and scroll Administration | Troubleshooting and Support | System Info
down to .Java VM Memory Statistics

Click Force Garbage Collection

Note the free % number of the (heap memory).Memory Graph

Note the absolute amount of (non-heap memory for Java Free PermGen Memory
classes).

Documentation

Version 1 288

4.

Memory Statistic Recommended
Value

Parameter in / setenv.sh setenv.

bat

% of Free Heap Memory 25% – 50% JVM_MAXIMUM_MEMORY

Free PermGen Memory (prior to

Java 8)

100 – 200 MB JIRA_MAX_PERM_SIZE

If you run JIRA on Java 8, PermGen memory is not a factor.

All recommendations are for a general case and do not guarantee that you won't get

. Individual cases may vary.OutOfMemoryError

Heap Memory Requirements

It is recommended that % of free heap memory is from 25% to 50%.

Structure requires about additional 100 MB of heap memory. You can take your current statistic

of and , add 100 MB to the and calculate the Used Memory Total Memory Used Memory
recommended value for the .Total Memory

If you already have recommended % of free memory, you can just increase total heap

memory by 200 MB.

Documentation

Version 1 289

PermGen Memory Requirements

This section applies to JIRA running on Sun/Oracle Hotspot Java VM only.

PermGen space is used for Java classes and may be depleted if you uninstall, install or

upgrade plugins frequently, or if you don't restart JIRA over a long period of time. Due to

technical reasons, PermGen space might not get cleaned up from the obsolete classes and you

may end up with error.OutOfMemoryError: PermGen space

Structure classes use only about 10 MB of PermGen space. But for the reasons just

mentioned, it is good to have a safety margin with a free PermGen space of at least 100 MB.

Changing Memory Parameters

To change memory parameters, edit (on Windows,).setenv.sh setenv.bat

To change the maximum amount of Heap space, edit JVM_MAXIMUM_MEMORY

parameter near the top of the script.

JVM_MAXIMUM_MEMORY="2000m"

To change the maximum amount of PermGen space, edit JIRA_MAX_PERM_SIZE=256m

line. Alternatively, you can add parameter to MaxPermSize

for example:JVM_SUPPORT_RECOMMENDED_ARGS. F

JVM_SUPPORT_RECOMMENDED_ARGS="-XX:MaxPermSize=400m"

You need to restart JIRA for these settings to take effect.

Use 64-Bit Java

It is imperative to use 64-bit Java when allocating a large amount of memory to it (1 GB and

more). To check if you're running 64-bit Java, look up parameter on the System Info Java VM
page.

Physical Memory Requirements

Avoid swapping at all costs!

Documentation

Version 1 290

The amount of physical memory should be enough to accommodate the whole heap and non-

heap memory. If you have other Java or memory-intensive applications running on the same

host, they all should fit in physical memory, plus you need to reserve at least 1 GB for operating

system, services, and file cache.

Do not allocate more memory to JIRA if it cannot fit into physical memory! If Java running

JIRA starts swapping actively used memory, it will be a performance disaster.

Sample calculations for a host running JIRA and Confluence, with Apache and MySQL:

JIRA Heap: 2 GB

Non-heap: 500 MB

Confluence Heap: 2 GB

Non-heap: 500 MB

Operating system

Apache HTTPD

MySQL

1 GB

Free memory margin / File buffers 2 GB

Total Physical Memory Required 8 GB

2.1.3 Uninstalling and Reinstalling Structure

Uninstalling Structure

You can uninstall Structure from Plugin Manager the same way you uninstall other plugins. You

can also manually remove structure JAR from directory plugins/installed-plugins

when JIRA is not running.

When you uninstall Structure plugin, Structure data is . It remains in the JIRA's not removed
database.

Reinstalling Structure

It is perfectly safe to uninstall Structure plugin, then install it back again. (This happens, for

example, when you upgrade to a newer version.)

All Structure data will be there unless you manually remove it.

Documentation

Version 1 291

1.

2.

3.

4.

5.

1.

2.

3.

4.

2.1.4 Upgrading and Downgrading

Upgrading

A standard upgrade procedure is simple:

Create a backup of Structure data. Use . Administration | Structure | Backup Structure
See for details.Backing Up Structure (see page 307)

Install the new version of the plugin.

Check Structure extensions. If you are using Structure.Testy, Structure.Pages, or other

extensions, they will most likely become disabled. You need to either upgrade them too

(it might be a compatibility requirement) or enabled them manually in the Add-on

Manager. If they fail to enabled, reinstall them (uninstall and install again).

Check plugins that integrate with Structure, such as Colors or Gantt Chart. Like with

extensions, see if they are enabled and maybe upgrade or reinstall them.

Monitor or for warnings or errors.catalina.out jira-application.log

For more specific instructions, please check the for the version to which you Release Notes

wish to upgrade.

Downgrading

Reverting the plugin to an older version is not always possible because newer versions can

modify the database so it becomes incompatible with older versions.

Simplified Downgrade

A simple downgrade is possible if the database schema hasn't changed. Check the Release

Notes for the version you are downgrading from and look for downgrade advisory. Proceed only

if you have indications that it is safe to downgrade to the specific version you have in mind.

Uninstall Structure plugin. This step is required because Add-on Manager will not install

an earlier version over a later version.

Install the version that you need.

Check Structure extensions and integrating add-ons. See the steps in the Upgrading

section above.

Monitor or for warnings or errors. catalina.out jira-application.log This is

especially important with this kind of downgrade, because some errors may be
subtle and not visible to the users!

https://wiki.almworks.com/display/structure/Release+Notes

Documentation

Version 1 292

1.

a.

b.

2.

3.

4.

5.

6.

7.

8.

1.

2.

Reliable Downgrade

Reliable downgrade requires Structure backup file and manual access to the database.

Create Structure backup using .Administration | Structure | Backup Structure

Backup files are backward / forward compatible along Structure 3.x series. You

cannot use Structure 3.x backup to downgrade to Structure 2.

You can use a previously created backup file. Note that all data will be rolled
back to the state when the backup file was created.

Uninstall Structure add-on.

Double-check you have the backup! You are about to delete all Structure data.

Manually access your database using database tools. Drop all tables that start with

. If after that you have other objects starting with that prefix, drop them too.AO_8BAD1B_

Install the previous version of Structure add-on.

Use to populate the data from the Administration | Structure | Restore Structure
backup file.

Check Structure extensions and integrating add-ons. See the steps in the Upgrading

section above.

Monitor or for warnings or errors.catalina.out jira-application.log

Creating a backup and restoring from backup may require considerable time. If you

want to speed up the process and you don't need the history of structure changes,

turn off the option "Include History" when creating a backup.

2.2 Setting Up Structure License

Unless your JIRA runs on one of the , Structure requires a license free licenses (see page 296)

key to work. You can get a free no-obligation 30-day evaluation license key for your JIRA

server in a few seconds.

2.2.1 Setting Up Evaluation License

Navigate to .Administration | Structure | License Details

Look at the section - if there's no license there or if the license is Current License
expired, then you need to get an evaluation license or purchase a commercial license.

Documentation

Version 1 293

2.

3.

1.

2.

1.

2.

3.

If section says that you have a , then your JIRA Current License Free License
must be qualifying for automatic free license and no further action is needed from

you. See .When Structure is Available for Free (see page 296)

To get a free 30-day unlimited-users evaluation license, follow Get Evaluation License
link on the structure license page, or open directly. In evaluation license request page

latter case please enter your JIRA Server ID to get a correct license.

You can also get evaluation license from Atlassian in the by clicking Plugin Manager
a button named or .Try Free Trial

If you have installed a license from ALM Works, Plugin Manager may show that

Structure is or , because it's not aware of ALM Works Unlicensed Action Required
license. You can check true license status on Administration | Structure | License

 page — if it shows you that the license is OK, you can safely ignore the status Details
of the license in Plugin Manager.

2.2.2 Licenses from ALM Works and from Atlassian

Structure support two kinds of licenses — issued by ALM Works and issued by Atlassian.

These licenses are functionally equal — you can use either kind to get the same functionality in

Structure. The prices are also the same.

The following table summarizes the differences and provides instructions for both kinds.

 License from ALM Works License from Atlassian

Purchased at ALM Works website Atlassian Marketplace

Managed at The license key is sent to you by email Manage with other Atlassian licenses at my.atlassian.com

License key

looks like

this:

-----BEGIN CERTIFICATE-----

MIIEYTCCAkmgAwIBAgIGAT2oPFqOMA0GCSqGSIb3DQE...

... at least 20 lines of symbols ... -----END

CERTIFICATE-----

AAABEA0ODAoPeNp9UE1Pg0AUvO+v2MSbCc0uQZO...

... at least 4 lines of symbols ...

Installation

Instructions
If you have a license from Atlassian installed, first

remove it in the .Plugin Manager
Open .Plugin Manager

Locate and open Structure plugin section.

http://almworks.com/structure/evaluate.html
http://almworks.com/structure/purchase.html
http://almworks.com/structure/marketplace.html
https://my.atlassian.com

Documentation

Version 1 294

2.

3.

3.

1.

2.

1.

2.

3.

 License from ALM Works License from Atlassian

Open .Administration | Structure | License Details

Copy and paste the key to the section Install License
and click .Install License

Copy the license key into the box and License
click .Update

Uninstallation

Instructions
Open .Administration | Structure | License Details

See the details of installed license and click .Uninstall

Open .Plugin Manager

Locate and open Structure plugin section.

Clear the license key from the box and License
click .Update

Purchasing

differences

Besides advance payments with credit card, wire

transfer or other payment methods supported by our

payment processor, we can also accept purchase

orders on Net 30 terms.

VAT and taxes may be handled differently from

Atlassian, as our payment processors are located in

USA and Germany. ALM Works is based in Russia, and

for direct purchases using Wire Transfer, we do not

charge VAT or any other taxes.

Purchasing from Atlassian is not available in

.certain countries

2.2.3 Purchasing a Commercial License

Structure license can be purchased from ALM Works, from Atlassian, or through Atlassian

Solution Partners and resellers.

Purchasing from ALM Works

Commercial license from ALM Works can be purchased at http://almworks.com/structure

./purchase.html

To generate a license, JIRA Server ID is required. JIRA Server ID is a 16-digit code, which

JIRA Administrator can look up in JIRA menu or in Administration | System Info
.Administration | Structure | License Details

Purchasing from Atlassian

You can purchase a license via Atlassian on the .Atlassian Marketplace

After the purchase is completed, the license key will be available on .https://my.atlassian.com

http://www.atlassian.com/licensing/marketplace#generalmarketplacequestions-11
http://almworks.com/structure/purchase.html
http://almworks.com/structure/purchase.html
http://almworks.com/structure/marketplace.html
https://my.atlassian.com

Documentation

Version 1 295

Purchasing from Resellers or Atlassian Experts

You can purchase through a reseller of your choice. can also Atlassian Solution Partners

provide you with additional services and advice.

When you purchase through a reseller, you can get either kind of license (issued by ALM

Works or by Atlassian), depending on the reseller's actions. If you prefer one kind of license

over another, please don't forget to tell that to the reseller.

2.2.4 Migrating Licenses

You can convert a license of one kind into a license of another kind. Please contact

 for assistance.sales@almworks.com

Next: Select which projects are enabled for Structure (see page 298)

2.2.5 Structure License Parameters

The following parameters are displayed in the section when you install a Current License
Structure license.

Parameter Meaning

License Type Commercial, Evaluation or other

Licensee Organization authorized to use the license

Serial
Number

A unique number assigned to the license

Expires If present, the license is not perpetual: it will expire at the specified date.

After that date passes, the Structure plugin will not be available unless the

license key is changed.

Maintenance
Expires

If present, the license key can only work with the versions of the Structure

plugin released prior to the specified date. If you need to use a newer version

of the Structure, you need to renew maintenance.

User Limit

https://www.atlassian.com/partners

Documentation

Version 1 296

Parameter Meaning

This is the maximum number of users allowed by JIRA that are supported by

this license key. The license that JIRA runs on must allow this number or

fewer users.

Server ID Although not shown in the license table, most licenses are tied to a specific

JIRA server ID and would not install on a server with a different ID. If you

need to move a license key to a different server, please contact support.

2.2.6 When Structure is Available for Free

Structure plugin automatically installs a free license in case your JIRA runs on one of the

following free licenses:

Free license for projects;open-source

Free license for a organization;non-profit

Free license;community

Free license;demonstration

Free license.developer

The clauses from the Atlassian EULA that govern the use of those free licenses also apply to

using Structure on JIRA servers where these licenses are installed.

2.2.7 License Maintenance and Expiration

Commercial License

Your commercial license for the Structure plugin (including Starter licenses) typically has no

expiration date, so it's good to use forever. However, it has which Maintenance Expiration Date
limits which versions of the plugin can be used with that license – you can only use the versions

released prior to that date.

To use versions released later, you need to purchase maintenance renewal, which extends

your maintenance expiration date one year forward – independently of the date of purchase.

Example:

Date license purchased 2012-01-01

License expiration date None

Documentation

Version 1 297

Maintenance expiration date 2013-01-01

Products and terms allowed by the

license

All versions released prior to 2013-01-01 can be used

indefinitely

Maintenance renewal purchased 2012-12-10 (doesn't matter)

Renewed license maintenance

expiration date

2014-01-01

Renewed terms All versions released prior to 2014-01-01 can be used

indefinitely

Evaluation License

Evaluation and temporary licenses have an expiration date, after which they just stop working –

they allow to use the product before the specified date.

Make sure you renew evaluation or get another license key before expiration.

License expiration and maintenance expiration warnings

If the currently used license becomes invalid (for example, because it is expired, or because

you've upgraded to a version of Structure that's not covered by the current license's

maintenance), then Structure plugin will function in read-only mode.

The users will be able to view structures, but they won't be able to make any changes until a

valid license is installed.

2.3 Getting Started with Structure

Structure comes with a short tutorial that is recommended for everyone who starts working with

Structure and for those who have previous experience with Structure 2.11 or earlier. The

tutorial is available under menu.Structure | Get Started

As it takes some (reasonable) effort to learn Structure before starting to use it efficiently,

consider sending out a link to this page to every user in your company who might have use for

Structure.

Documentation

Version 1 298

1.

2.

3.

4.

5.

6.

2.4 Selecting Structure-Enabled
Projects

Structure can be enabled for any selection of the JIRA projects, or for none of them. (In the

latter case no one can use Structure.)

By default, Structure is enabled for all projects. To limit users' exposure to Structure,

pick specific projects to be enabled for Structure.

To select which projects are enabled for Structure:

Navigate to .Administration | Structure | Configuration

Click .Enable/Disable Structure in Projects

Select whether Structure should be available for or for .all projects selected projects

In the latter case, change the projects list in the list by selecting one Selected Projects
or more projects and using and buttons.Enable Disable

Click when done.Apply

Documentation

Version 1 299

6.

a.

b.

In case you have disabled some projects that are already used in a structure (a structure

contains issues from that project), you'll be given a warning. You can opt to Proceed
 or cancel.with Changes

If you proceed and disable a project that has issues in some structures, those

structures will appear to the users without those issues.

If you later enable that project back - the issues will reappear where they were (all

structure changes taken into account).

Which projects are enabled for the Structure affects Who Has Access to the Structure

(see page 299)

2.5 Global Permissions

2.5.1 Who Has Access to the Structure

Structure is visible only to specific users. Those users who do not have access to the Structure,

will not see menu and other user interface elements, provided by the Structure plugin.Structure

A user has access to Structure if all of the following conditions are met:

The user has permission on at least one of the projects that are Browse enabled for

.Structure (see page 298)

Structure is :enabled for this user (see page 299)

Either Structure is enabled for everyone,

Or the user belongs to at least one of the enabled groups.

Or the user belongs to at least one of the enabled role in specified project; if role

is enabled for "Any" project, the user must be in this role in any of the projects

that are .enabled for Structure (see page 298)

Users who have global permission always have access to JIRA Administrators
Structure.

2.5.2 Restricting User Access to Structure

By default, Structure is accessible to anyone who has permission on Browse structure-enabled

. You can further restrict this access level to one or more user groups.projects (see page 298)

Documentation

Version 1 300

1.

2.

3.

4.

5.

6.

To select who can use Structure:

Navigate to .Administration | Structure | Configuration

Click .Select Structure Users

Select whether Structure should be available to or to Everyone Users in selected
.groups/roles

In the latter case, change the list by selecting the second radio selected groups/roles
button and use the section to add one or more required user groups or Add Group/Role
project roles. To set up required property, use the drop-down selectors to choose either

 or option, then choose the required group name or project/role Group Project
combination and press the button to add it to the list. If is set to "Any", this Add project
means that the user should be in the specified role for any of structure-enabled projects

.(see page 298)

You can remove the permission option by clicking the trashcan icon on the right of the

option.

Click when done or to dismiss your changes.Apply Cancel

Which projects are enabled for the Structure also affects Who Has Access to the

.Structure (see page 299)

When Structure is enabled for , even anonymous visitors will have access to anyone
Structure. To make Structure accessible to only logged in users, restrict access to the

 group.jira-users

Structure plugin maintains a cache of users permissions with regards to each

structure. In most cases, the cache is recalculated automatically, but in some cases

Structure plugin may miss a change in a user's groups or roles. The result could be

that the changed permissions take effect several minutes later (but only with regards

to). A user can force the cache to be Structure Permissions (see page 217)

recalculated by doing from the browser. Typically, it's done by holding hard refresh
 or or both and clicking the button.Ctrl Shift Refresh

Documentation

Version 1 301

1.

2.

3.

4.

5.

6.

2.5.3 Changing Permission to Create New Structures

By default, any logged-in user with can create new access to Structure (see page 299)

structures of their own. However, you can restrict this ability to one or more user groups.

To select who can create new structures:

Navigate to .Administration | Structure | Configuration

Click .Select Who Can Create Structures

Select whether new structures can be created by or Anyone with access to Structure
by .Users in selected groups/roles

If permissions are based on groups/roles, use drop-down menu to choose either Group
or , and then select the required group name or project/role combination. To Project
search the list, simply select the field and begin typing. Click to include the selected Add
group/role. If is set to "Any", this means that users should be in a specified Note: project
role for any of .structure-enabled projects (see page 298)

You can remove permission option by clicking the trash can icon on the right of the

option.

Click when done or to dismiss your changes.Apply Cancel

The user also needs to be able to create general access to Structure (see page 299)

new structures.

Users who have global permission are always allowed to create JIRA Administrators
new structures.

Structure plugin maintains a cache of users permissions with regards to each

structure. In most cases, the cache is recalculated automatically, but in some cases

Structure plugin may miss a change in a user's groups or roles. The result could be

that the changed permissions take effect several minutes later (but only with regards

to). A user can force the cache to be Structure Permissions (see page 217)

recalculated by doing from the browser. Typically, it's done by holding hard refresh
 or or both and clicking the button.Ctrl Shift Refresh

Documentation

Version 1 302

1.

2.

3.

4.

5.

6.

1.

2.

2.5.4 Changing Permission to Manage Synchronizers

By default, any logged-in user with Control for a structure can access level (see page 217)

manage that structure's . However, you can restrict this ability to Synchronizers (see page 332)

one or more user groups.

To select who can manage synchronizers:

Navigate to .Administration | Structure | Configuration

Click .Select Who Can Control Synchronizers

Select whether synchronizers can be managed by Anyone with control access to the
 or by .structure Users in selected groups/roles

In the latter case, change the list by selecting the second radio selected groups/roles
button and use section to add one or more required user groups or Add Group/Role
project roles. To set up the required property, use drop-down selectors to choose either

the or option, then choose the required group name or project/role Group Project
combination and press the button to add it to the list. If is set to "Any", this Add project
means that the user should be in the specified role for any of the structure-enabled

.projects (see page 298)

You can remove a permission option by clicking the trash can icon on the right of the

option.

Click when done or to dismiss your changes.Apply Cancel

The user also needs Control access level for a structure to be able to manage its

synchronizers.

Users who have global permission are always allowed to manage JIRA Administrators
synchronizers.

2.5.5 Changing Permission to Access Automation

By default, any user with Edit Generators for a structure can add access level (see page 217)

and configure . You can restrict this ability to one or more user generators (see page 192)

groups or project roles.

To select who can edit generators:

Navigate to .Administration | Structure | Configuration

Documentation

Version 1 303

2.

3.

4.

5.

6.

Click .Select Who Can Access Automation

Select whether generators can be changed by Anyone with Edit Generators
 or by .permission Users in selected groups/roles

In the latter case, change the list by selecting the second radio selected groups/roles
button and use section to add one or more required user groups or Add Group/Role
project roles. To set up the required property, use drop-down selectors to choose either

the or option, then choose the required group name or project/role Group Project
combination and press the button to add it to the list. If is set to "Any", this Add project
means that the user should be in the specified role for any of the structure-enabled

.projects (see page 298)

You can remove a permission option by clicking the trash can icon on the right of the

option.

Click when done or to dismiss your changes.Apply Cancel

The user also needs Edit Generators access level for a structure to be able to add or

change generators in it.

Users who have global permission are always allowed to change JIRA Administrators
generators.

2.6 Changing Structure Defaults

JIRA administrator can adjust a number of Structure "defaults", settings that apply when the

user does not specify a more specific request or option.

2.6.1 Initial Configuration

When Structure plugin is installed, the defaults are configured as follows:

System Default
Structure

None

Project Default
Structure

None

Default Views Menu

Documentation

Version 1 304

1.

2.

3.

Preinstalled views , , , , (on Basic Planning Tracking Triage Entry
all pages)

Default View Basic View

Auto-switch (Issue
Page)

Structure with the displayed issue.

Auto-switch (Project
Page)

Off - show the last viewed structure.

Keep structure when
navigating

On - When going from structure widget to an issue page, show

the same structure.

Auto-minimize
Structure Panel

On - Structure panel initially minimized if issue is not in structure.

2.6.2 Changing Default Structure

Default structure (see page 13) is selected when the user opens Structure Board (see page

 for the first time, or when the is set to . 16) Auto-switch option (see page 22) default structure
You can change the default structure for the JIRA instance and for a specific project.

Changing system-level default structure

Open menu.Administration | Structure | Defaults

In the section, click .System Default Structure Change

Select the default structure and click .Apply

The new system-level default structure will be also default for all structure-enabled projects that

don't have this setting overridden.

Make sure that default structure has correct . If the permissions (see page 217)

structure is selected for the user by default, but the user does not have access VIEW

to it, the user will see an error.

Documentation

Version 1 305

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

Changing project-level default structure

Open menu.Administration | Structure | Defaults

Locate the project in the section. Un-check Project Default Structures Show only
 checkbox if needed. Click in the projects with overridden default structure Change

corresponding row.

Select a structure and click .Change

or, select to remove the project-level default.Use system default

Project administrator can also change project-level structure from the tab on the Structure
project administration page, or from the options pop-up window on the tab on the Structure
user's project page.

2.6.3 Changing Default View Settings

View settings determine which views are offered to the users in the Views Menu (on the

Structure Board and other pages with Structure widget). Default view settings apply to all

structures that don't have view settings customized, configured by a structure administrator

(someone who has permission for that structure) via link on the Control Views Manage
 page.Structures

To change default view settings:

Open menu.Administration | Structure | Defaults

In the section, click .Default View Settings Change

Modify the default settings - for details, see .Customizing View Settings (see page 220)

Click Apply

2.6.4 Changing Default Options for the Issue and Project Pages

A number of options define how Structure Panel behaves on the issue page (see page 22)

and on the . When the user opens those project, component and version pages (see page 32)

pages for the first time, the default settings apply. These settings are adjustable by JIRA

administrator.

If the user changes some of the options, those changes are preserved and are applied instead

of defaults for that specific user.

To change the defaults:

Open menu.Administration | Structure | Defaults

Documentation

Version 1 306

2.

3.

Scroll down to and click .Structure User Interface Defaults Change

Make the changes and click again.Change

Option Description See Also

Auto-switch

(Issue Page)

Lets you automatically select structure displayed on the

Issue page.

Structure Options

for the Issue Page

(see page 22)

Auto-switch

(Project

Page)

Lets you automatically select structure displayed on the

Project, Component and Version pages.

Structure on the

Project Page (see

page 32)

Keep

Structure

Selection

When

Navigating

When turned on, clicking an issue in the Structure

 opens that issue's page and Widget (see page 15)

shows the same structure on that page initially.

Structure Options

for the Issue Page

(see page 22)

Auto-

minimize

Structure

Panel

If turned on, the Structure Panel on the issue page will

be initially minimized in case the selected structure

does not contain the displayed issue.

Structure Options

for the Issue Page

(see page 22)

2.7 Structure Backup, Restore and
Migration

Structure data can be backed up and restored separately from other JIRA data. Structure data

includes structures, hierarchies (forests), synchronizers, generators, folders - everything added

to JIRA by the Structure add-on. Structure backup does not include issue or other items data

(except for some attributes that are added to enable migration.)

You need the global permission to back up, restore or migrate JIRA System Administrators
Structure data.

Starting with Structure 3, when you fully back up JIRA, Structure data is also backed

up – it is stored in the same database with JIRA data. However, you can use the

separate backup:

Documentation

Version 1 307

1.

2.

To be able to restore only Structure data, not changing JIRA data

To be able to migrate structures to other servers (following Project Import in

JIRA, for example)

To export Structure data to some other tool by parsing the backup XML

2.7.1 Using Structure Backup

Structure add-on can use a backup file in two ways:

Full structure restore. This operation replaces all existing structure data (if any) with

the data stored in the backup file. This operation refers to issues and other items by their

numeric IDs (issue keys!), so the issues must be present in JIRA before this not
operation is run, and issue IDs must be the same as they were at the time the Structure

backup file was created.

Issue IDs are preserved if JIRA instance is fully restored from backup with

 command. Issue IDs are preserved if the issues are Restore System not
moved to another JIRA instance with JIRA's feature – use Project Import
structure migration in this case.

Migration / partial import. This operation lets you restore one or more structures

backed up at a different JIRA instance (assuming that the issues have been moved over

with the JIRA's command). It also allows you to merge the backed up Project Import
structure data with the structure data already existing on your JIRA.

A structure in a backup file cannot be restored if it refers to issues in a project

that is not present in the JIRA instance.

2.7.2 Backing Up Structure

Backing up Structure saves the existing structures, their configuration, hierarchies and other

Structure data. Structure backup does not save the issues themselves or other JIRA data - see

.Structure Backup, Restore and Migration (see page 306)

To back up Structure:

Navigate to .Administration | Structure | Backup Structure

Enter the name for the backup file. If you omit file extension, either will be added to it..zip

Documentation

Version 1 308

2.

3.

4.

5.

6.

1.

2.

3.

4.

You cannot specify directory for the backup file. Backup is always done to the

 sub-directory under JIRA home.export

Use checkbox to include full change history in the backup file.Backup History

Click Backup

If the file already exists, you will be given an option to overwrite the file or cancel the

operation.

You will see the page where you can track if the backup is going on or is Process Status
finished. Once it's finished, click to see the full name of the backup file.Show Results

2.7.3 Restoring Structure from Backup

Restoring structure from backup brings back the structures, synchronizers, views and other

data created at the moment of backup.

Restoring structure will not affect issues in any way or restore them. The issues that

make up the hierarchy should already exist in JIRA. If you do full restore, then you

need to run the standard JIRA data restore first - see Structure Backup, Restore and

.Migration (see page 306)

The issues and other items in the structures are identified by their internal numeric ID.

If you have transferred issues via JIRA's Project Import, issue IDs have changed and

so you need to use .Structure Migration (see page 310)

Use Restore Structure when:

the backup was made on this JIRA instance or on its predecessor,

and, you need to fully restore structure data,

and, you can lose the current structure data stored on this JIRA instance (issues are not

affected, only their organization into structures).

To restore the structure from backup:

Navigate to .Administration | Structure | Restore Structure

Enter the full path to the structure backup file (either or)..xml .zip

Click .Restore

Documentation

Version 1 309

4.

5.

6.

1.

2.

3.

If Structure currently has any data, it will ask you to confirm the restore operation.

Restoring from backup clears all Structure data, and it cannot be undone! If you have

data that you're overwriting, you might want to perform Backup first.

You will see the Process Status page that will show you the progress of the restore

operation. You can abort the process by clicking the button on the status page.Abort

If you abort the restore operation, Structure data will be left in a partially

restored state. You may see some of your structures, but not all of them, and

auxiliary data like synchronizers, views, favorites and perspectives may be

completely lost. You can revert to the original state only by fully restoring

Structure from another backup.

Once the process is finished, the button will take you to the result page, Show Result
where you'll be able to see the result and possibly some warning messages.

After the structure has been restored, open page to see if the Structure | Manage Structure
structures are there.

You also can restore structure data from backup files made with the earlier versions of

the Structure plugin, including Structure 2.

Downgrading from Structure 5.0 or Later

The introduction of in Structure 5.0 required changes to Manual Adjustments (see page 209)

our backup file format, which makes previous versions of Structure unable to restore data from

backup files created by Structure 5.0 and later.

To downgrade to an earlier version, you first need to restore Structure data from a 5.0 backup

file:

Unpack the XML backup file from the ZIP archive created by Structure.

Change the attribute in the element from "5.0" to version <structure-backup>

"3.3".

Delete all elements from the XML.<manualAdjustments>

Once completed, you can restore directly from the modified XML file using the procedure

above. You do not have to pack it into a ZIP archive.

Documentation

Version 1 310

1.

2.

3.

4.

5.

2.7.4 Migrating Structures

Migrating structure data lets you import one or more structures from a different JIRA instance

after you have imported projects with the JIRA's Project Import operation. Also, you can add

some structures from a backup file to those that are already present in JIRA.

Migrating structure will not affect issues in any way. The issues that make up the

hierarchy should already exist in JIRA. You may need to run JIRA project import or the

standard JIRA data restore first - see Structure Backup, Restore and Migration (see

.page 306)

During migration the issues in the structures are located in JIRA by their issue keys

and a possibly new numeric ID is being used to construct the structure. A structure

cannot be migrated if it refers to issues from a project that is missing in JIRA.

When migrating a structure and there's already an existing structure with the same ID or name,

you will have an option to either replace the existing structure with the structure from the

backup, or restore the structure from backup as a separate structure, or skip this structure.

To migrate structures from backup:

Navigate to .Administration | Structure | Migrate Structure

Enter the full path to the structure backup file (either or)..xml .zip

Click .Select Structures To Restore

Select structures that should be restored. If there's an existing structure with same ID or

name, select to replace the existing structure with the one from Overwrite Existing
backup, otherwise the structure will be restored as a new structure, leaving the existing

one unaltered.

Under the list of structures there's a list of additional restore options:

Restore
Structure
Permissions

If selected, the plugin will attempt to restore the access permissions

for the imported structures. This attempt may fail, for example, if the

permission rules refer to users or groups not present in JIRA. If you

don't select this option, or if the attempt to restore permissions fails,

then the restored structure will have no permission rules, letting JIRA

administrators further configure them through Manage Structures

 page.(see page 213)

Documentation

Version 1 311

5.

6.

7.

Restore
Synchronizers

If selected, the synchronizers for selected structures are restored.

Synchronizers configuration is imported as-is, and might not

make sense on a new JIRA instance. After you have

restored synchronizers, please visit Synchronization Settings

 page to check if the synchronizers are (see page 332)

configured correctly.

Restore
Structure
History

If selected, structures are imported along with their history (if it is

present in the backup file). If not selected, structures will have no

history.

Restore User
Favorites

If selected, the plugin will try to restore "favorite" marks made by

users for the selected structures.

Restore Views If selected, all views from the backup files will be restored. If there's a

conflict and a view with a given ID already exists, Structure will first

verify if the view being restored is different from the one in the

system, and if it is, restore it as a new view with a different ID.

Restore View
Settings for
Structures

If selected, for the selected structures view settings (see page 220)

will be restored.

Click .Restore Selected Structures

You will see the Process Status page that will tell you if migration is going on or is

finished. Once it's finished, you'll be able to see the result and possibly some warning

messages.

After structures have been migrated, open page to see if new Structure | Manage Structure
structures are there.

As of version 3.3, Migrate Structure does not support Structure.Testy or Structure.

Pages data.

Documentation

Version 1 312

1.

2.

3.

4.

5.

6.

7.

1.

2.

2.8 Automatic Structure Maintenance

2.8.1 Automatic Structure Maintenance

Automatic Structure maintenance runs daily and performs Structure backup and database

optimization. The optimization removes stale data from the database and may improve general

JIRA responsiveness.

To configure automatic Structure maintenance:

Navigate to Administration | Structure | Maintenance

Click Configure Scheduled Maintenance

If scheduled maintenance is disabled, click Enable scheduled maintenance

Select schedule at which maintenance should run

Select tasks that scheduled maintenance should run

Configure additional task parameters, if any

Click Apply

By default, scheduled maintenance is enabled and set to run daily at 3 AM.

Automatic maintenance can be run only when the Structure license is valid.

2.8.2 Maintenance Schedule

You have several options to specify a maintenance schedule:

Run every day at given time

The time is specified in the server's time zone, displayed near the time fields.

Documentation

Version 1 313

2. Run based on crontab schedule

Your schedule should follow standard crontab formatting. Schedule is a list of five, single-

space-separated fields, representing: minute, hour, day, month, weekday. Each field can

be a value, list of values or range. Month and weekday names can be given as the first

three letters of the English names. Among numbers and month/weekday names, the

following symbols can be used:

Asterisk (*) is used to set a range that includes every value.

Question mark (?) is used instead of '*' for leaving either day-of-month or day-of-

week blank.

Comma (,) is used to separate items of a list. For example, using "MON,WED,

FRI" in the 5th field (day of week) means Mondays, Wednesdays and Fridays.

Hyphen (-) defines range. For example, 2000–2010 indicates every year between

2000 and 2010, inclusive.

Slash (/) can be combined with range to specify step values. For example, */5 in

the minutes field indicates every 5 minutes.

Schedule examples:

0 * * * * = the top of every hour of every day.

*/10 * * * * = every ten minutes.

0 8-10 * * * = 8, 9 and 10 o'clock of every day.

0 6,19 * * * = 6:00 AM and 7:00 PM every day.

0/30 8-10 * * * = 8:00, 8:30, 9:00, 9:30, 10:00 and 10:30 every day.

0 9-17 * * MON-FRI = on the hour nine-to-five weekdays.

0 0 25 12 ? = every Christmas Day at midnight.

Documentation

Version 1 314

2.8.3 Maintenance Tasks

Backup
Structure data

Creates a backup of the Structure database in the sub-directory export

under JIRA home.

Parameters:

Include history – if checked, full structure change history will be

included in the backup. If you have a lot of changes in structures,

this setting may cause the backup to take some time, and the

backup file to be large. If you don't need a history of structure

changes, it is advised to turn this option off.

It is advised to have separate Structure backups, even though

Structure data is backed up with JIRA's normal backup, because

you will be able to Restore from that data without rolling back

changes in JIRA.

Delete old
backups

A backup is considered old if it is not among latest backups (is X X
specified by the first parameter of this task) it was made earlier than and Y
days ago (is specified by the second parameter). This task removes all Y
such backups made by the Backup task.

Parameters:

Always keep latest backupsX

Always keep backups made during last daysY

Optimize
favorites

If a user marks a structure as their , Structure plugin favorite (see page 13)

will keep this mark, even if the user is later deleted from JIRA. Popularity

 will also account for this user. This number of the structure (see page 13)

task removes marks made by users no longer in JIRA and recounts

structure popularity.

Optimize
structures

If an issue is added to a structure and then deleted from JIRA, that

structure will still contain a reference to this issue (although it will not

display it). This task removes references to deleted issues and other items

that have become permanently unavailable.

Documentation

Version 1 315

Optimize view
settings

If a is deleted, some view (see page 233) structure view settings (see page

 may still reference it, and a blank view named will 220) ? (Unknown View)
be shown in its place. This task removes references to deleted views.

Optimize
synchronizers

Sometimes Structure add-on may keep data related to synchronizers of a

deleted structure. This task removes such data.

Delete old
synchronizer
audit log
records

This removes old records from , clearing up space Synchronizer Audit Log

in the database.

Parameters:

Keep records for the last days.X

If you set X to 0, maintenance procedure will remove all records.

Reindex
change
history

Currently does nothing.

This task has remained as an option since Structure 2. Its purpose

will be restored later when Structure 3 gets more maintenance

options for structure histories.

Optimize
structure
perspectives

Removes old that haven't been used by perspectives (see page 240)

anyone for a certain amount of time.

Parameters:

Delete perspectives that were not used during the last daysX

Reindex
structures

Clears and recalculates issue-to-structure index, used to define which

structures contain a specific issue. (Issues added with Automation (see

 are not counted.)page 192)

Delete old
change
history

The task removes old records from change history. A history record is

considered old if the change was made earlier than X days ago (X is

specified by the first parameter) it is not among Y latest history records and
for the structure where the change was made (is specified by the second Y
parameter).

Parameters:

Documentation

Version 1 316

1.

2.

3.

4.

5.

1.

2.

Always keep change history for the last X days

Always keep Y latest changes per structure

2.8.4 Running Maintenance Tasks Manually

You can run specific maintenance tasks at any time.

To run maintenance manually:

Navigate to Administration | Structure | Maintenance

Navigate to sectionRun Maintenance Now

Select tasks to run

Configure additional task parameters, if any

Click Run Maintenance Now

Running maintenance manually does not affect automatic maintenance settings or

schedule.

2.9 Workflow Integration

2.9.1 Structure Workflow Validator

Structure Plugin adds a new to JIRA. This validator blocks the workflow transition validator

transition if the issue doesn't match an . For example, it can be S-JQL query (see page 245)

used to prevent an issue from being resolved if the issue has some unresolved sub-issues in a

structure.

Adding an S-JQL condition for the issue creation transition will result in the S-JQL

condition always evaluating to false. The validation check is done before the issue is

inserted into the structure, so the S-JQL check won't find the issue.

To add the Structure validator to a workflow:

Create a draft of the workflow and open the dialog. (For Add Validator to Transition
more information, please refer to the .)Jira documentation

Select the validator. A configuration window will open:Issue Matches Structure Query

https://confluence.atlassian.com/display/JIRA/Advanced+workflow+configuration#Advancedworkflowconfiguration-Whatareconditions,validators,andpostfunctions?
https://confluence.atlassian.com/display/JIRA/Advanced+workflow+configuration#Advancedworkflowconfiguration-validatorAddingavalidator

Documentation

Version 1 317

2.

3.

4.

5.

6.

7.

In the field, specify how the validator should select the structure to check. It Structure
can either be a manually-selected structure, or it may depend on the issue being checked

(the default structure of the issue's project or the structure that contains the issue).

In Structure 3, the option to pick a structure that contains the issue being

validated is no longer available.

In the field, enter the S-JQL query that the issue should match in order to S-JQL Query
pass the transition.

You can use one of the examples provided with the form. Just select an

example in the selector, and the corresponding query will be Query Examples
copied into the field.S-JQL Query

In the field, enter an explanation message that users will see if their Validator Message
transitions are blocked by the validator.

In the field, select whether the transition If the Issue Is Not Added to the Structure
should be blocked or allowed if the issue is not contained in the checked structure. (Or if

the issue does not belong to any structure, in case automatic structure selection is

chosen.)

Documentation

Version 1 318

7. In the field, select on behalf of which user the validator should run. It can Run as User
either be a manually-selected user, or it may be the lead of the project of the issue that is

being checked.

Running on behalf of a user means that the validator will only see issues and

structures that are accessible to the specified user. The result of the validator

check will depend on the permissions of the specified user and will not depend

on permissions of the user who performs the transition.

2.9.2 Structure Workflow Condition

Structure Plugin also comes with the Structure condition that is similar to the Structure

validator. Using Structure condition may significantly increase the load on server, so this

condition is not available by default.

To make Structure Workflow Condition available, enable the structure-workflow-condition
module of the Structure plugin via page. For Administration | Add-ons | Manage Add-ons
instructions, please see .Universal Plugin Manager documentation

Checking S-JQL condition may involve querying other issues in the checked

structures, and in case the structure is large, this may take considerable time – yet

within reason if it is done occasionally.

However, workflow conditions are checked every time a user opens an issue details

page, in order to decide which transitions to show. If you have hundreds of active

users and thousands of issues in a structure, this may easily degrade server

performance.

Use your own best judgement.

2.10 Running Structure on Jira Data
Center

Structure app is fully compatible with Jira Data Center (including Data Center editions of Jira

Software and Jira Service Desk).

The following articles provide additional information, specific to the Data Center editions.

2.10.1 Archived Projects and Structure

Starting with version 7.10, Jira Software Data Center allows administrators to archive projects.

https://confluence.atlassian.com/display/UPM/Viewing+installed+add-ons#Viewinginstalledadd-ons-AboutAdd-onModules

Documentation

Version 1 319

The archived issues become read-only and can only be accessed through a direct link. They

are removed from the Lucene index and will not be a part of a search result even if they match

the search criteria.

Archived Issues in Structure

Archived issues will not be visible in Structure – even if they were added manually,

and even in the archived structures.

When you archive a project, check for structures that have issues from that project. Contact the

users to see if they are ok with the archived issues disappearing from the structures.

Restoring an Archived Project

When you restore a project from archive, you run a project reindex. After the reindex has

finished, the issues should reappear in Structure.

Since Structure has internal caching of which issues are visible to which users, it might take a

few minutes after the reindex' completion before issues are shown in Structure. To force

clearing of caches and to see the restored issues in structures immediately, use "force reload"

action from your browser (Shift+Reload).

2.11 Anonymous Usage Statistics

Please enable anonymous usage statistics, as is helps the developers better

understand how Structure plugin is used, prioritize improvement requests and build a

better product. No JIRA content or personally identifiable data are collected.

When anonymous usage statistics is enabled, Structure plugin periodically sends some data

from the JIRA instance to ALM Works.

The data consists of anonymized information related to the usage of Structure plugin, for

example, invocation count of each structure widget action (say, structure history is toggled 56.3

times a day on average, issues are pasted 30.7 times a day on average etc.).

Here's a sample report that is sent to ALM Works: Statistics Sample

https://wiki.almworks.com/download/attachments/32222999/statisitics.txt?version=1&modificationDate=1491358938000&api=v2

Documentation

Version 1 320

1.

2.

1.

2.

3.

2.11.1 Viewing Current Statistics

JIRA administrator can always have a look at the data which is about to be sent. To view the

data:

Navigate to Administration | Structure | Support

Click View Current Statistics

2.11.2 Turning Anonymous Usage Statistics On and Off

To enable or disable Anonymous Usage Statistics:

Navigate to Administration | Structure | Support

Check or uncheck checkboxSend anonymous usage statistics

Click Apply

The information is collected in accordance with and .EULA privacy policy

2.12 Structure Files

2.12.1 $JIRA_HOME/structure

Structure keeps most of its data in the sub-directory under the structure JIRA home directory

.

On JIRA Data Center, a local filesystem is used.

Cache files

Structure uses file system to temporarily store some of the internal runtime database, involved

in Automation feature. These files may be stored in "rows0", "rows1" and similar directories.

2.13 Turning Off Optional Features

Some features in Structure are designed as modules and can be safely turned off. You can do

so to remove unnecessary functionality, or limit the exposure of Structure plugin to the users.

http://almworks.com/EULA-Structure.pdf
http://almworks.com/company/legal/privacy.html
http://confluence.atlassian.com/display/JIRA/JIRA+Home+Directory

Documentation

Version 1 321

1.

2.

3.

4.

5.

If your aim is to limit the exposure of Structure, consider restricting permissions to

specific groups of users - see .Gradual Deployment (see page 331)

While it is easy to disable a Structure module, we don't recommend to touch any

modules except those listed in this article to ensure stability of Structure and your

JIRA application.

To turn off a module:

Open Add-on Manager by navigating to | | .Administration Add-ons Manage Add-ons

Locate Structure add-on and expand its row.

Click the link that looks like the following: "309 of 310 modules enabled." (Numbers may

vary.)

Use Search feature of your browser to find the module by its name (provided below.)

Click the Disable button to the right of the module name.

You can always turn the feature on later by clicking the Enable button.

Feature Module name Effect of disabling this module

Activity

Streams

Structure

(structure-

activity-

provider)

Activity streams provider and Structure-related

updates are removed from the following places:

Activity Stream gadgets (see page 242),

Activity tab on the issue page,

Activity tab on the user page,

Activity tab on the project page.

Structure on

the Issue

Page (see

page 18)

web-resource:

Issue Page

Decorator

(adjustIssue)

Structure section is removed from the issue page.

Structure on

Agile Boards

(see page

34)

web-panel:

GreenHopper

tab

(greenhopper-

tab)

Structure tab is removed from the issue details panel

on the Agile board.

Documentation

Version 1 322

Synchronizers

(see page

332)

synchronizer:...

(5 synchronizers are

bundled with

Structure)

Users will not be able to install synchronizers, and

installed synchronizers won't run. You will need to

restart the plugin to have settings make full effect.

(Disable plugin, then enable plugin.)

2.14 Advanced Configuration

Certain advanced aspects of Structure's behavior might not have dedicated configuration

pages, being controlled by application properties or system properties instead. This page lists

Structure-related properties and describes how to set them.

2.14.1 Setting Application Properties with the Structure Dark Features and
Fine Tuning Interface

The easiest way to add and manage custom Structure properties and dark features is to use

the Structure dark features and Fine Tuning interface.

To add a new custom property or dark feature, enter the appropriate Property Key (see

below for a list of available keys) and click .Add Property

Once the key is added to your properties list, you can adjust its value by clicking the edit

icon (pencil).

To remove a custom property, click the trash icon.

To access the interface, you must have Jira Administration permissions and enter the interface

location directly into your browser: https://YOUR_JIRA_ADDRESS/secure/admin

/StructureDarkFeatures.jspa

Guidelines for Adding/Removing Property and Values

When an invalid property value is entered in the table, the default value is applied.

Documentation

Version 1 323

1.

2.

3.

4.

Spaces are not trimmed, and may result in an invalid value.

When you delete a property from the admin table, it's property value is set to the default

value:

If the property was added with our admin interface, the value is set to empty value

and the property is removed from the table after a page refresh.

If you set the value to empty (without deleting the property), the property will not

be removed.

2.14.2 Setting System Properties

You can set System properties during Startup or using Script Runner.

Both of the following methods can also be used to set Structure properties; but we

recommend using the admin interface.

Setting System Properties on Startup

You can set System properties using the JIRA startup option, for example:-D

-Dstructure.sync.guard.email.admin.cycles=5

Configuring JIRA startup options is described in . You will need to restart JIRA for the this article

properties to take effect.

Setting System Properties with Script Runner

You can also set system properties using the add-on.Script Runner

Install Script Runner.

Go to .Administration | Add-Ons | Script Runner | Script Console

Select as the Script Engine.Groovy

Enter the following code into the Script text box, adjust property name and value as

needed, and click .Run Now

System.setProperty("structure.sync.guard.email.admin.cycles", "5")

https://confluence.atlassian.com/display/JIRA/Setting+Properties+and+Options+on+Startup
https://marketplace.atlassian.com/plugins/com.onresolve.jira.groovy.groovyrunner

Documentation

Version 1 324

The changes take effect after you restart the Structure, but the properties will be reset to their

default values when you restart JIRA. In some cases for settings to take effect you have to

reinstall the Structure. But If you want the changes to be permanent, please use the startup -D

option as described above.

2.14.3 Structure size limit

Property Default Explanation

com.almworks.jira.structure.AOBasedStructureManager.forestSizeLimit 100000 The

maximum

number of

rows that

one

structure

can contain.

Size

exceeding

operations

will be

blocked.

2.14.4 Structure Automation limits

Property Default Explanation

structure.gfs.generationTimeHardLimit 600 The maximum amount of time that

can be spent for Structure

generation (in seconds).

2.14.5 Automation Defaults

Property Default Explanation

structure.generator.defaults.disableUpdates false When adding generators:

Documentation

Version 1 325

Property Default Explanation

If set to "false"

(default) - the "allow

changes" box is

initially checked.

If set to "true" - the

"allow changes" box

is initially unchecked.

2.14.6 Manual adjustments

Property Default Explanation

structure.gfs.manualAdjustments.enable true Setting this property to will false

disable manual adjustments for

the entire Jira Instance. All

adjustment-related UI elements

and controls will disappear.

Existing manual adjustments will

be kept in the database, but will

not be applied.

structure.gfs.manualAdjustments.

maxAdjustmentsPerStructure

2000 The maximum number of manual

adjustments per one structure.

When this limit is reached adding

new manual adjustments will be

impossible. If you reduce this limit,

you may have to remove all

manual adjustments for the

structures that exceed it.

structure.gfs.manualAdjustments.

maxAdjustmentsPerAction

200 The maximum number of manual

adjustments per one user action.

If this limit is exceeded the action

will be aborted without making any

changes.

2.14.7 Hidden Issue Links

Documentation

Version 1 326

2.14.7 Hidden Issue Links

Property Default Explanation

structure.feature.hiddenLinks.enabled false Set to true to enable support for

hidden issue links.

2.14.8 Synchronizers

Synchronization (see page 332) lets you keep Structure issue hierarchy in sync with some

other issue properties.

Property Default Explanation

structure.feature.synchronizers.enabled false Set to true to enable

Synchronizers within Structure.

2.14.9 Synchronizer Cycle Guard

The is a component that detects conflicting synchronizers and cycle guard (see page 343)

prevents them from cycling forever, overriding each other's changes. The table below describes

the system properties that control the cycle guard.

Property Default Explanation

structure.sync.guard.disable false Set to to true

disable the cycle

guard. Conflicting

synchronizers will

not be prevented

from running

forever. Not
recommended.

structure.sync.guard.maxAutosyncsWithoutUserChanges 10 The maximum

number of times

that a

synchronizer is

allowed to run,

processing the

changes

Documentation

Version 1 327

Property Default Explanation

generated by

another

synchronizer. If

this limit is

exceeded, the two

synchronizers are

considered to be

in conflict.

structure.sync.guard.stop.disable false If , true

conflicting

synchronizers will

not be disabled

automatically. The

cycling may

repeat after a

user-generated

change.

structure.sync.guard.email.owner.disable false If , the cycle true

guard will never

send e-mail

notifications to

synchronizer

owners.

structure.sync.guard.email.admin.disable false If , the cycle true

guard will never

send e-mail

notifications to

JIRA

administrators.

structure.sync.guard.email.admin.cycles 10 The minimum

number of times a

cycle must be

detected for a

synchronizer

Documentation

Version 1 328

Property Default Explanation

before an e-mail

notification about

that synchronizer

is sent to JIRA

administrators.

The counter is

reset when a

synchronizer is

automatically

disabled, so if this

number is greater

than 1 and

automatic

disabling is on,

the administrators

will not be

notified.

2.15 System Requirements

2.15.1 Atlassian Platform

JIRA Versions Supported 7.2 – 7.12 (by the latest version)

See also: Platforms supported by JIRA

JIRA Editions Supported JIRA Core, JIRA Software, JIRA Service Desk

JIRA Data Center Supported

See Server Requirements below

Confluence Versions
(Structure.Pages)

6.7 – 6.11

2.15.2 Databases

Databases used by JIRA are also supported by Structure.

https://confluence.atlassian.com/adminjiraserver071/supported-platforms-802592168.html

Documentation

Version 1 329

2.15.3 Browsers

Structure Plugin is compatible with the following browsers:

Browser Supported versions Versions known to NOT work

Mozilla Firefox All recent versions

Chrome All recent versions

Internet Explorer 11 8, 9, 10

Safari All recent versions on OS X Safari for Windows is not supported.

Edge All recent versions

Other browsers Unsupported, but may work

2.15.4 Server Requirements

At least 100MB of free disk space is needed on the server. See Structure Files Location

 for details.(see page 320)

On JIRA Data Center, each node must have sufficient free disk space in the local

home.

Java process running JIRA needs at least additional 200 MB of heap memory. If running

on Java 7 or earlier, ensuring sufficient free PermGen space is recommended. See

 for details.Memory Guidelines (see page 287)

JIRA process must have read/write permissions to JIRA (local) home directory to create

 sub-directory automatically.structure

2.15.5 Non-Conforming systems

With regards to systems that don't conform to JIRA requirements and Structure requirements:

while we sometimes know that a specific configuration doesn't work, more often it's grey area

so feel free to try and let us know the results.

2.16 Best Practices

We have collected several guidelines for common situations.

Documentation

Version 1 330

If you have your own best practice to suggest, please !let us know

2.16.1 Backup Strategy

Prior to version 3.0, Structure used to store data separately from JIRA data and it was

not included in the general System Backup. That called for a separate backup

strategy. With version 3.0 and later, this matter is simplified.

General Approach

Structure data is backed up along with JIRA data when you make full system backup.

However, Structure can back up and restore its data separately. This allows you to roll back

Structure-related changes without affecting other JIRA data and generally safeguards your

structures.

The following backup strategy is sufficient in most cases.

Option 1. Automatic XML Backup + Export Directory Backup

This strategy involves two processes:

Automatic Structure Maintenance (see page 312) lets you automatically create full hot

backups of the Structure data once a day. The backups are stored in the export

directory under JIRA home.

Periodic file-level backup of the directory (or the whole JIRA home) to a export

different storage device increases the safety of the backups. This part should be

configured manually by the server administrator.

This is the recommended strategy.

When you install Structure, automatic daily backups are enabled by default. You only

need to make sure that backup files that will appear in the directory are export

stored safely.

Option 2. Manual / API-Triggered XML Backup

You can manually back up structure through menu.Structure Backup (see page 307)

If automatic Structure maintenance does not suit you and you have resources to develop your

own mini-plugin for backup strategy, you can automatically back up Structure data through the

 (use interface).Structure API (see page 365) StructureBackupManager

Documentation

Version 1 331

1.

2.

3.

4.

5.

Restoring from XML Backup

See for instructions.Restoring Structure from Backup (see page 308)

Incremental and Differential Backups

As Structure database is typically not large, full backup is recommended.

Structure XML backup/restore does not support incremental backup, but you can use your

operating system tools for incremental or differential backup of the files in structure

directory.

2.16.2 Gradual Deployment

In an enterprise with JIRA already in production and being used every day, deploying Structure

plugin and making it available to everyone might be disruptive – in a good sense, since

Structure adds a whole layer of useful functionality to JIRA, but perhaps also in a bad sense, if

the users are accustomed to their stable user interface and don't appreciate changes that they

do not expect.

As a JIRA admin, you can deal with that situation quite easily by deploying Structure gradually.

Structure can be limited to a number of users – see Restricting User Access to Structure (see

. The users who do not have access to Structure don't see Structure's footprint in page 299)

JIRA in any way (with one exception, see below).

A common path to gradual deployment is:

Create a group called and restrict access to Structure only to that group.structure-users

Add to the group people who initially championed getting Structure for your company and

anybody who actively wants to use it.

Let them use Structure and spread the word.

Once it is decided that everybody wants to use Structure, remove the restriction.

Don't forget to advise everyone to check the page.Getting Started (see page 297)

In the same way, you can gradually enable Structure project-by-project. See Who Has Access

 for details.to the Structure (see page 299)

Turning Optional Functionality Off

Some Structure features can be turned off – see .Turning Off Optional Features (see page 320)

One notable feature is . For technical reasons, even if a user does not have Activity Streams
access to Structure, they will still see "Structure" as a possible Activity Streams Provider

(although they won't see any events coming out of it). You can turn it off.

Documentation

Version 1 332

Another optional feature to consider is synchronizers. Synchronizers are powerful tools, but

they may be harmful if applied carelessly. You can turn off synchronizer modules, or check who

in your JIRA has permission.Bulk Edit

Automation (see page 192) is the newest feature that can potentially place considerable load

on the server. You can limit the access to it by changing permission to access Automation (see

.page 302)

2.17 Dark Features

Dark features are additional features or behavior modifications that are usually hidden from the

user. However, JIRA administrator can turn them on for their instance.

2.17.1 Alternative initial values for project/type when creating an issue in
dialog

Normally, when the user creates new issues through dialog, Structure remembers the selected

project and issue type and offers them next time by default. This dark feature enables a

different algorithm, which used to work in a previous version of Structure: the initial project and

issue type are taken from the issue that was focused when "+Create" or "+Next Issue" was

pressed.

System property structure.feature.

altInitialValuesInDialog

Options to add in setenv.sh /
setenv.bat

-Dstructure.feature.

altInitialValuesInDialog=true

Internal feature name altInitialValuesInDialog

Introduced in version 2.11.0

2.17.2 Synchronization

Dark Feature

Documentation

Version 1 333

Synchronizers are hidden by default

If there are no synchronizers installed on your system, this feature will now be hidden

from users. To enable synchronizers, set structure.feature.synchronizers.enabled
system property to . See for more true Advanced Configuration with System Properties

information.

If you currently have synchronizers installed, the feature will remain visible.

Synchronization lets you keep Structure issue hierarchy in sync with some other issue

properties. For example, you can enforce the rule that JIRA sub-tasks should always be placed

under their parent in the structure, or that there should be an issue link from parent issue to

each sub-issue.

Synchronization can also be run once to perform a one-time update of the structure (Import) or

one-time update of the issues based on the structure (Export).

Synchronization is an extendable system that allows JIRA plugins to provide their own

synchronizers. The following synchronizers are supplied with the Structure plugin:

Sub-Tasks Synchronizer (see page 344) places JIRA sub-tasks under their parent

issues in the structure.

Links Synchronizer (see page 349) makes sure that sub-issues are linked to their parent

issues with a specific link type, and it also can be used to reconstruct structure from

links.

Filter Synchronizer (see page 345) populates structure with issues that pass a saved

filter. It also can be used to remove issues from structure when they no longer pass the

filter.

JIRA Agile (GreenHopper) Synchronizer (see page 353) works to sync JIRA Agile

ranking of issues with their position in the structure and to make it easier to assign

stories to epics using Structure.

Status Rollup Synchronizer (see page 358) propagates issue status upwards. For

example, it can make parent issue Resolved if all sub-issue are resolved.

One-time synchronization works when you run or , Export (see page 335) Import (see page 334)

or when you run a . Automatic synchronization runs in the background Resync (see page 340)

and listens for updates in the structure and beyond.

Documentation

Version 1 334

1.

2.

3.

Please be careful: synchronization may cause massive changes to issues. For

example, if you install JIRA Agile (GreenHopper) synchronizer and then add issues to

the structure in some random order, those issues' ranks will be changed according to

that order almost immediately! Please make sure you have daily backups and

carefully review how a synchronizer works before installing it.

In order to install a synchronizer, you need to have permissions on a structure and Control
have necessary permissions on the JIRA issues.

Note that you also need to have special permission to . If there is a Control Synchronizers
warning message above the feature description, please contact your for JIRA Administrator
assistance.

Anonymous user cannot install synchronizers or use Export/Import, even if they are granted

Control permissions.

Importing Structure

When you a structure, you get a set of issues which should be in the structure and/or Import
information on how they should be arranged in a hierarchical list. Then this information is

applied to an existing structure.

For example, you can use a to add All Open Issues to a Filter Synchronizer (see page 345)

structure (or the results of whatever Saved Filter you have), or JIRA Agile (GreenHopper)

 to rearrange issues in the structure according to their rank and Synchronizer (see page 353)

epic in JIRA Agile.

To run Import, you must have permissions on the structure and additional Control
permissions may be required by a specific synchronizer.

To import hierarchy into a structure:

Open page using top navigation Structure menu.Manage Structures

Select the structure you'd like to import into and click link.Import

If you don't see link in the Operations column, then you possibly don't Import
have Control permissions for this structure.

Select a synchronizer from the drop-down list and proceed to configure import

parameters.

Documentation

Version 1 335

3.

4.

5.

6.

If there are no synchronizers in the drop-down list, then either none are currently

installed or none of the installed synchronizers support import into a structure.

Enter synchronizer parameters. Each synchronizer has its own parameters, so please

refer to . If you're not yet acquainted specific synchronizer documentation (see page 344)

with how this specific synchronizer works, please read the Rules section on the

parameters page.

Click . When you start import, synchronizer will analyze data and possibly Run Import
update the whole structure.

After you click Run Import and confirm the operation, a job status page is shown. When

the job is marked as Finished, the synchronization is done and you can view the results

by opening the affected structure.

When import is run, it runs under your user name and with your permissions. So if you

don't have enough permissions to read values somewhere else or to view issues you'd

like to import, you may not see the expected result.

 and are actually a one-time Import (see page 334) Export (see page 335) Resync (see

. Export is resync from Structure and import is resync into Structure. If you page 340)

need to run export or import periodically, you can set up a synchronizer with all the

parameters but without enabling it - so no synchronization happens in the background.

When you need to export or import, you can open Synchronization Settings page for

the structure and run Resync. Just make sure you've selected the correct Resync

direction!

Exporting Structure

When you a structure, you use the hierarchy from the structure to create, update or Export
delete other issue attributes or make any other changes based on the hierarchy that a specific

synchronizer provides.

For example, you can use to create issue links between Links Synchronizer (see page 349)

sub-issues and their parents.

To run Export, you must have permissions on the Structure, and you will likely Control
need some additional permissions, depending on which synchronizer you're going to

use. For example, you have to have permission when working with the Link Issues
Links synchronizer.

Documentation

Version 1 336

1.

2.

3.

4.

5.

6.

To export hierarchy from a structure:

Open page using top navigation Structure menu.Manage Structure

Select the structure you'd like to export from and click link.Export

If you don't see link in the column, then you possibly don't Export Operations
have permissions on this structure.Control

Select a synchronizer from the drop-down list and proceed to configure export

parameters.

If there are no synchronizers in the drop-down list, then either none are currently

installed or none of the installed synchronizers support exporting from a

structure.

Enter synchronizer parameters. Each synchronizer has its own parameters, so please

refer to . If you're not yet acquainted specific synchronizer documentation (see page 344)

with how this specific synchronizer works, please read the section on the Rules
parameters page.

Click . When you start export, the synchronizer will read the current structure Run Export
and apply it to whatever it syncs with.

After you have clicked Run Export and confirmed the operation, a job status page will be

present. When the job is marked , the synchronization is done and you can Finished
inspect the results.

When export is run, it runs under your user name and with your permissions. So if you

don't have enough permissions to make a certain change in JIRA, the synchronizer

will skip that change (a warning will be printed out in the server logs).

 and are actually a one-time Import (see page 334) Export (see page 335) Resync (see

. Export is resync from Structure and import is resync into Structure. If you page 340)

need to run export or import periodically, you can set up a synchronizer with all the

Documentation

Version 1 337

1.

2.

3.

4.

5.

a.

parameters but without enabling it - so no synchronization happens in the background.

When you need to export or import, you can open Synchronization Settings page for

the structure and run Resync. Just make sure you've selected the correct Resync

direction!

Installing Synchronizer

When you install a synchronizer on a structure, you make this structure automatically sync with

something else. For example, after you have installed and enabled a Links Synchronizer (see

, any changes someone makes to the structure will cause issue links to be created or page 349)

deleted to match those changes. Or when you have installed and enabled Filter Synchronizer

 in mode, creating or changing an issue that causes it to pass the selected (see page 345) Add
saved filter will cause this issue to be added to the structure.

When you install a synchronizer, you define its parameters. Those parameters can be edited

 later.(see page 338)

Please note that after a synchronizer is installed, it's not working yet - it must be to Enabled
start monitoring the changes.

To install a new synchronizer:

Open page using top navigation Structure menu.Manage Structure

Find the structure you'd like to sync. The column shows currently installed Sync With
synchronizers. Click on the link in that column.Settings

If you don't see link in the column, then you possibly don't Settings Sync With
have permissions on this structure.Control

Synchronization settings page shows detailed information about each installed

synchronizer and lets you work with them. To proceed with the installation of a new

synchronizer, select the type of the synchronization and click Configure and Install
.Synchronizer

Enter synchronization parameters. Each synchronizer has its own parameters, please

refer to the .specific synchronizer documentation (see page 344)

If you're not acquainted with how this synchronizer works, please make sure to

read the section at the top of the page. Especially text in red.Rules

Press button and the synchronizer gets installed. However, it's not enabled yet.Create

Documentation

Version 1 338

5.

a.

b.

c.

1.

2.

3.

Before synchronization is enabled, you might want to run Resync to bring the

current state of the structure and JIRA to the same page. In that case, press

 button after the synchronization is installed, or later use the Resync and Enable
same link on the synchronization settings page.

If you need to enable synchronization without resyncing first, press Enable
.without Resyncing

You can enable and resync the synchronizer later from the synchronization

settings page. Press if you don't need to enable the newly installed Done
synchronizer now.

 and are actually a one-time Import (see page 334) Export (see page 335) Resync (see

. Export is resync from Structure and import is resync into Structure. If you page 340)

need to run export or import periodically, you can set up a synchronizer with all the

parameters but without enabling it - so no synchronization happens in the background.

When you need to export or import, you can open Synchronization Settings page for

the structure and run Resync. Just make sure you've selected the correct Resync

direction!

Modifying Synchronizer

You can change the parameters of a synchronizer to alter how it works. If the synchronizer is

enabled (and so, working in the background), it first needs to be stopped.

Changing synchronizer's parameters may completely change the result of

synchronization. That's why the synchronizer first needs to be stopped, and after the

parameters are changed, is recommended.Resync (see page 340)

To edit a synchronizer:

Open page using top navigation Structure menu.Manage Structure

Find the structure of the synchronizer you'd like to edit. Click on the link in the Settings
 column.Sync With

If you don't see link in the column, then you possibly don't Settings Sync With
have permissions on this structure.Control

Documentation

Version 1 339

3.

4.

5.

a.

b.

c.

1.

2.

3.

Find the synchronizer you'd like to edit. Click on the link or the link Edit Disable and Edit
in the column. The synchronizer will be automatically disabled.Operations

If you don't see neither the link nor the link in the Edit Disable and Edit
 column, then the synchronizer is probably provided by the third-Operations

party plugin and does not support editing.

Set the new synchronizer parameters. Also, if you are a and not the JIRA Administrator
synchronizer owner, choose if you want to become the new synchronizer owner.

Press button. This will update the synchronizer parameters and make you the new Apply
owner of the synchronizer (unless you chose not to do so in the previous step). However,

the synchronizer is not enabled yet:

Before synchronization is enabled, you might want to run Resync to bring the

current state of the structure and JIRA to the same page. In that case, press

 button, or later use the same link on the synchronization Resync and Enable
settings page.

If you need to enable synchronization without resyncing first, press Enable
.without Resyncing

You can enable and resync the synchronizer later from the synchronization

settings page. Press if you don't need to enable the updated synchronizer Done
now.

Removing Synchronizer

You can remove an installed synchronizer at any time if you have permissions on the Control
structure.

Open page using top navigation Structure menu.Manage Structure

Find the structure you need to remove a synchronizer from. You can look at Sync With
column to see which synchronizers are installed in a structure. Click link for the Settings
selected structure.

Find the synchronizer in the list and use link to remove it.Delete

Note that if the synchronizer is currently performing an incremental sync or resync, it will be

allowed to finish.

Documentation

Version 1 340

1.

2.

1.

2.

3.

Turning Synchronizer On and Off

A synchronizer is disabled by default and it's usually explicitly enabled after it is installed into a

structure, probably with a resync. The following list summarizes the possible states of a

synchronizer:

Disabled - the background incremental synchronization is not running. You can run

 to do a one-time full sync.resync (see page 340)

Enabled - the background incremental synchronization is running. When a change is

detected, synchronization applies the change to the other part of the synchronous link as

soon as possible, typically within several seconds.

Not Available - the synchronizer is installed but it cannot run any synchronization. The

possible reasons are changes in JIRA configuration or lack of permissions from the user.

To an active synchronizer:disable

Open synchronization settings page for the structure.

Find the synchronizer and click link.Disable

If the synchronizer is currently running a sync, it will be allowed to finish.

To an inactive synchronizer:enable

Open synchronization settings page for the structure.

Find the synchronizer and click link.Enable

Alternatively, you can click to and enable Resync and Enable resync (see page 340)

immediately after resync finishes.

Running Resync

A resync, or full resynchronization, is a one-time process activated manually by the user to

bring Structure and some other aspect of issues to the same page. Resync typically scans all

issues that may be affected - contrary to the incremental synchronization, which inspects only

issues that have been changed.

For example, running resync on a Saved Filter synchronizer (in mode) runs the related Add
Saved Filter and makes sure all issues from the result set are in the structure. When the same

synchronizer is working in the background, it checks only those issues that have been

changed.

Resync Directions

Documentation

Version 1 341

1.

2.

3.

a.

b.

4.

5.

Resync Directions

Resync is also different from incremental synchronization in that it has a direction. The

incremental sync tries to apply changes on sides to the other side, if possible, depending both
on where the change has happened: with JIRA Agile (GreenHopper) synchronizer, if you

change the rank (issue position in backlog on the Planning Board), its position in the structure

is also changed; and if you change the position in the structure, GreenHopper's rank is

changed. However, when applying Resync, you need to choose which side of the data is to be

taken as the final version and which is to be updated.

Resync can be run:

from Structure, which means that the issue hierarchy in the Structure is the final data

and the synchronizer should update whatever it syncs with. This is what happens when

you .export from a structure (see page 335)

into Structure, which means that the issue hierarchy is going to be updated (or issues

possibly added or removed), and whatever the synchronizer syncs with has the final say.

This is what happens when you .import into a structure (see page 334)

A synchronizer may support resyncing in only one direction. For example, Saved Filter

synchronizer, which adds issues from a saved filter result, can only sync into
Structure.

Running Resync

To run a resync:

Open page using top navigation StructureManage Structure

Click link in the column for your structureSettings Sync With

On the synchronization settings page, find the synchronizer you'd like to Resync, and

either

Click Resync

Click if the synchronizer is disabled and you'd like to enable it Resync and Enable
immediately after Resync finishes

Select a direction for the Resync. For example, JIRA Agile (GreenHopper) Structure
means that the data will be taken from JIRA Agile and the structure will be rearranged. If

a direction is not supported by the synchronizer, it will be disabled.

Click .Start Resync

Documentation

Version 1 342

5.

6.

Resyncing in a wrong direction may lead to data loss! Please make sure you

understand that you're doing the correct thing and confirm running the resync

when a confirmation dialog appears.

The job status page that appears will tell you when the Resync has finished.

If the synchronizer is currently running an incremental synchronization, the resync will

wait until it finishes.

Synchronization and Permissions

IMPORTANT! Please read.

When sync runs, the updates will be made on behalf of the user who installed the
 Any change that a synchronizer makes when reconciling data between synchronizer!

Structure and Jira is performed on behalf of the user who created the synchronizer, not the

user who ran the synchronizer.

This is really important to understand. Consider the following settings:

You create a Structure and you set up structure so that permissions (see page 217)

anyone can edit the structure.

You have Link Issues permissions on a project and you install Links synchronizer to

have children issues linked to their parent issue.

Now, anyone can edit the structure - add issues there, remove issues from there and rearrange

the issues in the structure. Every change of the structure will lead to adding and removing
links between the affected issues on your behalf - even if the user who changes the
structure does not have Link Issues permission!

So when using synchronizer, Structure edit permissions implicitly grant limited permissions to

make changes according to the synchronizer's algorithm, as well as issue permissions implicitly

grant limited permissions to edit the structure.

For all existing synchronizers, the creator's username can be found in Run as User

column on the synchronization settings page. Before executing the transaction, Jira

validates the user's permissions and then records the result together with the

username in the log.

Documentation

Version 1 343

Protection from Synchronizer Cycles

It is possible to accidentally create a pair of synchronizers that would contradict each other. For

example, a can be configured to put a sub-task under sub-tasks synchronizer (see page 344)

an issue, while a with the "links primacy" option would have links synchronizer (see page 349)

to move it to the top level of the structure.

If both such synchronizers are enabled (i.e. perform automatic synchronization), they will end

up in an endless cycle, processing and overriding one another's changes, forever. These

situations are undesirable, because they put unnecessary load on the server and quickly fill up

issue and structure histories with meaningless change records.

Structure is designed to detect and stop such infinite cycles. In the background, Structure

keeps track of how many times each of the enabled synchronizers has been invoked to process

the changes generated by another synchronizer. If this number passes a certain threshold (10

by default), and there were no user-generated changes between the invocations, Structure will

flag this as a probable conflict, and perform one or more of the following actions, depending on

the configuration:

Prevent one of the synchronizers from running this particular time, but keep both

synchronizers enabled.

Disable both of the synchronizers involved in the cycle.

Send e-mail notifications to the user (or users) who created the conflicting

synchronizers.

If the synchronizers are not automatically disabled and keep cycling, send e-mail

notification to the JIRA administrators (all users having the "System Administrator" global

permission).

The default behavior is to disable the conflicting synchronizers and send e-mail notifications to

the users who installed them.

How do I respond to a cycle warning?

If you've installed a Structure synchronizer and then receive a cycle warning e-mail

from Structure, please take appropriate measures to reconcile the synchronizers –

disable or reconfigure one or both of them. If the second synchronizer was created by

a different user, you may need to cooperate with them to solve the problem. If you're

not sure what to do, contact your JIRA administrators or ALM Works support team.

JIRA administrators can configure the cycle guard as described in the .Administrator's Guide

Documentation

Version 1 344

Bundled Synchronizers

There are several bundled synchronizers coming with the Structure. Other synchronizers can

be provided by other JIRA plugins.

Sub-Tasks Synchronizer

Sub-Tasks Synchronizer lets you have sub-tasks automatically placed under their respective

parent issues in the structure.

This synchronizer is available only when Sub-Tasks are enabled in your JIRA and you

have at least one Sub-task issue type defined.

Sub-Tasks Synchronizer Parameters

You can select which sub-task issue types the synchronizer works with. Issues of other issue

types will not be affected.

This synchronizer supports only Import / Resync into Structure (more about resync (see page
).340)

Sub-Tasks Synchronizer Rules

When there's a sub-task (of one of the selected types) and its parent issue is in the

structure, the sub-task is also added to the structure and placed under its parent task.

The parent issue must be in the structure already - the synchronizer does not add parent

AND sub-task, neither does it add parent for the sub-tasks already added.

You can add parent issues to structure manually, or use Saved Filter

synchronization to add parent issues (and probably sub-tasks) automatically.

If a sub-task is already in the structure, and is located under a different parent (or at the

top level), it will be moved under its (with all sub-issues that it may have).subtask parent

Changes in structure are not synced back to sub-tasks: if you place an issue under

another issue, it will not become a sub-task.

If you move a sub-task away from its parent task, it will soon be moved back by

the synchronizer.

Documentation

Version 1 345

Filter Synchronizer

Filter Synchronizer lets you automatically add issues to structure or remove issues from

structure based on a Saved Filter or a JQL query.This powerful synchronizer lets you control

the contents of the structure with an issue filter (either a or an arbitrary Saved Filter JQL Query
). You can either add issues to structure automatically, or remove issues from structure

automatically, or do both.

Documentation

Version 1 346

Filter Synchronizer Parameters

Filter A Saved Filter or a JQL Query to sync with. Click to choose a saved filter Select
or switch to and enter the JQL.JQL query

When this synchronizer is enabled and runs in background, it "listens" to

JIRA events about issues being changed. That means that if the result of

a query may change without an issue being actually changed, the

synchronizer will not detect the change and will not update the structure.

For example, if you use JQL query updatedDate > startOfMonth()

, the synchronizer will not update the structure at the beginning of a

month, when the result of the query changes. You will need to do a

 or use scheduled synchronization.Resync (see page 340)

Add Turns on : the synchronizer will make sure that all issues from the Add Mode
filter's result are present in the Structure.

Place
added
issue at
the top
level

The newly discovered issues from the filter result are placed at the top level, at

the end of the structure.

Place
added
issue
as a
sub-
issue of
...

You can enter issue key (like PROJECT-123) of an issue that will serve as the

parent for the newly discovered issues from the filter. They will be placed as

children of this issue, at the end of the current children list. Note that if this issue is

not present in the structure, the issues won't be added at all.

Allow
move

This option is available if you have specified the parent issue for adding matching

issues. This option tells the synchronizer what to do if a discovered matching

issue is already added to the structure, but is located somewhere else, not under

the designated parent issue. If the option is on, the synchronizer will move the

issue (with all its possible sub-issues) under the parent issue. If the option is off,

the issue will be left alone where it now resides.

Documentation

Version 1 347

Remove Turns on : the synchronizer will remove issues from the structure Remove Mode
when they no longer are present in the filter result. However, if an issue to be

removed contains sub-issues that should stay in the structure, it will not be

removed.

Remove
only
from
where
added
issues
are
placed

Additional flag to remove issues only if they are either at the top level or under the

issue where they were initially placed by the synchronizer. So if you move an

automatically added issue somewhere else, it will not be removed even if it is no

longer present in the search result.

This synchronizer supports only Import / Resync into Structure (more about resync (see page
).340)

If the Saved Filter used in configuration is deleted later, or if you lose permissions to

run it, the synchronizer will not work.

No matter how synchronizers are configured, they will only affect issues from the

projects that are .enabled for synchronization (see page 298)

CAREFUL! Please be careful when turning on Remove mode and installing another

synchronizer into the same structure. It is possible to set up the structure

synchronizers in a way to make them cycle: some other synchronizer, like Sub-tasks

synchronizer, would add an issue to the structure and then Saved Filter synchronizer

in Remove or Add/Remove mode would remove that issue, and so forth.

Filter Synchronizer Rules

Synchronizer adds issues from its filter's result to structure and/or removes issues that

no longer are in the filter's result.

Whenever an issue changes, a query is run to see if it matches the filter. On resync, all

issues are checked.

Documentation

Version 1 348

With mode on, an issue will be added to the structure if it matches the filter - even if Add
the user has manually removed it from there. If the issue is already in the structure, it will

not be affected, unless is on - in which case it will be relocated under the Allow Move
specified parent issue.

With mode on, an issue will be removed from the structure if it does not match Remove
the filter - even if the user has manually added it before.

When adding issues on Resync or Import, synchronizer places them at the end of the

structure (or at the end under the specified parent issue), in the order that corresponds

to the filter's order. However, if only part of the filter result is added (for example,

because other issues are already in the structure), the final sequence of issues may be

different from the filter result.

Automatic Branches Removal

The “Double-check sub-issues” option is useful when you want to build and, more importantly,

maintain a Structure, where you have a certain set of issues on the top level and then all the

issues that are linked to them added under them.

Specifically the Double-Check option is necessary for removing from the structure the top level

issues and all the issues linked to them, when the top level issue no longer passes the filter of

the synchronizer.

Here is an example.

You are trying to build a structure, where you have all Open Stories on the top level and then

the issues which block them added below.

To build this structure you will need to configure the Filter synchroniser, which will add Open

Stories to the top level and the Links synchroniser, which will add linked issues.

You can find more information on Link Synchroniser in .this article

To get the list of the top level issues you can use the JQL query, which looks like this:

issuetype = Story and status = open

However, if you use this as the filter query and select the remove option, the Filter Synchroniser

will remove all children, which will be added by the Link Synchronizer, because the children do

not pass the JQL query.

https://wiki.almworks.com/display/structuremaster/Links+Synchronizer

Documentation

Version 1 349

To solve this problem you can extend the query with S-JQL expression, which returns both

parents and their children, which are already in the structure - this will prevent the Filter

Synchronizer from removing children from the Structure:

(issuetype = Story and status = Open) or issue in structure(“Open
Stories Structure“, "issueOrAncestor in [type = Story and status
= Open]”)

For more information on S-JQL please refer to the .documentation

Now the last step is the removal of the Story and issues linked to it when the status of the story

changes. If the Double-Check option is not selected, once the Story status changes the

synchronizer will see, that the Story should be removed, but will think that the children still pass

the filter (because there were no explicit changes done to them). As a result it will keep both the

Story and the children in the Structure. Selecting the Double-Check option will force it to check

if the children still pass the filter and it will remove the whole branch.

Links Synchronizer

Links Synchronizer maintains issue links between parent issue and children issues.You can

use this synchronizer to replicate the hierarchy in the structure with issue links, or to import a

hierarchy that was previously created with links.

Links synchronizer is available only when Links are enabled and there's at least one

link type.

This synchronizer supports Resync in both directions (Import and Export) (more about resync
). Incremental synchronization watches both structure changes and issue link (see page 340)

changes and applies the change to the other side (unless Reverse contradicting changes
option is specified, see).below (see page 351)

No matter how synchronizers are configured, they will only affect issues from the

projects that are .enabled for synchronization (see page 298)

When synchronizer adds or removes JIRA issue links, it has the same permissions as

the user that installed the synchronizer.

https://wiki.almworks.com/display/structuremaster/S-JQL+Cookbook

Documentation

Version 1 350

Links Synchronizer Parameters
Link Type

The type of the link to sync with. Links of other types will be ignored.

Link Direction

Defines which side of the link is the parent issue and which is the sub-issue.

Parent Issue Filter and Sub-Issue Filter

If set, these filters determine which issues and links can be affected by the synchronizer:

If a link's parent issue or sub-issue (as determined by) doesn't pass the Link Direction
corresponding filter, then the link is ignored by the synchronizer, as if it didn't exist.

In particular, if there are two issues that belong to the structure and pass the

corresponding filters, and one of them falls out of its corresponding filter, the link will not

be deleted.

If there is a parent issue and a sub-issue in the structure, and either of them doesn't

pass the corresponding filter, the synchronizer will not create a link between them.

You can use saved filters or JQL queries.

Scope

Defines which issues are affected by the synchronizer, based on whether they are in the

structure or not.

Synchronize issues that are already in the structure means that the synchronizer will

affect only those issues that are already in the structure or reachable from it via issue

links. Use this option when you need manual control over which of the linked issues

appear in the structure.

If is selected, the synchronizer will add sub-issues to the Expand to sub-issues
structure if their parent issue is in the structure.

If is selected, the synchronizer will add a parent issue Expand to parent issues
to the structure if any of its sub-issues is in the structure.

Synchronize all issues that have links of selected type means that the synchronizer

will affect all issues that have matching issue links and pass the . For Issue Filters
example, you can use this option to import all issue relationships represented by links

into an empty structure.

This setting also controls which issue links can be deleted during export, manual resync from
structure, or incremental synchronization. For example, when you remove a sub-issue from the

structure, the synchronizer will remove the corresponding link only if it could have added this

sub-issue back, that is, when either or is Expand to sub-issues Synchronize all issues
selected.

Documentation

Version 1 351

CAREFUL! Please be careful when using this synchronizer with Synchronize all
 option selected, because Exporting or Resyncing Structure would delete issues from

all the existing links of the selected type between issues that are not in the

corresponding positions in the structure.

Removal

Defines how the synchronizer treats a sub-issue that doesn't have a link to justify its position in

the structure (for example, when a user deletes the link from its parent issue):

When is selected, the synchronizer will move such an issue up the Move upwards
hierarchy until it's either at the top level of the structure or in a position that doesn't

contradict the settings (for example, under an issue that does not pass the Parent Issue
).Filter

When is selected, the synchronizer will remove such an issue from the Remove
structure, together with all its sub-issues.

Primacy

By default, when a synchronizer is installed and enabled, it tracks changes made by users and

applies them to the "other side":

When a user creates or deletes issue links, the synchronizer adjusts the structure

accordingly.

When a user changes the structure, the synchronizer creates or removes the

corresponding links.

You can use the option to override this behavior and specify Reverse contradicting changes
the primary place where issue relationships are stored:

With , when a user creates or deletes a link that is within the scope of Structure primacy
the synchronizer, but contradicts the structure, that change will be reverted. One needs

to change the structure to adjust issue relationships.

With , the synchronizer reverts changes to the structure that contradict Links primacy
issue links. One needs to change the links to adjust an issue's position within the

structure. Note that this does not apply to reordering issues without changing their

parents.

Please note that this option does not apply during Export, Import or manual Resync.

Documentation

Version 1 352

Links Synchronizer Preserves Links Between Added List of Issues

There is a special case: when a list of 2 or more issues is added to the structure, links between

these issues are preserved, and they form a hierarchy according to these links. Such a

situation may arise, for example, when searching outside the structure and moving a bunch of

issues into the structure.

This differs from the default behaviour when option is not Reverse contradicting changes
selected: normally, if an issue is added to the structure as a sub-issue , and both of them A B
pass the Issue Filters, Links synchronizer would establish a link between and and remove A B
all other links of the corresponding type where is on the sub-issue end of the link. When a list B
of issues is added, however, the synchronizer behaves as if was selected.Links primacy

Links Synchronizer Rules

When synchronizer is enabled:

Changes in the structure will be reflected by creating and removing links of the

selected type.

Links created or removed by the user will be automatically reflected in the

structure.

Links created and removed by the synchronizer are not recorded in the issue history,

and issue update time is not changed (due to performance reasons).

Use Resync (Structure to Links) or Export to update the links according to the from
structure.

If is selected, all other links of the selected type will be Synchronize all issues
deleted.

Otherwise, the links that are reachable from the structure considering Expand to...
options, but not represented in the structure, will be deleted.

Use Resync (from Links Structure) or Import to add and rearrange the issues in the into
structure according to the existing links.

If is selected, all issues with matching issue links will be Synchronize all issues
added to the structure.

Otherwise, only the issues reachable from the structure considering Expand to...
options will be added.

Links that violate hierarchy restrictions are treated as follows:

If a sub issue has more than one parent issue, the most recent issue link is used.

If there is a sub-issue cycle, the oldest issue link is not used.

Documentation

Version 1 353

There is an exception to the two preceding rules: Links synchronizer prefers to

use , even if they are older than links between added list of issues (see page 351)

others.

Unused links are deleted during incremental synchronization, and ignored during

Import or manual Resync.

JIRA Agile (GreenHopper) Synchronizer

JIRA Agile (GreenHopper) Synchronizer lets you synchronize the position of issues in the

structure and on an Agile board (such as a Scrum or Kanban board) using Rank

synchronization, and synchronize an Epic field with the position of stories under epics in the

structure.

Documentation

Version 1 354

JIRA Agile Synchronizer Parameters

Synchronize Choose mode of operation :(GreenHopper/JIRA Agile 6.1+ only)

Use Agile Board configuration (this feature is available only with JIRA

Agile/Greenhopper 6.1+)

Use custom projects and fields configuration

 Agile Board mode parameters:(GreenHopper/JIRA Agile 6.1+ only)

Agile Board JIRA Agile board to synchronize with. The issues matching Board query will

be synchronized. The structure may contain other issues, they will not be

affected. If Ranking is turned on by ORDER BY clause in the query, it can be

used for synchronization.

Synchronize
Epics

If checked, epics will be synchronized with JIRA Agile epics.

Synchronize
Rank

If checked, and Ranking is enabled for Agile Board, it will be synchronized

with Structure.

 Custom issue set mode and GreenHopper 6.0 and earlier parameters:

Project A project that JIRA Agile is used in. The structure may contain issues from

other projects, they will not be affected.

 Multiple projects may be selected. The issues GreenHopper 5.8 or later:
from all selected projects will be synchronized using the same Global Rank

field.

Rank Field The field of type "Rank" (managed by JIRA Agile) that holds the rank

(backlog order) for the selected Project. If you do not wish to synchronize

rank, select .Don't synchronize

Epic Field The field holding the Epic that the story belongs to.

If you use epics on the Scrum boards in GreenHopper 6.1 and up,

select "Scrum Board Epics" as the Epic field to synchronize them.

If you use the Classic Planning Board, pick the appropriate custom

field of type "Labels", which is typically named "Epic/Theme".

Documentation

Version 1 355

The synchronizer allows to select an Epic/Theme field even

if it is applicable only to some of the available issue types.

When the synchronizer should set a value to an Epic/Theme

field, it will not make a change if the field is not applicable to

the issue type of the changed issue.

If you do not wish to synchronize Epics content, select Don't
.synchronize

Epic Type Relevant only if an Epic Field is selected. Defines an issue type that is

treated as Epic - typically named "Epic". All issues placed under an issue of

this type in the structure will be updated to have Epic Field point to that issue.

Auto-add
Subtasks

When turned on, sub-tasks will be automatically added to the structure and

forced to stay under their respective parent issues. This works similarly to

.Sub-Tasks Synchronizer (see page 344)

This synchronizer supports both Import and Export / Resync into/from Structure (more about
). Incremental synchronization watches both structure changes and JIRA resync (see page 340)

Agile's changes and applies the change to the other side.

CAREFUL! Please be careful when using this synchronizer, especially when you add

multiple issues to the Structure, as this may lead to massive updates in the Agile

ranks without undo.

On Fix Versions

Earlier GreenHopper versions relied on values in the field - if a version has Fix in Version/s
been released, the issues assigned to that version won't appear on the Classic GreenHopper

boards. GreenHopper synchronizer in Structure reflected that behavior and ignored such

issues.

With the introduction of new Boards (known initially as Rapid Boards, then as Agile Boards),

this dependency on Fix Version field has become optional. In some cases, Fix Version field is

completely disabled and the teams use Agile Sprints. To address that, the JIRA Agile

synchronizer no longer filters issues by Fix Version, unless you're using an old GreenHopper

version.

Documentation

Version 1 356

JIRA Agile Synchronizer Rules

Common Rules:

Issues that do not belong to the synchronized project(s) are not affected. If you've got

GreenHopper earlier than 5.8 and not using Global Rank field, then issues that are

assigned to Fix Versions that have been released are also not affected.

This synchronizer does not add issues to the structure (with two exceptions, explained

below). You can use Saved Filter synchronizer together with JIRA Agile synchronizer to

automatically add and position issues.

Sub-Tasks Synchronization:

With mode on, sub-tasks are added to the structure if their parent Auto-Add Subtasks
is there in the structure.

The sub-tasks are forced to stay under their parent, so if you move a subtask

somewhere else, it will jump back under the parent again. You can rearrange the order

of the sub-tasks, which will be sync'ed to the Agile Rank if the Rank Field is configured.

Rank Synchronization:

Repositioning issues in the structure causes Rank change and the repositioning issues

on the Planning Board.

Rearranging issues on the GreenHopper's Planning Board causes the issues to be

rearranged in the structure.

When issues are repositioned in the structure according to Rank, they are never moved

under a different parent issue.

This restricts the possible rank changes in JIRA Agile - you can only move an

issue to the position of another issue that is under the same parent issue in the

structure, otherwise the issue will "jump back" later.

Epic Synchronization:

Placing an issue under an Epic in the structure will cause its Epic field to change to that

Epic.

It does not matter at what level of depth is the sub-issue. A sub-sub-sub-issue of

an Epic issue will also have its Epic field updated.

If you move an issue in the structure so that it's not under any epic, its Epic field will be

cleared.

Documentation

Version 1 357

If you manually change Epic field (using JIRA Agile UI or otherwise) to point to a

different Epic, the issue will be repositioned under that Epic in the structure.

An issue that has the Epic field pointing to an Epic in the structure will be

automatically added to the structure.

If you clear Epic field or change it to point to an epic that is not in the structure, the issue

will be moved up in the structure until it is no longer under any epic.

How to Add Issues to Structure Sync'ed with JIRA Agile

When JIRA Agile synchronizer is enabled, it automatically updates Agile order in background

when any Structure change happens. So if you carelessly add issues from the sync'ed project

to the structure in some random order, their ranks will be updated according to that order.

To add issues to the structure without breaking the existing backlog order:

If adding manually on the Structure Widget, use JQL search and add order by Rank
clause at the end of the query. Use the rank field that is used by the synchronizer.

Select the position of the added issues carefully (best with drag-and-drop or copy/paste)

- the order is likely to change unless you place issues under another issue without any

other sub-issues (see below).Syncing Partial Orders

If using Saved Filter synchronizer to add issues, add clause to the Saved order by Rank
Filter's query. However, the new issues that are added with the Saved Filter

synchronizer will appear at the end of the structure and so will have the latemost

ranking.

Syncing Partial Orders

JIRA Agile's Board is flat (except for sub-tasks), and the Structure is hierarchical - so it is not

possible to precisely rearrange Structure to have all issues come in the same order as they do

on the Planning Board, without changing issue parents or making the Structure also flat.

Henceforth, the Structure syncs subsets of the issues in the hierarchy with Agile Rank. For

example, consider the following Structure:

A

 B

 C

D

Documentation

Version 1 358

 E

 F

It is not possible to rearrange the sub-issues so that they come in the following order: B, E, C, F

- although this is possible on the Planning Board. Instead, the structure will synchronize sub-

sets of the issues in the Structure with JIRA Agile. The following sub-sets will be synchronized

separately:

A, D - top-level issues: A must come before D on the Planning Board

B, C - sub-issues of A are sync'ed separately, so B must come before C on the Planning

Board

E, F - ditto for the sub-issues of D

In JIRA Agile version 6.1 and later, the Epics are treated by JIRA Agile as a separate

set of issues, different from Stories and other non-Epics. To accommodate this

change, Structure updates the rank of issues also using "partial order" approach,

syncing Epics and non-Epics separately. This means that, starting with JIRA Agile 6.1,

if an Epic comes before a Story on the Structure Board, it is not required that they

come in the same order on the Scrum Board.

Status Rollup Synchronizer

Status Rollup synchronizer automatically aggregates statuses of the sub-issues and updates

the status of the parent issue. For example, it can make parent issue if all sub-issues Resolved
are .Resolved

Documentation

Version 1 359

Status Rollup Synchronizer Parameters

Enabled
Projects

Only issues belonging to the selected projects are . It does not matter changed
what project sub-issues belong to, as long as their parent belongs to the

enabled project — every sub-issue counts with its status.

Enabled
Issue
Types

Same with types — you can select issues of which types may be changed by

the synchronizer, and like with the enabled projects, only the parent issue type

is checked.

Statuses
Rolled Up

The selection and order of statuses that are used to calculate parent issue

status. Parent issue status is set to the status among its sub-issues. If earliest
a sub-issue has a status not selected in this parameter, the parent issue is not

changed.

Allowed
Transitions

For every status, you can select which transitions the synchronizer can make to

move an issue to that status.

Resolution Value to set to the field when workflow transition requires it. By Resolution
default, a current or default value for Resolution is used.

The synchronizer is normally installed, resynced and used in the Incremental mode, tracking

changes to issues and structure and updating issues. The synchronizer supports Exporting

from Structure, changing statuses of the issues in the structure on one-time basis.

How Status Rollup Synchronizer Works

The synchronizer tracks updates to issues and to structure, and tries to make sure that the

status of the parent issue corresponds to the aggregate status of its direct children.

When you configure Status Rollup, the most important parameter is the selected Statuses and

their order:

Documentation

Version 1 360

Statuses that are not selected in the parameters are not recognized by the

synchronizer. If a sub-issue has one of the unselected statuses, the synchronizer does

not change the parent issue.

The order of the selected statuses should correspond to order of phases of the earliest-to-latest
workflow. For example, the screenshot above shows configuration where is followed by Open

, which is followed by . With that configuration, once all sub-issues of an issue Resolved Closed
are , the synchronizer will try to make the issue too. Once all sub-issues are Resolved Resolved

, the issue will be made . But if at least one sub-issue happens to be , the Closed Closed Open
issue status will be set to — because it is the earliest status in the specified order.Open

On the screenshot above:

All and do not have sub-issues of their own, so the sub-sub-issues sub-issue 1
synchronizer does not change their status.

Sub-issue 3 has a single sub-issue, which has status — so since all of its sub-Closed
issues are closed, it should be too.Closed

Sub-issue 2 has one sub-issue and one sub-issue — it should be Open Resolved Open
because Open status comes before Resolved in the order specified earlier.

Parent Issue has sub-issues that have statuses , and — so it Open Resolved Closed
should be for the same reason. Once all sub-issues are , Parent Issue Open Resolved
will be automatically . Once all sub-issues are , Parent Issue will Resolved Closed
automatically be .Closed

Documentation

Version 1 361

1.

2.

3.

4.

5.

Remember, that whenever one of the sub-issues gets a status not listed in the

synchronizer configuration, the synchronizer just skips the issue. For example, if we

change the status of above to , will not be Sub-issue 2 In Progress Parent Issue
updated. If we then change the status of to , Sub-issue 2 Resolved Parent Issue
status will be updated to .Resolved

How Status is Changed

JIRA allows status to be changed only through a workflow transition, so the only way Status

Rollup synchronizer can set the desired status on an issue is to apply a workflow transition.

Therefore, when you select a status, you also need to select which transitions is synchronizer

allowed to make.

So what the synchronizer does is:

See what status the issue currently has;

Calculate what status it should have, based on the statuses of sub-issues;

Find workflow transitions that can transfer the issue from the current status to the

required status;

Check which of those transitions are allowed by the configuration;

Try to apply matching transition number one, if it fails — try the next one, and so on.

Note that all transitions are done under the account of the user who has installed the

synchronizer.

Documentation

Version 1 362

Why Can a Workflow Transition Fail

It's not guaranteed that the synchronizer will be able to change the Status, because workflows

are too flexible and there are many reasons that a given transition, which you have allowed in

the configuration, can fail to execute. Here are some of the possible causes:

You (the user who has installed the synchronizer) do not have the required permissions

to make the transition;

You are not the Assignee of the issue — required for In Progress status;

Some other pre-condition defined in the workflow fails;

Workflow transition requires a field to be set on an issue that has no default value.

As described above, it's possible that there are several possible transitions from one status to

another. The synchronizer will try all of them unless one of them succeeds.

If the synchronizer fails to update the status, a warning message will be written into

the server logs (subject to logging configuration).

Changing Resolution

You can set up a specific value to be set whenever a transition involves changing Resolution
the resolution. If you don't specify this parameter, the default resolution or already existing

resolution will be used.

In order to tell which issues have been automatically moved to a status like Resolved

or Closed, you can set up a special resolution like .Auto-Resolved

Manually Changing Status of an Issue That Has Sub-Issues

Even if an issue has sub-issues and is subject to Status Rollup, you can manually change its

status. Although the synchronizer will be forced to recalculate the status of that issue not
immediately, it will recalculate the status if any of the sub-issues change – probably reversing

your change, if it finds an allowed transition.

If you'd like the synchronizer to only move issues , that is, from to forward Open
, but not vice versa, you can configure the allowed transitions accordingly.Resolved

Undo Synchronizer Actions

Documentation

Version 1 363

1.

2.

3.

Undo Synchronizer Actions

Caution should always be exercised when using synchronizers. An incorrectly configured

synchronizer or an accidental move can result in unexpected changes to both a structure and

Jira.

Fortunately, Structure provides a method for undoing changes made by synchronizers.

Synchronizer Audit Log

To review actions that were completed automatically by installed synchronizers:

Go to the Administration menu and select .Structure | Support

Under Structure Support, locate the Synchronizer Audit Log section and click View
.Synchronizer Audit Log

On the Synchronizer Audit Log screen, scroll down to view a list of recent synchronizer

actions. If you do not see the action(s) you wish to undo, you can search the audit log

based on timeframe, Sync Instance ID and Structure ID.

If you do not have access to the Administration menu, speak with your Jira

administrator.

Undo Synchronizer Actions

Once you have identified the action(s) you wish to undo, select them within the Audit Log and

click .Undo

On the next screen, review and confirm your selection by clicking .Undo

Documentation

Version 1 364

Documentation

Version 1 365

3 Structure Developer's Guide

3.1 Structure Developer Documentation

Structure for Developers

Structure add-on provides APIs that allow you to access structures, integrate your add-on

with Structure and extend Structure functionality. Here are the typical use cases:

Custom Development

You customize JIRA for your customer or employer, and you need to integrate Structure

with some other in-house system – see section about integrating plugins (see page 367)

and .Java API reference (see page 412)

Plugin Integration

You have your own great JIRA plugin, or plan to create one, and you'd like to use the issue

hierarchy provided by Structure – see Accessing Structure from JIRA Plugin (see page 367)

.

Extending Structure

You'd like to extend Structure, adding functionality to the plugin itself – read documentation

about .extending Structure functionality with additional plugins (see page 386)

Remote Access

You need to get or change issue hierarchy remotely from some automated scripts or a

client application – read about and Accessing Structure Data Remotely (see page 411)

.Structure REST API (see page 422)

Documentation

Version 1 366

3.2 Structure Concepts, Developer's
Perspective

This article provides an introduction to the main concepts used in Structure. Before

starting your work on integration with Structure, please familiarize yourself with these

concepts.

3.2.1 1. Basic Concepts Overview

Concept Short Definition API Classes to Check

Structure A named container for a hierarchical list. Structure,

StructureManager

Forest A hierarchical list. Forest, ForestService

Row A row is a unique, atomic element of a forest. StructureRow, RowManager

Item An item is a user-level object (like Issue) that

is displayed in a row.

ItemIdentity,

CoreIdentities

Attribute An attribute provides values of a certain type

and meaning for forest rows.

AttributeSpec,

StructureAttributeService

Column A column loads one or more attributes and

displays information about forest rows.

ViewSpecification

View A view is a named collection of columns. StructureView,

StructureViewManager

Important points:

Structures are the main entities provided by Structure add-on. A structure has name

and other attributes, like description, and it also has content, represented by a forest.

A forest represents a structure's content. But it can also represent a result of a query or

a hierarchical list received or stored somewhere else.

Documentation

Version 1 367

Forest contains . Forest content is actually a list of pairs ().rows row ID, depth

A row has a numeric ID that uniquely identifies it in a forest. A forest may not contain the

same row twice. (Although a row may be present in different forests.)

When users look at a structure, they see a grid – each row in that grid is represented by

a Structure's row.

A row refers to an . An item is an abstraction for everything that can be placed into a item
forest – issues, folders, projects, users are all items, from Structure's perspective.

An item has – something that uniquely identifies that item on a JIRA item identity
instance.

An item also has – some values with associated meaning, which Structure attributes
and its extensions can provide and that can be shown to the user.

3.2.2 2. A Note on Extensibility

Structure is built with extensibility in mind. It is possible for a separate add-on to add new item

types, attributes, columns and other extensible elements to Structure, at runtime.

3.3 Accessing Structure from JIRA
Plugin

Structure provides a Java API that lets other plugins interact with the Structure data. The API is

accessed through a few services that you can have injected into your components.

Check out the articles below for details.

3.3.1 Setting Up the Integration

To start using Structure in your plugin:

1. Add dependency to your pom.xml

Figure out the that you need – it may depend on your JIRA version of the API (see page 412)

and Structure plugin version.

To use API classes, add the following dependency:

<dependency>
 <groupId>com.almworks.jira.structure</groupId>
 <artifactId>structure-api</artifactId>
 <version>16.0.0</version>
 <scope>provided</scope>

Documentation

Version 1 368

</dependency>

Note that there are Additional Libraries Used in Structure API (see page 368)

2. Import StructureComponents

In your , use module to import atlassian-plugin.xml <component-import>

 service. This service provides access to all other Structure services.StructureComponents

Alternatively, you can import specific services.

<component-import key="structure-components" interface="com.
almworks.jira.structure.api.StructureComponents"/>

3. Have Structure API service injected into your component

public class MyClass {
 private final StructureManager structureManager;

 public MyClass(StructureComponents structureComponents) {
 structureManager = structureComponents.getStructureManager();
 }

 ...
}

This is it! Continue to the list of to see which service you Structure Services (see page 372)

need to work with. Other articles in this section provide examples for specific use cases.

For a production plugin, consider . For a Controlling Compatibility (see page 369)

standalone plugin, which can work without Structure, read about Making Structure

.Dependency Optional (see page 370)

Additional Libraries Used in Structure API

Structure API has dependencies on a few open-source libraries that are transitively included in

your project when you add a dependency on Structure API.

Documentation

Version 1 369

You don't need to explicitly add dependencies on these libraries.

Integers and HPPC

The open source library provides collections of primitive types with -like Integers java.util

interfaces. When working with , you will typically use and (an Forest LongList LongArray

implementation of).LongList

It comes with another primitive type collection library, , which provides specific HPPC

implementations of these collections.

See to get the idea how to work with those interfaces.API Usage Samples (see page 470)

JetBrains Annotations

Annotations library from JetBrains provides and annotations, used @Nullable @NotNull

throughout the API.

Controlling Compatibility

Why Declare Compatible Versions

Structure Java API will change with time, and it is a good practice to ensure that your plugin

uses the correct version of the API.

Structure API Versions (see page 412) page explains how version numbers change based on

how compatibility is affected. Say, you develop your code using Structure API version 16.2.0 –

your code will work with any version of the API starting from 16.2.0 and up to, but not including

version 17.0.0.

So what happens if your code is run on JIRA with Structure that provides an incompatible API?

It may break, or it may work. The exact answer depends on which parts of the API you use and

what are the differences. But if the code breaks, it may not break outright – it may seem to work

at first, until it tries to use a method that's not there, for example.

To make your code fail fast, you can declare dependency on a specific range of versions of the

Structure API. In that case, if the version of the API is different, your plugin will fail to load and

the user will immediately know that there's a problem.

http://code.google.com/p/integers/
http://labs.carrotsearch.com/hppc.html

Documentation

Version 1 370

Importing Specific Range of API Versions

You can declare dependency on the specific range of the API versions via OSGi bundle

instructions added to your or . Figure out the compatible pom.xml atlassian-plugin.xml

OSGi versions range from the table and modify your to API versions (see page 412) pom.xml

contain the following:

<plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-jira-plugin</artifactId>
 ...
 <configuration>
 <instructions>
 <Import-Package>
 com.almworks.jira.structure.api*;version="[16,17)",
 com.almworks.integers*;version="0",
 org.jetbrains.annotations;version="0"
 </Import-Package>
 </instructions>
 </configuration>
</plugin>

Here we are declaring the acceptable range of versions for the Structure classes, taken from

the example above. We don't much care about the versions of Integers and Annotations

libraries, so will match any version of those packages.version="0"

You may have other instructions to declare dependency rules for Import-Package

other packages, and you may have other instructions besides as Import-Package

well. See the for a more complete example.API Usage Samples (see page 470)

Next: Making Structure Dependency Optional (see page 370)

Making Structure Dependency Optional

If you are integrating your plugin with Structure, or when you generally write code that uses

Structure API but also should work when Structure Plugin is not present, you need to declare

that dependencies are optional and isolate dependencies in the code.

Documentation

Version 1 371

1. Declare Optional Dependency

Since your plugin must first be loaded as an OSGi bundle, it should declare dependencies from

the Structure API packages as optional.

Modify declaration in your or and <Import-Package> pom.xml atlassian-plugin.xml

add classifier. (resoltion:=optional Add Import-Package to control API compatibility (see

 if you don't have this declaration yet.)page 369)

<Import-Package>
 com.almworks.jira.structure*;version="[16,17)";resolution:
=optional,
 com.almworks.integers*;version="0";resolution:=optional,
 org.jetbrains.annotations;version="0";resolution:=optional
</Import-Package>

2. Isolate Dependencies in the Code

So once you have declared the optional resolution of the Structure API classes, your bundle will

load - but if your code tries to access a class from the Structure API, you'll get a

. To avoid that, you need to isolate the dependency on Structure NoClassDefFoundError

API classes - typically in some wrapper classes.

This is also a point to make design decisions. So your code can use Structure when

it's present, and can work independently when Structure is not there. Are there any

abstractions that address both of these situation? What are the concepts that are

realized through Structure API and through some other means when Structure is not

avialable?

Here's a sample wrapper for the Structure API that provides wrapper ForestAccessor

(whatever it does) when Structure is available and otherwise.null

public class StructureAccessor {
 public static boolean isStructurePresent() {
 if (!ComponentAccessor.getPluginAccessor().isPluginEnabled("co
m.almworks.jira.structure")) {
 return false;
 }
 try {
 Class.forName("com.almworks.jira.structure.api.
StructureComponents");

Documentation

Version 1 372

 } catch (Exception e) {
 return false;
 }
 return true;
 }

 public static ForestAccessor getForest(long structureId) {
 if (!isStructurePresent()) return null;
 StructureComponents structureComponents;
 try {
 structureComponents = ComponentAccessor.
getOSGiComponentInstanceOfType(StructureComponents.class);
 } catch (Exception e) {
 return null;
 }

 try {
 return new ForestAccessor(structureComponents.
getForestService().getForestSource(ForestSpec.structure
(structureId)));
 } catch (StructureException e) {
 return null;
 }
 }
}

3.3.2 Structure Services

This page lists public services provided by Structure API. All these services are available from

 instance.StructureComponents

Services to Start With

Use ... to ...

StructureManager Create and delete structures, modify structure properties such as

name or permissions. (But not to work with the structure's

content.)

ForestService Access forests for reading or changing.

StructureAttributeService Retrieve attribute values for given rows in a given forest.

RowManager Extract item information for rows read from a Forest.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/StructureComponents.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/structure/StructureManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/forest/ForestService.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/StructureAttributeService.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/row/RowManager.html

Documentation

Version 1 373

Use ... to ...

FolderManager Create folders or change folder properties.

GeneratorManager Create generators or change generator properties.

More Power

Use ... to ...

StructureConfiguration Change global Structure add-on configuration.

StructureViewManager Create and manipulate views.

StructureSyncManager Manage synchronizers.

StructureBackupManager Backup complete Structure data to a file or restore it back.

StructureFavoriteManager Read or change which structures are favorite of which users.

PropertyService Store arbitrary properties.

StructurePropertyService Store arbitrary per-structure properties.

Extreme Power

Use ... to ...

ItemTracker Track recorded changes that happened to items (in JIRA

Data Center – on all nodes of the cluster).

ItemResolver Convert into an object representing that ItemIdentity

item.

IssueEventBridge Listen for or report issue events.

StructureQueryParser Parse an S-JQL query.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/folder/FolderManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/generator/GeneratorManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/settings/StructureConfiguration.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/view/StructureViewManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/StructureSyncManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/backup/StructureBackupManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/structure/favorite/StructureFavoriteManager.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/property/PropertyService.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/property/StructurePropertyService.html

Documentation

Version 1 374

Use ... to ...

StructureQueryBuilderFactory Build an S-JQL query via Builder pattern.

ProcessHandleManager Manage feedback page for asynchronous processes.

SyncAuditLog Access or manage Synchronization Audit log.

StructureJobManager Run a job asynchronously.

ScheduledJobManager Schedule a periodical job to run asynchronously (only on a

single node in a cluster).

3.3.3 Building Forest Specification

A forest specification, or , is a way for your code to identify the forest that you'd ForestSpec

like to access. The forest may come from different sources – it could be a structure, it could be

a structure, it could be a result of query or some other types of transformed (see page 147)

forest source.

So the first step before you read or update a forest is to create an instance of ForestSpec. Here

are some examples of how you can do that.

Desired forest ForestSpec expression

Base Content

Structure #123

ForestSpec.structure(123)

Result of a JQL query

ForestSpec.sQuery("jql", "priority
= Blocker")

Result of a text query

ForestSpec.sQuery("text", "text to
find")

Documentation

Version 1 375

Desired forest ForestSpec expression

Adjusted Content

Structure #123, sorted by Priority

ForestSpec.structure(123).transform(
 CoreStructureGenerators.
SORTER_ATTRIBUTE, ImmutableMap.of(
 "attribute", (Object)
ImmutableMap.of("id",
IssueFieldConstants.PRIORITY, "forma
t", "order")
 "desc", true
)
);

Structure #123, skeleton only

(without dynamic content)
ForestSpec.skeleton(123)

Structure #123, with title row

ForestSpec.skeleton(123).withTitle()

More details are available in .Javadocs for ForestSpec

3.3.4 Reading Structure Content

Let's say you need to access a structure's content and export the hierarchy into your custom

format or use for displaying the hierarchy in your way. This scenario walks you through from

having just a structure name to iterating through the forest and learning which items are there.

We assume that your code has instance injected into StructureComponents

 field.myStructureComponents

1. Figure out Structure ID

To address a structure, you need to know its ID. If you just have a name you can do the

following:

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/forest/ForestSpec.html

Documentation

Version 1 376

List<Structure> structures = myStructureComponents.
getStructureManager().getStructuresByName("My Structure",
PermissionLevel.VIEW);
long structureId;
if (structures.size() == 1) {
 structureId = structures.get(0).getId();
} else {
 // no structures or too many structures -- error?
}

Now you have or an error situation where the name does not uniquely identify structureId

your structure.

2. Create a ForestSpec

You need a forest specification to get a ForestSource. You can read more about this in the

section about .Building Forest Specification (see page 374)

ForestSpec forestSpec = ForestSpec.structure(structureId);

Note that this forest spec is going to be "secured" for the current user, which means

that the resulting forest will exclude the sub-trees that only contain items not visible to

the user.

3. Retrieve ForestSource

A is an interface that produces some specific forest and that provides ForestSource

versioning for it.

ForestSource forestSource = myStructureComponents.
getForestService().getForestSource(forestSpec);

Note that this call may produce in case a structure cannot be found StructureException

and in some other cases. A robust code would have some exception handling.

Do not store a in memory for a long time, longer than a single user ForestSource

request. Structure has internal caching engine that efficiently manages forest sources

and their dependencies. Request forest source from in every new ForestService

request.

Documentation

Version 1 377

4. Retrieve Forest and its version

Forest source can provide you with the latest version of the forest, or with an incremental

update, based on the version you already have.

To get the latest forest:

VersionedForest versionedForest = forestSource.getLatest();
DataVersion latestVersion = versionedForest.getVersion();
Forest forest = versionedForest.getForest();

Note that variable contains the version of the forest that you got. You can latestVersion

later use it to call and receive only forestSource.getUpdate(latestVersion)

information about how did the forest change since the last time you've seen it.

You cannot really use for anything else besides getting updates latestVersion

later. The numbers in that version bear no meaning regarding structure's history. For

history queries, you'll need to use .HistoryService

5. Iterate through Forest and get StructureRow instances

A is just two parallel arrays, one containing row IDs, the other containing depths. (Or, Forest

one can say that it is a list of pairs .) You can iterate through it via simple (rowId, depth)

cycle.

For each row, you'll need more information than just row ID. We use to retrieve RowManager

other properties of a row.

RowManager rowManager = myStructureComponents.getRowManager();
for (int i = 0; i < forest.size(); i++) {
 long rowId = forest.getRow(i);
 int depth = forest.getDepth(i);
 StructureRow row = rowManager.getRow(rowId);
 ...
}

Note that is never , because Row Manager would through an unchecked exception if row null

a row is not found – this situation is considered a developer's error.

Documentation

Version 1 378

6. Analyze the row and process data

Finally, you get from the row to understand which item does the row show. ItemIdentity

The items could be anything – issues, folders, users. So even if your structure only contains

issues, it is advised to do an extra check.

 ItemIdentity itemId = row.getItemId();
 if (CoreIdentities.isIssue(itemId)) {
 long issueId = itemId.getLongId();
 // process the row!
 ...
 }

A structure with dynamic content will also contain generators. If you take all the rows,

regardless of the item type and use them somewhere, you might stumble upon a

generator. To eliminate them from the analyzed forest, add a condition. The same is

usually done for "loop markers", which are special items added by extenders to

indicate that there's a loop (like cyclic issue links).

 ItemIdentity itemId = row.getItemId();
 if (!CoreIdentities.isGenerator(itemId) && !
CoreIdentities.isLoopMarker(itemId)) {
 ...
 }

Congratulations! You've successfully implemented forest read-out.

You can adjust this walkthrough for your needs – for example, read a query result, or

read only a portion of a forest.

3.3.5 Changing Structure Content

Updating a structure can be done through the same interface that was used ForestSource

for . In this article, we're assuming that you've got Reading Structure Content (see page 375)

 local variable that you've created according to instructions in the previous forestSource

article.

Forest Coordinates

Documentation

Version 1 379

Forest Coordinates

To make a change to a forest, you need to be able to point to a specific part of a forest. This is

done by using row IDs, which uniquely identify forest rows.

To point to a specific row in the forest, which you'd like to move or delete, you just use

this row's ID.

To point to a specific position in the forest, where you'd like to insert or move rows to,

you need to use row IDs of its neighbors, or :coordinates

"Under" coordinate is the row ID of the future parent of the inserted row, or zero if

the row is placed at the top level.

"After" coordinate is the row ID of the future preceding sibling of the inserted row

under the same parent, or zero if the row is placed as the first child.

"Before" coordinate is the row ID of the future succeeding sibling of the inserted

row under the same parent, or zero if the row is placed as the last child.

Applying Forest Action

To make a change, you need to call method, passing a specific forestSource.apply()

 that you want to apply.ForestAction

Adding a single row

To add a single row to the forest, use constructed with the ForestAction.Add

 of the item associated with that row.ItemIdentity

forestSource.apply(new ForestAction.Add(CoreIdentities.issue(10000
), under, after, before))

Adding a sub-forest

To add multiple rows in one action, use that receives an .ForestAction.Add ItemForest

ItemForest is a special container that is used to build a temporary forest with temporary

rows, having negative row IDs. The class provides information both about the hierarchy of

inserted temporary rows (via) and a mapping from the temporary row ID to the inserted Forest

.ItemIdentity

To create an , you need to use either or ItemForest ImmutableItemForest

.ItemForestBuilderImpl

Documentation

Version 1 380

ItemForest itemForest = new ItemForestBuilderImpl()
 .nextRow(CoreIdentities.textFolder("My Issues"))
 .nextLevel()
 .nextRow(CoreIdentities.issue(10000))
 .nextRow(CoreIdentities.issue(10001))
 .build();
forestSource.apply(new ForestAction.Add(itemForest, under, after,
before));

Removing a sub-tree

To remove a row, use and pass the row ID being removed.ForestAction.Remove

forestSource.apply(new ForestAction.Remove(LongArray.create(100, 1
01, 102)));

All sub-rows of the removed rows will be removed as well. If you need to keep them,

apply on them first.ForestMove

Moving a sub-tree

To move a row with its sub-rows, use .ForestAction.Move

You can specify one or more row IDs, which can be from the different parts of the forest. Those

rows will be placed one after another at the specified position.

forestSource.apply(new ForestAction.Move(LongArray.create(100, 101
, 102), under, after, before));

Inspecting the Results

A call to will finish successfully if the operation has been completed ForestSource.apply()

and throw a otherwise.StructureException

You can inspect the returned to get information about the of the action ActionResult effects

(more on effects below).

You can also use – it is a mapping from the ActionResult.getRowIdReplacements()

temporary row IDs, used when adding rows, to the newly assigned real row IDs, which are now

part of the structure.

Effects and Changing Dynamic Structures

Documentation

Version 1 381

Effects and Changing Dynamic Structures

You may have noticed that you can apply actions to any forest source, not necessarily a simple

structure. It can be a transformed structure, or even a transformed query. A structure can also

contain dynamic parts, created or adjusted by generators, and you can try to apply the actions

that would affect these parts.

A successful action would produce one or more (represented in the as Effects ActionResult

). In simple case of changing a non-dynamic structure, it would be, AppliedEffect

unsurprisingly, a structure change. In case the action involves dynamic content, the effects may

differ – but the general concept is that, after the effect takes place, the updated (re-generated)

structure will reflect the desired action's result.

Here are some examples of the possible effects.

Action Effect

Adding rows to a static structure Structure is modified

Moving item X from group A to group B, where groups

are provided by a grouper by field F

 The value of F for X is changed

from A to B

Removing issue X from under issue Y, when

previously X was added automatically by a Links

Extender using link type L

 Link L: YX is deleted

Moving issue upwards when structure is sorted by

Agile Rank

 Issue's Rank is changed

Adding an issue to an arbitrary JQL query result StructureException is thrown – no

way to force an issue to be part of a

JQL result

Adding issue X under issue Y within the scope of a

Links Extender and when issue Y is "static" (not

added by the extender)

 StructureInteractionException is

thrown – there are two ways to

interpret this action

As generators are extensible and can be added by other plugins, the range of possible effects

is not limited.

Note that in the last two examples the action is not successful. In the last example, you need to

use with parameters, which would define whether a generator ForestSource.apply()

should process the action or if the issue should be inserted into the static structure.

Documentation

Version 1 382

Concurrency and Atomicity

Each can be viewed as a separate transaction. It is atomic, meaning that it is ForestAction

either fully successful or fully failed.

There's no way to make a transaction larger. In other words, if you apply two actions to a forest

source, it is possible that a concurrent action, done from another thread, is executed in

between your two actions.

Permissions

All actions are executed under the "current" user and with all necessary permission checks.

Updating a structure requires permission on the structure. Other effects, like changing EDIT

issue fields, would require permission on the subject issues.EDIT_ISSUE

When permissions are insufficient, the action will not succeed and a StructureException

will be thrown.

When it comes to effects applied by generators, it is a generator's responsibility to

check permissions before applying an action. All generators bundled with Structure

have strict permission checks.

The current user is generally managed by JIRA and is the same as the user who makes the

request. However, you can use class to "sudo" to another user or to bypass StructureAuth

permission checks altogether.

3.3.6 Loading Attribute Values

You may need to load the same values that Structure shows on the Structure Board, especially

if it's a total value, progress value or other Structure-specific value. This is done via

.StructureAttributeService

About Attributes

One of the core concepts in Structure is the Attribute abstraction. An attribute is something that

can provide a value of specific type and meaning for any row in a forest.

For example, a "Summary" attribute would produce the value of Summary field for issues, the

name of a folder for folders and a person's full name for users. Some attributes may be

applicable only to certain item types and would provide empty value for all other items.

Besides item-based attributes, which provide values that depend only on the item in the forest,

there are forest-based attributes – aggregates and "propagates", which are calculated based

on the whole forest and items in it.

Documentation

Version 1 383

Forests and Attributes are two main concepts that make up the Structure grid. Looking

at the Structure Board, you see Forest in the vertical direction – rows and hierarchy

are taken from Forest, and you see Attributes in the horizontal direction – all columns

load Attributes from the server and display those values.

General Approach to Loading Values

Let's assume that, after , you have Reading Structure Content (see page 375)

 instance and an instance of for a forest. We can read a StructureComponents ForestSpec

number of attributes for a number of rows by going to StructureAttributeService.

1. Figure out which Attributes do you need

The service accepts multiple attribute specs in one request. If you need several attributes

calculated – it's better to do that in one request.

List<AttributeSpec<?>> attributeSet = new ArrayList<>();
attributeSet.add(CoreAttributeSpecs.KEY);
attributeSet.add(CoreAttributeSpecs.SUMMARY);
attributeSet.add(CoreAttributeSpecs.TOTAL_REMAINING_ESTIMATE);

CoreAttributeSpecs class contains some of the most popular attributes. However, it's likely

that you'll need to build you own attribute specification. For example, to address a numeric

JIRA custom field and calculate total of that field based on sub-issues, you'll need the following.

AttributeSpec<Number> customField =
 AttributeSpecBuilder.create("customfield", ValueFormat.NUMBER).
params().set("fieldId", 10000).build();

AttributeSpec<Number> customFieldTotal =
 AttributeSpecBuilder.create(CoreAttributeSpecs.Id.SUM,
ValueFormat.NUMBER).params().setAttribute(customField).build();

attributeSet.add(customFieldTotal);

2. Figure out which Rows do you need to calculate the Attributes for

For example, this could be all rows in that structure.

Documentation

Version 1 384

LongList rows = myStructureComponents.getForestService().
getForestSource(forestSpec).getLatest().getForest().getRows();

If you need to create a manually, use implementation.LongList LongArray

3. Call StructureAttributeService

This service calculates a matrix of values for each row and attribute you specify.

VersionedRowValues values = myStructureComponents.
getAttributeService().getAttributeValues(forestSpec, rows,
attributeSet);

There is a variation of method that accepts a , getAttributeValues() Forest

rather than . It is recommended to use the variant that accepts ForestSpec

 whenever possible, because that variant uses caching.ForestSpec

4. Read out the result

The returned object contains values for all pairs of requested row and requested attribute.

for (LongIterator ii : rows) {
 String key = values.get(ii.value(), CoreAttributeSpecs.KEY);
 Number total = values.get(ii.value(), customFieldTotal);
 ...
}

3.3.7 Creating and Adding Folders

You may need to create a new folder and add it to a structure.

Folders and generators are items that are managed entirely by Structure add-on, so you'll need

to use Structure's services to create the item first, giving you the item identify, and then insert a

row into a forest.

Read more about for general ideas about updating Changing Structure Content (see page 378)

a structure.

1. Create the Folder entity

Documentation

Version 1 385

1. Create the Folder entity

long folderId = myStructureComponents.getFolderManager().
createFolder(Folder.named("My Stuff").build());

The folder is now stored in the database.

2. Define folder's identity

ItemIdentity itemId = CoreIdentities.folder(folderId);

3. Add folder to structure

forestSource.apply(new ForestAction.Add(itemId, 0, 0, 0));

3.3.8 Creating Dynamic Structures

Structures may have dynamic content, produced by generators.

Generators can be added to structure and moved around in the same way other items are

added, as described in . A generator will have Changing Structure Content (see page 378)

effect on the whole sub-tree under its parent.

Generators are a separate entities, managed by Structure add-on. So to create a dynamic

structure, we need to create a generator first and then insert it into the structure.

1. Create generator instance

You create a generator instance by calling .GeneratorManager

long generatorId = myStructureComponents.getGeneratorManager().
createGenerator(
 CoreStructureGenerators.SORTER_AGILE_RANK,
 ImmutableMap.of(CoreGeneratorParameters.SORT_DESCENDING, false),
 structureId);

Note the third parameter – the generator is "owned" by a structure, so we should pass the ID of

the owning structure.

2. Insert generator into the forest

Documentation

Version 1 386

2. Insert generator into the forest

Find parent row under which you'd like the forest to be automated. To apply generator to the

whole forest insert generator at the top level by making "under" coordinate zero.

Do not use "after" and "before" coordinates unless you are adding an Inserter.

forestSource.apply(new ForestAction.Add(CoreIdentities.generator
(generatorId), under, 0, 0));

This is it! Next time you read the contents of this forest source, it will have the results

of this generator applied.

3.4 Extending Structure Functionality

You can extend Structure add-on's functionality with your own add-on by using one of the

available extension points.

Structure plugin has a lot of extension points. More extensive documentation is

coming with the future versions. It will cover the following topics:

Adding new item types, which can be used in a structure

Adding new generators, which can build dynamic structures (Inserters,

Extenders, Filters, Groupers and Sorters)

Adding new attributes, displaying them in the Structure grid or using for sorting

or grouping

Adding new structure templates

Adding new constraint function to S-JQL

Adding actions to Manage Structure page

Adding toolbar elements to the Structure Board

If you're interested in these topics but cannot find documentation or need help, please

write to and we'll provide advice.support@almworks.com

Documentation

Version 1 387

3.4.1 Creating a New Column Type

In this tutorial we will develop the Status Bar column type, which shows a progress-like bar

filled with color stripes, each stripe's color representing a particular issue status, and each

stripe's width being proportional to the number of issues having that status in the current issue's

subtree.

You can download both the compiled plugin and its source code from API Usage

.Samples (see page 470)

1. The Plan

A column type consists of several components. The client-side components are written in

JavaScript and have two responsibilities:

Rendering the cells in the Structure widget.

Providing the column configuration UI.

The server-side components are written in Java and responsible for:

Providing the attributes needed by the client-side part to render the cells.

Exporting the column into printable HTML and Microsoft Excel formats.

For the Status Bar column we'll need to write code to cover all of the above responsibilities.

Documentation

Version 1 388

In general, however, only the client-side part is strictly necessary. If the attributes provided by

 are enough for your column, you can skip the server-side attribute Structure (see page)

provider. You can also skip the components related to export, if this functionality is not critical.

In that case, you can jump straight to the , consulting the other client-side part (see page 392)

chapters as necessary. For the complete treatment, please continue reading from top to

bottom.

2. The Attributes

Before we begin, let's decide which attributes we need to pass from the server side to render a

status bar. Obviously, the status bar depends on the statuses of all the issues in the given

issue's subtree. This suggests that we need to use an "aggregate" attribute, and because

Structure does not provide such an aggregate out of the box, we'll need to write our own.

Secondly, the colors and the order of statuses in the status bar are only a presentational

matter. If we had a map from status IDs to sub-issue counts in the given issue's subtree, we

could count the total number of sub-issues, scale the colored stripes so that they'd fill the whole

status bar, and render them in any given order.

Thirdly, the "Include itself" option is somewhat trickier. When it's on, the current issue's status is

shown in its status bar, as if there is one more sub-issue. When it's off, the current issue is

excluded, and the status bar shows only its sub-issues (on all levels). We could try to

implement this on the server side as a separate aggregate, however, this approach has a

couple of drawbacks:

When the user toggles the checkbox, Structure will have to calculate a new aggregate

and transfer the results. Because the aggregate values are cached on the server side,

and issue data values are cached on the client side, on both sides we'll have increased

memory consumption.

Because of the way the aggregates are calculated and cached on the server side, the

aggregate for the option turned off will be somewhat more difficult to write, and use a

more complex data structure.

So, we'll do things differently, and use a single, simpler, aggregate, calculating the data with the

"Include itself" option turned on. If it's off, we'll adjust the data on the client side. To do that,

we'll need another piece of data – the status ID for the current issue, but that can be provided

by Structure itself, and the overhead of requiring it is less than that of a separate aggregate.

3. AttributeSpec for Status Bar

Once we understood which attributes will our JavaScript code need, we have to define or find

the appropriate attribute specifications for it.

Documentation

Version 1 389

Our status bar is going to be a new attribute, so we need to create an . The ID for AttributeSpec

this spec should be something unique to our add-on. And the format should be a generic

, because we're going to transfer a bunch of data back to the client rather than JSON_OBJECT

just a single value.

public static final AttributeSpec<Map<String, Integer>> STATUS_BAR
 = new AttributeSpec("com.almworks.statusbar", ValueFormat.
JSON_OBJECT);

We don't need any parameters for this attribute specification – regardless of column

configuration, we'll always load the same attribute.

The value will be the map from the Status ID to the number of cases that status is encountered

in the sub-tree, including the parent issue.

As for the status ID of the current row, we'll use .CoreAttributeSpecs.STATUS_ID

4. Status Bar Attribute

Now that we know which attribute we need to implement, let's write a loader of that attribute. A

loader is an instance of that loads specific attributes for a specific request.AttributeLoader

We need to start by looking for the most convenient base class for our loader. It seems that

 is the best, because:AbstractDistinctAggregateLoader

It is already a loader for an aggregate,

It addresses the problem of having multiple issues in the same sub-tree more than once

– obviously, we don't want to count such issue's Status twice.

As the loader does not have any other parameters, we'll only need a single instance, which

we'll keep in a field.static final

private static final AttributeLoader<Map<String, Integer>> LOADER
= new StatusBarLoader();

Our loader will have a dependency on the attribute. Structure CoreAttributeSpecs.STATUS

will guarantee that the dependency attributes are loaded before our loader is asked to do its

calculation.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/AttributeSpec.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/loader/AttributeLoader.html

Documentation

Version 1 390

It is recommended that aggregates and propagates did not access items directly, but

rather declared dependency on other attributes. In this way, if another developer

extends the applicability of those dependency attributes to a new type of items, they

will immediately get a working aggregate attribute that you wrote, even though you

didn't know about the new item type at development time.

The calculation of the result is pretty straightforward. The base class,

, defines two methods for building recursive value: AbstractDistinctAggregateLoader

 provides a single value for a single row and accumulates the getRowValue() combine()

provided values.

As a result for a single row, we create a map with just one record: the issue's status is

mapped to 1. If status is missing (as would be the case for non-issues), we just return

null.

As a combination function we will implement map merge that combines counters.

Finally, we return an immutable copy of the map.result

StatusBarAggregate.java

 private static class StatusBarLoader extends
AbstractDistinctAggregateLoader<Map<String, Integer>> {
 public StatusBarLoader() {
 super(STATUS_BAR);
 }

 public Set<? extends AttributeSpec<?>>
getAttributeDependencies() {
 return Collections.singleton(STATUS);
 }

 protected Map<String, Integer> getRowValue
(AggregateContext<Map<String, Integer>> context) {
 Status value = context.getValue(STATUS);
 return value == null ? null : Collections.singletonMap
(value.getId(), 1);
 }

 protected Map<String, Integer> combine(Collection<Map<String,
Integer>> values, AggregateContext<Map<String, Integer>> context)
{
 HashMap<String, Integer> r = new HashMap<>();
 for (Map<String, Integer> map : values) {
 if (map != null) {
 for (Map.Entry<String, Integer> e : map.entrySet()) {
 Integer count = r.get(e.getKey());

Documentation

Version 1 391

 if (count == null) {
 count = 0;
 }
 r.put(e.getKey(), count + e.getValue());
 }
 }
 }
 return r;
 }
 }

5. Attribute Provider

Attribute providers are registered as modules in the plugin descriptor, and their instances are

created by the JIRA module system. If the attribute provider "recognizes" the attribute

specification and can serve it, it must return a non-null instance. Because AttributeLoader

our implementation is stateless and has no parameters, we can reuse the StatusBarLoader

single instance, but a configurable data provider could create and return new static final

loaders for each call. The returned loader will then be called once for each item needed to

display the Structure grid (or its visible part).

StatusBarDataProvider.java

public class StatusBarAttributeProvider implements
AttributeLoaderProvider {
 private static final AttributeSpec<Map<String, Integer>>
STATUS_BAR = new AttributeSpec("com.almworks.statusbar",
ValueFormat.JSON_OBJECT);
 private static final AttributeLoader<Map<String, Integer>>
LOADER = new StatusBarLoader();

 public AttributeLoader<?> createAttributeLoader(AttributeSpec<?
> attributeSpec, @NotNull AttributeContext context)
 throws StructureProviderException
 {
 if (STATUS_BAR.getId().equals(attributeSpec.getId())) {
 return LOADER;
 }
 return null;
 }
}

When the data provider is ready, we register it in the plugin descriptor.

atlassian-plugin.xml

Documentation

Version 1 392

<structure-attribute-loader-provider key="alp-sbcolumn" name="attr
ibute-loader:Status Bar Column"
 class="com.almworks.jira.
structure.sbcolumn.StatusBarAttributeProvider"/>

6. Client-Side Column

We now come to the most visible part of the column – the client-side JavaScript code,

responsible for rendering the cells of the Structure grid and showing the column configuration

UI. Having almost 400 lines of JavaScript, the code is too long to be reproduced in its entirety.

We advise you to download the API examples source code from the API Usage Samples (see

 page and open from the sample plugin in page 470) sbcolumn.js status-bar-column

your favorite editor.

First, we'll take a high-level overview of the API and look at a few common concepts – column

specifications, column context, and the metadata. After that we'll discuss each of the API

classes and their implementations.

6.1. API Overview

The whole API is accessible through the window.almworks.structure.api (see page 455)

global object. There are a few utility functions and four main classes that the developer needs

to extend (by using the function) in order to create a fully-functional column. api.subClass()

These classes are linked together by the , which is a JSON object column specification
representing all of the column's parameters. Column specifications are discussed in detail in

the following section. Now let's overview the classes and functions.

Class or Function Description

api.ColumnType (see

page 467)

The is the gateway between Structure and your column type
code. The column type is registered with Structure and has the

following responsibilities:

creating column presets for the "Add Column" menu;

creating the column preset used when switching to your

column type from a different type;

creating and instances Column ColumnConfigurator

for given column specifications.

api.Column (see page

457)

Documentation

Version 1 393

Class or Function Description

The is responsible for value rendering. It creates the column
HTML for the widget cells and controls the column's name and

width. It can require one or more attributes to be downloaded

from the server for the rendered rows.

api.

ColumnConfigurator

(see page 463)

The is responsible for the column configuration configurator
panel as a whole. Its most important task is to create

 instances.ColumnOption

api.ColumnOption

(see page 465)

The is the workhorse of the configuration UI, option
corresponding to a single "row" of the configuration panel. It is

responsible for creating the input elements and routing changes

between them and the specification.

api.

registerColumnType

(columnType,

columnKey)

Registers a column type with the Structure, making it responsible

for handling the given column key (see below).

api.

registerColumnGroup

(parameters)

Registers a new group in the Add Column menu.

6.2. Column Specifications

A is a JSON object representing the complete configuration of a column specification
Structure widget column. Column specifications are stored as parts of view specifications. Each

, and instance has its own current Column ColumnConfigurator ColumnOption

specification, accessed via . A is given a column specification when this.spec ColumnType

Structure wants it to create a or a . also creates Column ColumnConfigurator ColumnType

column specifications for column presets. Finally, column specifications are passed to the

export renderer providers on the server side (see below).

Do not confuse column specifications with attribute specifications. A column is a

higher-level concept and may require multiple attributes (as is the case with our Status

Bar column).

Documentation

Version 1 394

Here is an example of a Status Bar column specification.

{ "csid": "7",
 "key": "com.almworks.jira.structure.sbcolumn",
 "name": "Status Bar",
 "params": {
 "statuses": ["1", "3", "4", "5", "6", "10000"],
 "colors": ["#fcaf3e", "#fce94f", "#ef2929", "#8ae234",
"#ad7fa8", "#729fcf"],
 "includeItself": true }}

Key Description

csid The ("column sequential ID") is a string that uniquely identifies a column CSID
within a view. CSIDs are assigned and managed by Structure, and should not

bother you as a column developer. Do not change a column's CSID!

key The is a string identifying the column type. Structure uses the key to decide key
which or to use for a particular column. ColumnType ExportRendererProvider

The key is required.

name The column is shown in the column header. The name is often omitted from name
the specification, in which case a default name is generated for the column.

params This is a JSON object containing the column's parameters. The layout of this object

is up to the column developer. In the example we see two parallel arrays for the

selected status IDs and their colors, and a for the "Include itself" option.boolean

6.3. The Column Context

A is a JavaScript object providing various kinds of information about the column context
environment, in which columns and their configurators operate. It is not to be confused with the

somewhat similar in purpose, but unrelated on the server side. When AttributeContext

Structure makes requests to the , it passes the context as a parameter. Each ColumnType

, or instance has its own current context, Column ColumnConfigurator ColumnOption

accessed via . The table below describes the methods of the column context.this.context

Documentation

Version 1 395

Method Description

structure.

isPrimaryPanel()

Returns if the column belongs (or will belong, for presets) to true

the primary panel of the Structure widget.

structure.

isSecondaryPanel()

Returns if the column belongs (or will belong, for presets) to true

a of the Structure widget.secondary panel (see page 153)

structure.

isStructureBoard()

Returns if the current widget is on the Structure Board true

page.

structure.

isIssuePage()

Returns if the current widget is in the Structure section of true

an issue page.

structure.

isGadget()

Returns if the current widget is embedded in a Structure true

gadget.

structure.

isLocalGadget()

Returns if the current widget is embedded in a true local

Structure gadget (i.e. a gadget provided and rendered by the

same server).

structure.

isRemoteGadget()

Returns if the current widget is embedded in a true remote

Structure gadget (i.e. a gadget provided and rendered by different

servers).

structure.

isGreenHopperTab()

Returns if the current gadget is in the Structure section of true

an Agile (GreenHopper) board.

structure.

isProjectPage()

Returns if the current gadget is in the Structure tab of a true

project page.

jira.

getAllIssueFields()

Returns an array of JSON objects representing available JIRA

issue fields.

jira.

getIssueFieldById

(fieldId)

Returns a JSON object representing the JIRA issue field with the

given ID, or if there is no such field.undefined

getMetadata(key)

Documentation

Version 1 396

Method Description

Returns the metadata object associated with the given . See key

the section below for the description of metadata.

In our column we'll use .context.getMetadata()

6.4. Requesting and Using Metadata

Metadata, in the context of the column API, is any data needed by column types, columns, and

configurators to to do their duties, except for attributes. For example, the Status Bar column

needs to know the IDs and names of all the issue statuses in order to render tooltips and create

presets – this is metadata. Structure provides some metadata by default – the

 and methods of the column context are getAllIssueFields() getIssueFieldById()

examples, but you can load more via AJAX by issuing .metadata requests

Metadata is requested by overriding one or more of the methods in , , and ColumnType Column

 classes. Let's look at an example from the Status Bar column type:ColumnConfigurator

sbcolumn.js

getMetadataRequests: function() {
 return {
 status: {
 url: baseUrl + '/rest/api/2/status',
 cacheable: true,
 extract: function(response) {
 var result = { order: [], names: {} };
 if ($.isArray(response)) {
 response.forEach(function(status) {
 result.order.push(status.id);
 result.names[status.id] = status.name;
 });
 }
 return result;
 }
 }
 };
}

Documentation

Version 1 397

The method is supposed to return a JavaScript object. Each key in that object will become a

metadata key for obtaining the corresponding result from the column context. In this example,

the status-related metadata object will be obtained by calling context.getMetadata

.('status')

The values in the returned object are request specifications. Let's look at the request

properties:

The property is the URL to be requested. Here we call a JIRA REST API method url

that returns all available issue statuses. Don't forget the JIRA base URL!

The property is an opt-in mechanism for response caching. If a metadata cacheable

request is cacheable, and this URL has already been requested (e.g. by a different

column type), the previous response will be used instead of making a new AJAX

request. You should to declare your requests cacheable whenever possible
conserve traffic and improve responsiveness.

The property is the function that receives the response and produces the extract

value stored in the metadata map. If omitted, the response is stored unchanged. In the

example, we convert the resulting array of JSON objects into an array of status IDs and

a map from status IDs to status names.

You can add any other properties supported by to the request jQuery.ajax()

specification. Remember, though, that the jQuery success and error handlers will not be

called for cacheable requests if a cached response is used.

Different metadata may be required for different operations. Therefore, there are several

methods in the API that you can override to request metadata:

A column type may request metadata to be able to:

create column presets – ;ColumnType.getPresetMetadataRequests()

create columns from specifications – ColumnType.

;getColumnMetadataRequests()

create configurators from specifications – ColumnType.

;getConfigMetadataRequests()

do all of the above – , the "catch-all" ColumnType.getMetadataRequests()

method.

A column may need metadata to render its values – Column.

.getMetadataRequests()

A configurator may need metadata to set up the UI – ColumnConfigurator.

.getMetadataRequests()

Documentation

Version 1 398

Please note that the corresponding type-level metadata is also available to the columns and

configurators created by the type. So, for example, there is no need to issue requests the same
in both and ColumnType.getColumnMetadataRequests() Column.

, the former alone will suffice.getMetadataRequests()

Structure will delay loading the metadata for as long as possible. For example:

the metadata for a column will not be loaded unless there is a column in the widget that

needs it;

the metadata for creating column presets will not be loaded until the user clicks "Add

Column" or "Edit Column" icons;

and so on.

Structure guarantees that the metadata request will be completed by the time it calls your type,

column, and configurator methods (obviously, except for the getMetadataRequests()

methods themselves). If the requests succeed, the metadata will be available in the column

context. If they fail, the corresponding metadata will be , but the methods will still undefined

be called, and they should not fail in that case.

6.5. Column

The class is responsible for rendering the cells of the Structure grid. Please refer api.Column

to the for the list of methods that you can override. The Column class reference (see page 457)

 class in overrides four methods.StatusBarColumn sbcolumn.js

getDefaultName() simply returns a localized string as the column name when the name is

not present in the column specification. A more involved column could use its specification,

context, or metadata to determine the default column name.

canShrinkWhenNoSpace() allows Structure to make the column narrower than its minimum

width when the widget is very low on horizontal space. Because we do not override any other

sizing-related methods, the column will be resizable, with the default and minimum width of 120

and 27 pixels, respectively. Autosizing will not be applied to it, because there is no variable-size

content, so autosizing makes no sense.

collectRequiredAttributes() always requests the status bar aggregate data from

. If the "Include itself" option is off, it additionally requests StatusBarAttributeProvider

the status ID of the current issue, which is provided by Structure as {id:'status',

. The main attributes are also available from format:'id'} require('structure/widget

 object./attributes/Attributes')

getSortAttribute() is used to specify the attribute for sorting when the user clicks on the

column header.

Documentation

Version 1 399

getCellViewHtml() returns the actual HTML for the cells. It obtains the serialized status bar

map from the , deserializes it, adjusts for the "Include itself" option, if renderParameters

necessary, distributes the full status bar width of 100% among the selected statuses according

to their issue counts, and finally generates and returns the status bar HTML code as a string.

Please refer to the source code for the implementation details.

Please note, that for simple columns, displaying textual information, we advise you to override

 instead, and let Structure take care of the boilerplate HTML getCellValueHtml()

surrounding your value. However, since we want the Status Bar to look similar to Structure's

Progress Bar, we need to override a higher-level method and mimic the Progress Bar HTML

layout.

6.6. ColumnConfigurator

The class is responsible for the column api.ColumnConfigurator (see page 463)

configuration UI. Because most of the work is delegated to instances (see ColumnOption

below), the configurators themselves are usually quite simple. Let's look at

 in its entirety.StatusBarConfigurator

sbcolumn.js

var StatusBarConfigurator = api.subClass('StatusBarConfigurator',
api.ColumnConfigurator, {
 init: function() {
 this.spec.key = COLUMN_KEY;
 this.spec.params || (this.spec.params = {});
 },
 getColumnTypeName: function() {
 return AJS.I18n.getText("sbcolumn.name");
 },
 getGroupKey: function() {
 return GROUP_KEY;
 },
 getOptions: function() {
 return [new StatusesOption({ configurator: this }), new
IncludeItselfOption({ configurator: this })];
 }
});

The constructor, simply sanitizes the current column specification.init()

getColumnTypeName() returns the human-readable name for the column type. This name is

used in the "Type" drop-down of the column configuration panel. You can also override

 to generate column names if the type name cannot always be getDefaultColumnName()

used as the default column name.

Documentation

Version 1 400

getGroupKey() returns the key of the group in the "Add Column" menu that will contain this

preset. See the sections on and ColumnType (see page 401) column groups (see page 403)

below.

getOptions() creates and returns an array of instances that create input ColumnOption

controls for the column configuration panel and route events. Please note how the configurator

instance is passed to each option's constructor – this is crucial. The order of the options in the

resulting array is also important – the rows of the configuration panel will be created in that

order.

Although the methods of always return the same values, this is StatusBarConfigurator

not a requirement. The result of any of the methods can depend on the current column

specification () and metadata.this.spec

6.7. ColumnOption

Each instance is responsible for editing a single logical api.ColumnOption (see page 465)

"part" of the column specification, and corresponds to a single "row" of the column configuration

panel. The option creates the actual input elements and sets up event handlers to transfer the

values between the inputs and its column specification. An option can hide itself if it's not

applicable to the current specification. Also, each option can prohibit saving the column

configuration if it considers the current specification invalid – see method in isInputValid()

the class reference.

Status Bar column has two options:

StatusesOption is responsible for status selection, colors, and ordering. It "owns" the

 and arrays of a Status Bar column specification. This option is statuses colors

somewhat more involved than the next one, but you can still refer to its source code in

.sbcolumn.js

IncludeItselfOption is responsible for the "Include itself" checkbox and "owns" the

 specification parameter. This is one of the simplest options includeItself

imaginable, so we'll look at its code in detail.

sbcolumn.js

var IncludeItselfOption = api.subClass('IncludeItselfOption', api.
ColumnOption, {
 createInput: function(div$) {
 this.checkbox$ = div$.append(
 AJS.template('<div class="checkbox"><label><input type="
checkbox"> {label}</label></div>')
 .fill({ label: AJS.I18n.getText("sbcolumn.include-
itself") })
 .toString()).find('input');

Documentation

Version 1 401

 var params = this.spec.params;
 this.checkbox$.on('change', function() {
 if ($(this).is(':checked')) {
 params.includeItself = true;
 } else {
 delete params.includeItself;
 }
 div$.trigger('notify');
 });
 },
 notify: function() {
 this.checkbox$.prop('checked', !!this.spec.params.
includeItself);
 return true;
 }
});

Because the option class specifies no and doesn't override , there is title createLabel()

no label to the left of the checkbox.

The method creates the checkbox and sets up event handling. It is passed a createInput()

jQuery object to append the input elements to.

Please note that Structure column configuration panels use the HTML layout (with AUI Forms

modified CSS styles). You should use the same layout in your HTML code to make your

options look consistent with Structure's. In the example above, the checkbox is wrapped in a

 element to comply with AUI Forms.<div class="checkbox">

Also note how the event handler of the checkbox modifies the current specification change

parameters and always triggers a event on the provided jQuery object. These are the notify

crucial parts of the option contract.

The method is called whenever the current specification changes. Its job is to notify()

transfer the data in the opposite direction – from the specification to the input elements. This

method also decides whether the option is applicable – if it returns a "falsy" value, the option's

row on the configuration panel is hidden from the user.

6.8. ColumnType

The class is the main entry point used by the Structure api.ColumnType (see page 467)

plugin to call your client-side column code. A column type instance creates column presets,

columns, and configurators. To find the complete source code for the Status Bar column type,

please open from the in your favorite sbcolumn.js API example sources (see page 470)

editor and scroll to the class definition.StatusBarType

https://developer.atlassian.com/display/AUI/Forms

Documentation

Version 1 402

The method declares the column-level metadata request to load getMetadataRequests()

the available issue statuses from JIRA. See Requesting and Using Metadata (see page 396)

above for details.

The method creates a single column specification, which is createSwitchTypePreset()

used as a preset when the user selects our type in the "Type" drop-down on the column

configuration panel.

Note the call to the function that checks that the preset is needed for the isAvailable()

primary panel and that the status metadata is indeed available. If that check fails, the method

returns , making it impossible to switch to the Status Bar column type. You can try it null

yourself – open the Search Result secondary panel, add any column to it and try to change its

column type. You should see that the Status Bar type is not available.

The switching preset doesn't have to be fully configured, because the configuration panel is

already open when it's used. However, because the Status Bar column configuration is quite

complex, we make an extra effort and pre-populate the preset with all the known statuses and

some default colors for them. This way the user will quickly see what a status bar looks like

without having to configure anything at all. This tactic can be useful for other columns with a lot

of parameters.

The method creates an array of column specifications that will createAddColumnPresets()

be used as presets in the "Add Column" menu. Unlike the "switch" preset above, these presets

must be completely configured. Like , this method calls createSwitchTypePreset()

 first, so a Status Bar column cannot be added to a secondary Structure isAvailable()

panel.

Because the "Add Column" menu is the first place where the user discovers your column type,

it would be best if your presets are interesting and cover the whole range of the type's

functionality. It's not easy to be creative with the Status Bar column though, unless we know the

semantics of statuses, which can be arbitrary. So, for simplicity adds only a StatusBarType

single preset to the "Add Column" menu, reusing the "switch" preset, which is fully configured.

Besides the usual , , and , the "add" presets can have two special properties:key name params

presetName is a string that specifies the name of the preset in the "Add Column" menu.

This name will be used , the added column will have either the only in the menu name

from the specification or the default name generated for it. If omitted, the column name

will be used as the preset name.

shouldOpenConfigurator – if this flag is set to , the column configuration panel true

will open immediately after adding the column with this preset. This can be used to

create a "Custom..." kind of preset that lets the user explore the available options.

Documentation

Version 1 403

The and methods return a or a createColumn() createConfigurator() Column

 for the given specification, respectively. The methods are similar – ColumnConfigurator

they check whether the type is available and the given specification is valid, and if both checks

succeed, they instantiate the appropriate subclass. Please note how the column context and

the specification are passed to the constructors, this is crucial.

Finally, at the end of the script we instantiate and register our column type, making it available

to Structure:

sbcolumn.js

api.registerColumnType(new StatusBarType(), COLUMN_KEY);

Structure will use our column type instance to handle the columns with the given key. You can

also pass an array of keys as the second argument, to associate your type with more than one

column key.

6.9. Column Groups

Column groups are used to organize column presets in the "Add Column" menu. Each group

has a string key and a human-readable name. Column configurator's method getGroupKey()

should return the appropriate group key for its preset specification.

Structure specifies four column groups for its built-in columns – , , , and fields icons totals

. For the Status Bar column we will register a separate column group:progress

sbcolumn.js

api.registerColumnGroup({ groupKey: GROUP_KEY, title: AJS.I18n.
getText("sbcolumn.name"), order: 1000 });

The parameter determines the position of the group within the menu. The higher the order

order, the lower the group will be. Structure's predefined groups have order between 100 and

400, inclusive.

6.10. Web Resources and Contexts

You need to register your JavaScript and CSS code as a web resource in the plugin descriptor.

The Status Bar column has no CSS of its own, and all of its JavaScript code is in a single file,

. Because we use the Structure JavaScript API and the sbcolumn.js AJS.template()

function from the Atlassian API, we need to declare two dependencies. We also declare a

resource transformation to make calls work.AJS.I18n.getText()

Documentation

Version 1 404

atlassian-plugin.xml

<web-resource key="wr-sbcolumn" name="web-resource:Status Bar
Column">
 <dependency>com.atlassian.auiplugin:ajs</dependency>
 <dependency>com.almworks.jira.structure:widget</dependency>
 <transformation extension="js">
 <transformer key="jsI18n"/>
 </transformation>
 <resource type="download" name="sbcolumn.js" location="js
/sbcolumn/sbcolumn.js"/>
 <context>structure.widget</context>
</web-resource>

We use web resource context to make our JavaScript (and CSS, if we structure.widget

had any) load on Structure Board. It also works for the Structure's Dashboard Gadget.

However, if you'd like your column to work on other pages – Project page, Issue page or Agile

Board page, you need to include other web contexts too – see Loading Additional Web

.Resources For Structure Widget (see page 408)

7. Export Renderers

Any structure can be exported into printable HTML and Microsoft Excel formats. Exporting is

different from rendering the Structure widget in several aspects:

It is entirely a server-side task, so the code is written in Java.

The data needed for exporting need not be transferred over the network and cached.

The export result need not be updated as the exported issues or structure change.

There are two distinct formats, or media, that are quite different from each other. More

formats may be added in the future.

It is because of these differences, that the exporting architecture and APIs are different from

their widget rendering counterparts, being simpler in some aspects and more complex in

others, while quite similar overall, sometimes making it non-trivial to avoid "repeating yourself".

Please refer to the for an overview of the export API and SPI. In short, to export a javadocs

column, you need to write and register an , that would recognize the export renderer provider
column specification and return an instance for the given column and export export renderer
format. The returned renderer will then be given an instance to configure and export column

 instances to render the values. The and instances will export cell export context export row
provide all the data, including the required attributes.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/export/package-summary.html

Documentation

Version 1 405

Speaking of the interfaces that must be implemented, is ExportRendererProvider

analogous to , and is a mixture of AttributeLoaderProvider ExportRenderer

 and the client-side .AttributeLoader Column (see page 457)

7.1. Export Strategies

The main difficulty with export is having different output formats with different features. For

example, if you have a method for converting a value to HTML, you could reuse it for the

printable HTML export. But when exporting to Excel, HTML support is very limited, and if your

values correspond to one of Excel's data types, e.g. date, you need to set an appropriate

column style. On the other hand, if you have a simple plain-text column, the format doesn't

matter – you can have a single export renderer that calls on any type of cell.setText()

The export SPI is flexible, and allows you to use different strategies for different column types.

There are three basic kinds of export renderer providers.

A declares which particular export format it supports in the specific renderer provider
plugin descriptor. It is parameterized with the expected column and cell types, and

returns similarly parameterized renderers, that use format-specific methods.

A does not declare an export format in the plugin descriptor, generic renderer provider
so its priority is lower than that of a specific renderer provider. It returns generic

renderers, that only call the methods of the basic and ExportCell ExportColumn

interfaces. Though limited, such a provider will work for any other export format that may

be added in the future.

A either declares no supported formats (like a generic multi-format renderer provider
provider), or declares multiple supported formats. It is not parameterized with specific

cell and column types, but it keeps track of the current export format, and its renderers

may call format-specific methods by casting the given column and cell instances to the

appropriate types. Though more difficult to write, a multi-format provider can combine

the benefits of generic and specific providers and help avoid code duplication.

Exploring the extremes, we will create two export renderer providers for the Status Bar column.

The first will be a generic provider, that will present the data as plain text instead of drawing a

progress bar. The second one will be an advanced Excel provider that will use the underlying

low-level Apache POI API to draw pseudo-graphic progress bars in Excel cells.

7.2. Generic Renderer Provider

The class in the example plugin StatusBarRendererProvider status-bar-column

source contains both the generic provider and its renderer. The code is quite long, but that's

mostly due to defensive checks and the general verbosity of Java. The operation of both the

provider and the renderer is quite straight-forward.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/export/ExportRendererProvider.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/export/ExportRenderer.html

Documentation

Version 1 406

The provider's method does the following:getColumnRenderer()

Checks that the given column specification indeed represents a Status Bar column, just

in case.

Obtains the column name form the specification, generating a default name if there is

none.

Extracts the array and the flag from the specification statuses includeItself

parameters. These are needed for rendering.

Creates and returns an instance of the inner class, passing it the StatusBarRenderer

column name and parameters.

The renderer has method that lets it specify which attributes it will need loaded to prepare()

do the export. Like in , we request our histogram-based custom attribute StatusBarColumn

and status for the current row.

The renderer's method sets the column name by calling on configureColumn() setText()

the given column's header cell.

The renderer's method does the following:renderCell()

Obtains the attribute values from the context.

Adjusts the data if the the "Include itself" option is off, by decrementing the issue count

for the current issue's status.

Iterates over the selected statuses, adding each non-zero sub-issue count and the

corresponding status name to a .StringBuilder

If the resulting value is not empty, calls on the given cell.setText()

Here is the module declaration for the generic renderer provider. Note that it specifies the

column key, but no export format.

atlassian-plugin.xml

<structure-export-renderer-provider key="erp-sbcolumn" name="expor
t-renderer:Status Bar Column Provider"
 class="com.almworks.jira.
structure.sbcolumn.StatusBarRendererProvider">
 <column-key>com.almworks.jira.structure.sbcolumn</column-key>
</structure-export-renderer-provider>

7.3. Advanced Excel Renderer Provider

The class contains the advanced Excel renderer and the StatusBarExcelProvider

corresponding provider.

Documentation

Version 1 407

The provider's method is very similar to the generic provider's, with getColumnRenderer()

two additions:

it checks that the export format is indeed ;MS_EXCEL

it also extracts the array from the specification parameters, as the renderer will colors

use those (or similar) colors for the progress bar.

The renderer's and methods are the same as the generic prepare() configureColumn()

version. The method begins in a similar way, by extracting the data map and renderCell()

adjusting it for the "Include itself" option, if needed.

The interesting part is the actual rendering. The pseudo-graphic "progress bar" that the

renderer creates is a string of 30 "pipe" characters, split into colored stripes with lengths

proportional to issue counts. provides no support for rich text formatting (besides ExcelCell

, which is not up to the task), but we can access the lower-level setRichTextFromHtml()

API, , by obtaining the underlying POI objects from Apache POI HSSF ColumnContext.

 using the keys from .getObject() ColumnContextKeys.Excel

The code that distributes the 30 characters among the stripes is ported from . To sbcolumn.js

completely understand how the rich text part works, you'll need some knowledge of the POI

HSSF API, which is quite complex and outside of the scope of this document. Please refer to

the POI documentation and the source code for more StatusBarExcelProvider

information.

The module declaration for the Excel renderer provider is given below. Note that it specifies

both a column key and an export format, thus overriding the generic provider for the Excel

format.

atlassian-plugin.xml

<structure-export-renderer-provider key="erp-sbcolumn-excel" name=
"export-renderer:Status Bar Column Excel Provider"
 class="com.almworks.jira.
structure.sbcolumn.StatusBarExcelProvider">
 <column-key>com.almworks.jira.structure.sbcolumn</column-key>
 <export-format>ms-excel</export-format>
</structure-export-renderer-provider>

3.4.2 Creating a New Synchronizer

Structure comes with a number of bundled , but you can add synchronizers (see page 332)

another synchronizer to the system, allowing Structure users to install it on structures and run

export / import.

1. Implement StructureSynchronizer

http://poi.apache.org/spreadsheet/index.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/column/ColumnContext.html#getObject(java.lang.Object)
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/column/ColumnContext.html#getObject(java.lang.Object)
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/column/ColumnContextKeys.Excel.html

Documentation

Version 1 408

1.

2.

1. Implement StructureSynchronizer

Create your implementation of interface. Use as StructureSynchronizer AbstractSynchronizer

the base class.

2. Define structure-synchronizer Module

Add module to your , structure-synchronizer (see page 415) atlassian-plugin.xml

referring to your implementation of the .StructureSynchronizer

3. Test Thoroughly

Test how your synchronizer works when other synchronizers are also installed onto the same

structure.

Sample Project

This project can be used to bootstrap writing your own synchronizer. It compiles into a working

plugin, which does not do anything except writing to console at the times the synchronizer

would do some work.

You can download the sources zip with the sample synchronizers at API Usage Samples (see

 page.page 470)

3.4.3 Loading Additional Web Resources For Structure Widget

To include a web resource (such as custom CSS or JavaScript file) on the page every time

 is displayed, use web resource context Structure Widget (see page 15) structure.widget

and possibly a few others.Use cases:

You create your own custom field and would like it to be editable in the Structure grid.

The field is powered by additional JavaScript or CSS, which should be loaded on the

page that displays structure.

You create your own . You'll need to use the column type (see page 387) Structure

 and register the web resource with your JavaScript code JavaScript API (see page 455)

as a widget extension.

Using Web Resource Contexts

You can add JavaScript or CSS to the Structure widget by adding a web resource to the

 context. Note, however, that due to Atlassian API limitations, context-structure.widget

provided web resources may not be loaded on pages with the Structure widget. The all
following table lists all web resource contexts related to pages where Structure Widget can

possibly be shown.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/StructureSynchronizer.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/AbstractSynchronizer.html

Documentation

Version 1 409

Web Resource Context Used on...

structure.widget Structure Board, Structure Gadget

jira.view.issue Issue Page, Issue Navigator in details view

gh-rapid Scrum and Kanban boards from JIRA Software

jira.browse.project Project page (including Structure tab)

structure.printable Printable Structure page

To have your code present on every page where a Structure widget can possibly be shown,

include all these resources. You usually don't need to include structure.printable

though, unless you have some special rules for printing.

Sample snippet from :atlassian-plugin.xml

<web-resource key="custom-field-resource" name="My Custom Field
Web Resource">
 <resource type="download" name="custom-field-resource.js"
location="js/myplugin/custom-field-resource.js"/>
 <context>structure.widget</context>
 <context>jira.view.issue</context>
 <context>gh-rapid</context>
 <context>jira.browse.project</context>
</web-resource>

3.4.4 Declaring a New Generic Item Type

Generic items are managed by Structure and are similar to folders but may also contain an icon

and a description. You can define a generic item type in your app to allow Structure users to

create and work with domain-specific items, e.g. milestones or test cases. A new generic item

type is defined in your app's by declaring a atlassian-plugin.xml <structure-item-

 module and using type> com.almworks.jira.structure.api.item.generic.

 as its implementation class.GenericItemType

Documentation

Version 1 410

Example

<structure-item-type key="type-milestone" name="itemtype:Milestone"
 weight="100"
 class="com.almworks.jira.structure.api.item.
generic.GenericItemType">
 <icon spanClass="my-app-milestone-icon-class"/>
 <displayable key="my.app.milestone.displayable"/>
 <title key="my.app.milestone.title"/>
 <newItemTitle key="my.app.milestone.new"/>
</structure-item-type>

Element Required Description

@key Yes Unique module key within the plugin. Full module key will define

the part of .itemType ItemIdentity

@name No A human-readable name of the plugin module.

@weight No Determines the order in which generic item types appear in

menus and lists. Items with the 'lightest' weight are displayed

first and the 'heaviest' items sink to the bottom.

@class Yes Module class. Must be .GenericItemType

icon No An icon shown in the item row. At this point the only supported

option is using a single icon, associated with a CSS class, for all

items of the given type. If you're using your own icons, make

sure the appropriate CSS styles are loaded everywhere

Structure can be used (see Loading Additional Web Resources

).For Structure Widget

displayable Yes An I18N key used to generate a textual representation of an

item for activity streams, decision panels, and elsewhere. The

value should contain the type name and a placeholder for the

item name, e.g. "milestone {0}".

title Yes An I18N key for the item creation panel, e.g. "Milestone".

https://wiki.almworks.com/display/structure2gmaster/Loading+Additional+Web+Resources+For+Structure+Widget
https://wiki.almworks.com/display/structure2gmaster/Loading+Additional+Web+Resources+For+Structure+Widget

Documentation

Version 1 411

Element Required Description

newItemTitle Yes An I18N key for the Structure toolbar's "Add item" drop-down

menu, e.g. "New Milestone".

Programmatic Access to Generic Items

Use or to create, retrieve, and update GenericItemService GenericItemManager

generic items in your plugin code. is a higher-level component which GenericItemService

checks users' permissions and performs other validation tasks as needed.

 is a low-level component which queries and updates the database, GenericItemManager

throwing exceptions if anything goes wrong.

Generic Item Permissions

Each generic item is associated with the structure that contains it, and that structure's

permissions are used to determine who can see and update the item.

Any user can create a new generic item programmatically. access level is required Edit
to add the new item to a structure. When the item is added to a structure, it becomes

associated with that structure.

As with issues and folders, access level is required to create a generic item using Edit
Structure UI. The item is associated with the structure it was created in.

If a generic item from one structure is copied or moved to a different structure, a copy of

the item is created and associated with the new structure.

All users having the access level to a structure can view all generic items in that View
structure.

All users having the access level to a structure can update and delete all generic Edit
items in that structure.

As with any other item, access level is required to remove a generic item from a Edit
structure. When a generic item is removed from a structure it is deleted from the not
database. It can still be seen in , accessed or updated structure history (see page 182)

programmatically, and re-inserted into the structure.

3.5 Accessing Structure Data Remotely

Structure plugin provides REST API, which is primarily used by the structure widget (see page

. The same API can be used to access the hierarchical data remotely from an automation 35)

script or another user agent application.

Documentation

Version 1 412

See details in the .REST API Reference (see page 422)

3.6 Reference

3.6.1 Structure Developer Reference

3.6.2 Structure Java API Reference

Structure API is work in progress. You will find that some of the packages are

documented less than others, and some are not documented yet.

We're constantly working on the API improvements and documentation and will make

the javadocs and other parts of the documentation more complete with every release.

Structure API Reference for the latest version: http://almworks.com/structure/javadoc/latest

You can download javadocs from the Maven repositories into your IDE.

Check out information about to select the correct API Structure API Versions (see page 412)

artifact, and you can also download Javadoc JARs there.

Structure API Versions

Current Versions

Version Supported JIRA
Versions

Supported Structure
Versions

OSGi Import
Version

Release
Date

16.11.0

Javadocs

JIRA 7.2+ 5.1.0+ "[16.11,17)" 2018-10-25

16.10.0

Javadocs

JIRA 7.2+ 5.0.0+ "[16.10,17)" 2018-08-16

16.9.0

Javadocs

JIRA 7.2+ 4.6.0+ "[16.9,17)" 2018-03-28

http://almworks.com/structure/javadoc/latest
http://almworks.com/structure/javadoc/16.11.0
http://almworks.com/structure/javadoc/16.10.0
http://almworks.com/structure/javadoc/16.9.0

Documentation

Version 1 413

Version Supported JIRA
Versions

Supported Structure
Versions

OSGi Import
Version

Release
Date

16.8.0

Javadocs

JIRA 7.2+ 4.5.0+ "[16.8,17)" 2017-12-26

16.7.0

Javadocs

JIRA 7.2+ 4.4.0+ "[16.7,17)" 2017-11-29

16.6.0

Javadocs

JIRA 7.2+ 4.3.0+ "[16.6,17)" 2017-10-16

16.5.0

Javadocs

JIRA 7.2+ 4.2.0+ "[16.5,17)" 2017-08-25

16.4.0

Javadocs

JIRA 7.1+ 4.1.0+ "[16.4,17)" 2017-06-19

16.3.0

Javadocs

JIRA 7.1+ 4.0.0+ "[16.3,17)" 2017-04-26

16.2.0

Javadocs

JIRA 7.0+ 3.6.0+ "[16.2,17)" 2017-04-03

16.1.0

Javadocs

JIRA 7.0+ 3.5.0+ "[16.1,17)" 2017-01-26

16.0.0

Javadocs

JIRA 7.0+ 3.4.0+ "[16,17)" 2016-12-07

Structure API version 16.0.0 is the first public API version for Structure 3.x. For older API
versions compatible with Structure 2.x, see .Previous API Versions

Javadocs for the Latest Version — Java API documentation for the latest API version.

To see how to include the API in your project dependencies, read about Accessing Structure

.from JIRA Plugin (see page 367)

http://almworks.com/structure/javadoc/16.8.0
http://almworks.com/structure/javadoc/16.7.0
http://almworks.com/structure/javadoc/16.6.0
http://almworks.com/structure/javadoc/16.5.0
http://almworks.com/structure/javadoc/16.4.0
http://almworks.com/structure/javadoc/16.3.0
http://almworks.com/structure/javadoc/16.2.0
http://almworks.com/structure/javadoc/16.1.0
http://almworks.com/structure/javadoc/16.0.0
https://wiki.almworks.com/display/structure0211/Structure+API+Versions
http://almworks.com/structure/javadoc/latest

Documentation

Version 1 414

Version Compatibility

Versioning of the API artifact follows these generally accepted rules:

Major version is increased when the client code – your code – might not compile with the

new version.

Minor version is increased when new methods are added to the API (so your code might

break if you downgrade to a lower minor version).

Micro version is changed when there's no impact on the compatibility.

Getting Versions

The API jars can be downloaded from the public Maven repositories. This is the recommended

way.

If you can't download API jars from Maven repository for any reason, you can download them

from this page and install into your local Maven repository:

mvn install:install-file -Dfile=structure-api-16.11.0.jar -
DpomFile=structure-api-16.11.0.pom

Name Version Published

structure-api-16.11.0-javadoc.jar 1 2018-10-25 21:40

structure-api-16.11.0-sources.jar 1 2018-10-25 21:40

structure-api-16.11.0.jar 1 2018-10-25 21:40

structure-api-16.11.0.pom 1 2018-10-25 21:40

3.6.3 Structure Plugin Module Types

The following module types are added by the Structure plugin:

structure-synchronizer (see page 415) defines a new synchronizer.

structure-attribute-loader-provider (see page 416) lets you provide the data for new

column types in the Structure widget.

structure-export-renderer-provider (see page 417) lets you export new column types to

printable HTML and Excel files.

https://wiki.almworks.com/download/attachments/32223472/structure-api-16.11.0-javadoc.jar?version=1&modificationDate=1540503626000&api=v2
https://wiki.almworks.com/download/attachments/32223472/structure-api-16.11.0-sources.jar?version=1&modificationDate=1540503626000&api=v2
https://wiki.almworks.com/download/attachments/32223472/structure-api-16.11.0.jar?version=1&modificationDate=1540503626000&api=v2
https://wiki.almworks.com/download/attachments/32223472/structure-api-16.11.0.pom?version=1&modificationDate=1540503626000&api=v2

Documentation

Version 1 415

structure-item-type (see page 418) lets you define a new type of items, which can be

used in structures.

new-structure-template (see page 419) lets you add templates for new structures.

structure-query-constraint (see page 420) allows adding new functions to S-JQL

language.

Generator Modules (see page 420) let you add generators to the Automation subsystem.

The following module types are included:

structure-inserter

structure-extender

structure-filter

structure-grouper

structure-sorter

structure-synchronizer

Synchronizer module allows you to plug additional synchronizers into Structure.

Module description sample

Here's a template of a synchronizer module declaration, and explanation of the parameters

follows.

 <structure-synchronizer key="module-key" order="100"
 class="com.company.your.plugin.sync.
SyncClass">
 <label key="label.i18n.key">Name of Synchronizer</label>
 <description key="description.i18n.key">Description of
Synchronizer</description>
 <rules key="rules.i18n.key">Large text to be shown at the top
of synchronizer's configuration page.</rules>
 <resource type="velocity" name="form" location="/templates
/myplugin/sync-form.vm"/>
 </structure-synchronizer>

Element Required Description

structure-

synchronizer

Yes The module descriptor.

Documentation

Version 1 416

Element Required Description

@key Yes Unique module key within the plugin.

@order Yes Order of the synchronizer among other synchronizers,

whenever a list of synchronizers is present.

@class Yes The class that implements the synchronizer. Must implement

. It is recommended to extend StructureSynchronizer

.AbstractSynchronizer

label Yes The name of the synchronizer.

description No Description of the synchronizer.

rules No The text that is shown at the top of the synchronizer

configuration page. Could be a large text.

resource

[@name="

form"]

Yes A velocity template that contains the form for the synchronizer

parameters.

structure-attribute-loader-provider

You can use this module to add your support for attributes, either new or already existing, to

Structure. The attributes are used by Structure Widget columns, by exporters and by

generators.

Example

<structure-attribute-loader-provider key="provider-key"
 class="com.company.your.plugin.attribute.MyAttributeProvider"/
>

Element Required? Description

structure-attribute-

loader-provider

Yes The module descriptor.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/StructureSynchronizer.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/sync/AbstractSynchronizer.html

Documentation

Version 1 417

Element Required? Description

@key Yes The unique identifier of the plugin module.

@name No The human-readable name of the plugin

module.

@class Yes The class that implements the data provider.

Must implement .AttributeLoaderProvider

structure-export-renderer-provider

Export renderer provider module lets you register the components responsible for exporting

Structure columns to printable HTML and Microsoft Excel formats.

Export renderer provider example

<structure-export-renderer-provider
 key="erp-sbcolumn-excel"
 name="export-renderer:Status Bar Column Excel Provider"
 class="com.almworks.jira.structure.sbcolumn.
StatusBarExcelProvider">

 <column-key>com.almworks.jira.structure.sbcolumn</column-key>
 <export-format>ms-excel</export-format>
</structure-export-renderer-provider>

Element Required? Description

structure-

export-

renderer-

provider

Yes The module descriptor.

@key Yes The unique identifier of the plugin module.

@name No The human-readable name of the plugin module.

@class Yes

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/loader/AttributeLoaderProvider.html

Documentation

Version 1 418

Element Required? Description

The class that implements the renderer provider. Must

implement .ExportRendererProvider

column-

key

No The column key that this provider is associated with. You can

have multiple elements in a single descriptor. If no column-key

column key is specified, the renderer provider is considered

generic – such a provider will be consulted for every column not

served by a type-specific provider.

export-

format

No The export format that this provider is associated with. The

values are for the printable HTML format and printable ms-

 for the Microsoft Excel XLS format. You can have excel

multiple elements in a single descriptor. If no export-format

export format is specified, the renderer provider is considered

generic – such a provider will be consulted for every column not

served by a format-specific provider.

structure-item-type

This module type lets you declare a new item type. Items of that type can then be used in

structures.

Example

<structure-item-type key="type-book" name="itemtype:Book"
 class="com.mycompany.structure.books.BookItemType"/>

Element Required? Description

@key Yes The unique identifier of the plugin module. Full module key will

define the part of .itemType ItemIdentity

@name No The human-readable name of the plugin module.

@class Yes The class that implements the support for the item type. Must

implement .StructureItemType

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/export/ExportRendererProvider.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/ItemIdentity.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/StructureItemType.html

Documentation

Version 1 419

new-structure-template

New Structure Template module allows you to add templates to the Create Structure dialog.

Example:

<new-structure-template key="big-template"
 class="com.mycompany.structure.template.bigtemplate"
 name="New Structure Template: Big Template">
 <label key="com.mycompany.template.big-template.label"/>
 <description key="com.mycompany.template.big-template.
description"/>
 <resource type="download" name="icon.png" location="css
/structure/templates/big@2x.png"/>
 <resource type="velocity" name="step1" location="templates
/structure/big/step1.vm"/>
 <resource type="velocity" name="step2" location="templates
/structure/big/step2.vm"/>
</new-structure-template>

Element Required? Description

@key Yes Module key.

@name No The name of the module for JIRA administrators.

@class Yes The class that implements the template, must

implement .NewStructureTemplate

label Yes The name of the template as it appears in the Create

Structure dialog.

description No Description of the template.

resource

[@type=velocity]

No Any number of HTML templates used by your code to

render wizard steps.

resource

[@type=download]

No Any number of downloadable images or other

resources used by your template.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/template/NewStructureTemplate.html

Documentation

Version 1 420

structure-query-constraint

Structure Query Constraint module allows you to define an additional constraint function that

can be used in S-JQL.

For example, function explained in is folder() S-JQL Reference (see page 251)

implemented with a .structure-query-constraint

Example:

<structure-query-constraint key="constraint-foo"
 class="com.mycompany.structure.
FooConstraint"
 name="Structure Query Constraint: foo"
 fname="foo"/>

Element Required? Description

key Yes Module key.

name No Module name for the JIRA administrator.

class Yes Class that implements .StructureQueryConstraint

fname Yes Function name, must be unique throughout the system.

Generator Modules

There are five modules, one for each type of generators, that work in the same way:

structure-inserter

structure-extender

structure-filter

structure-grouper

structure-sorter

Each module allows declaring a generator of a specific type. When a plugin with a generator

module is installed, you get the ability add those generators to structures.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/query/StructureQueryConstraint.html

Documentation

Version 1 421

Example

<structure-extender
 key="extender-examples" name="extender:Examples" description="
Examples extender"
 class="com.mycompany.structure.examples.ExamplesExtender">
 <label key="com.mycompany.examples.extender.label"/>
 <icon spanClass="s-fa s-fa-link"/>
 <dialog-title key="com.mycompany.examples.extender.dialog-title"
/>
 <resource type="velocity" name="form" location="/templates
/example/extender-examples.vm"/>
 <resource type="velocity" name="summary" location="/templates
/example/extender-examples-summary.vm"/>
</structure-extender>

Other types of generators are declared in the same way.

Element Required? Description

@key Yes The unique identifier of the generator. Full module key

will a part of generator specification, defining the

automation.

@name No The name of the module for the JIRA administrator.

@description No Description of the module for the JIRA administrator.

label Yes The name of the generator as it appears to the user.

icon No The icon for the generator that will be shown whenever

the generator row is displayed. See below for details.

dialog-title No The title of the dialog that is used to edit the generator

resource

[@name=form]

No Form template that will be used for editing the generator's

parameters

resource

[@name=summary]

No Form template that will be used to display the generator

as a row in a structure

Documentation

Version 1 422

Generator Icons

The icon for the generator is defined using CSS classes. If you're using your own icons, make

sure the appropriate CSS styles are loaded everywhere Structure can be used (see Loading

).Additional Web Resources For Structure Widget (see page 408)

You can also use the standard icons used by bundled generators:

Generator Type Icon Classes

Inserter s-fa s-fa-plus

Extender s-fa s-fa-link

Filter alm alm-group

Grouper s-fa s-fa-filter

Sorter alm alm-sort-asc

3.6.4 Structure REST API Reference

Structure REST API is under development. The functionality available through REST

is sometimes not complete, but it allows to work with the structures.

API version 2 is also not stable, although we're not seeing major changes coming to

the main resources.

Both version 1 and version 2 of the REST APIs have been driven by the needs of

Structure Widget. We're currently developing a higher-level API specifically for

integrations rather than for the product itself. Let us know at if support@almworks.com

you'd like to contribute or get preliminary access to that API.

General Notes

API Versions

As of Structure version 3.4, there are two versions of the REST API – and . Some of 1.0 2.0

the REST resources are exposed through version 1.0 and some through version 2.0.

Documentation

Version 1 423

Version 1.0 is stable and we don't plan to change it. It comes from Structure 2 and largely

remains the same as in Structure 2.x versions. Some of the resources may become deprecated

as we replace them with the newer versions.

Version 2.0 is not stable and is being developed along with the product. That means that you

can use it, but you need to test your integration every time you upgrade. We are also going to

publish API changes in the release notes.

REST Resource Addresses

Structure REST API resources have the URL

BASEURL/rest/structure/VERSION/NAME

where BASEURL is the base JIRA address (being standard http://localhost:2990/jira

base URL for development environment), VERSION is the version of the API (either 1.0 or 2.0)

and NAME is the name of the resource. For each documented resource there's an indication

about its API version.

Authentication

Authentication is done via standard JIRA authentication engine and supported by cookies.

When accessing REST API from a remote application, you may need to set up the session first

by calling JIRA authentication REST resource. (You don't need to do that if you access

Structure REST API from a JavaScript on a page from the same JIRA instance.)

Most read operations are available to non-authenticated access (subject to permission checks

for the anonymous user). Most mutation operations are available to authenticated users only.

REST Resources

Structure Resource (see page 424) is used to create and manage structures (but not the

content)

Forest Resource (see page 444) is used to retrieve and update forests (a structure's

content)

Item Resource (see page 446) is used to create and update items (issues, folders and,

possibly, items of other types)

Value Resource (see page 451) is used to retrieve attribute values for a given forest

Documentation

Version 1 424

Structure Resource

This page describes resources with which you can , , list (see page 428) create (see page 433)

, , and structures. Structures read (see page 436) update (see page 438) delete (see page 442)

contain such as name and permissions, but not the general information (see page 216)

hierarchy itself. Issue hierarchy is accessed through the . This Forest Resource (see page 444)

page also documents structure and its , and the shape (see page 424) fields (see page 425)

 that may be returned in case of the REST API user error.error entity (see page 428)

Structure resource belongs to of the API.version 2.0

/structure/ GET list structures

/structure/ POST create a structure

/structure/{id} GET read structure

/structure/{id}/update POST update one or several structure fields

/structure/{id} DELETE delete structure

Quick navigation:

Structure Representations (see page 424)

Structure Fields (see page 425)

Permission Rules (see page 426)

Error Entity (see page 428)

Structure Representations

Structure is represented via JSON. All resources are also capable of producing XML.

{
 "id": 103,
 "name": "Structure with all fields",
 "description": "Voilà! This structure exhibits all fields.",
 "readOnly": "true",
 "editRequiresParentIssuePermission": true,
 "permissions": [
 {
 "rule": "apply",

Documentation

Version 1 425

 "structureId": 102
 },
 {
 "rule": "set",
 "subject": "group",
 "groupId": "jira-developers",
 "level": "edit"
 },
 {
 "rule": "set",
 "subject": "projectRole",
 "projectId": 10010,
 "roleId": 10020,
 "level": "admin"
 },
 {
 "rule": "set",
 "subject": "anyone",
 "level": "view"
 },
 {
 "rule": "set",
 "subject": "user",
 "username": "agentk",
 "level": "none"
 }
],
 "owner": "user:admin"
}

Top (see page 424)

Structure Fields

Structure objects accessible through these resources have the following fields, most of which

represent structure details as outlined in the :Structure User's Guide (see page 216)

id The ID of the structure (integer, 1..2^63 - 1

.)

name The name of the structure. A structure must

have a non-empty name, which does not have

to be unique.

description The description on the structure. May be

absent.

Documentation

Version 1 426

readOnly true if the user has only View (see page 217)

access level to the structure, otherwise

absent.

editRequiresParentIssuePermission true if the Require Edit Issue Permission on

 flag is set on this Parent Issue (see page 219)

structure, otherwise absent.

permissions The list of structure permission rules (see

. Present only if the user has page 218) Control

 access level to the structure. (see page 217)

Some resources do not include permissions

unless requested to do so. List order is as

important as the rules themselves.

owner The of the structure. owner (see page 216)

Present only if the user is the owner of this

structure or if he has Browse Users

permission. A string of the form user:

, where USERNAME is the JIRA USERNAME

user login name. Example: .user:jsmith

Please note that structure resources described on this page do not include information about

issue hierarchies. The content of a structure, i.e. its hierarchy of items, can be read or modified

using .Forest Resource (see page 444)

Top (see page 424)

Permission rules

There are two types of permission rules, those that permissions and those that set apply
permissions from another structure. They have different fields depending on the type.

Set rules

rule Must be equal to , case-insensitive.set

subject Identifies the type of the subject to which the rule applies. Must be one of

. See below how to identify the group, projectRole, user, anyone

subject.

https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions

Documentation

Version 1 427

level Access level to set to the specified subject. Must be equal to one of the names of

the enum constants, case-insensitive.Permission Level

Please note that Control permission is represented by the enumeration ADMIN

constant.

In addition, there are fields to identify the subject.

group

The rule applies to all users within the JIRA group.

groupId The name of the JIRA group. Example: .jira-developers

REST API user can create such rule only for a group he belongs to.

projectRole

The rule applies to all users that have a role in a project.

projectId The ID of the project. Example: .10010

roleId The ID of the role. Example: .10010

REST API user can create such rule only for roles in projects where Structure is enabled, and
for which he has permission.Browse Projects

user

The rule applies to the user.

username Name of the user. Example: for user John Smith.jsmith

REST API user can create such rule only if he has permission, and if such user Browse Users
exists.

anyone

The rule applies to all users, even anonymous (not authenticated.) The rule shouldn't have any

additional fields.

Apply rules

rule Must be equal to , case-insensitive.apply

structureId The ID of the structure which permissions should be applied. Example: 112

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html#ADMIN
https://confluence.atlassian.com/display/JIRA/Managing+Project+Permissions
https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions

Documentation

Version 1 428

Apply rule creates a dependency on another structure. Circular dependencies are not allowed.
Also, a REST API user can create such rule only if he has access level Control (see page 217)
to the referenced structure.

Top (see page 424)

Error entity

{
 "code": 4005,
 "error": "STRUCTURE_NOT_EXISTS_OR_NOT_ACCESSIBLE[4005]",
 "structureId": 160,
 "message": "Referenced structure [160] does not exist or you
don't have Control permissions on it.",
 "localizedMessage": "Das Struktur [160] existiert nicht oder
sie haben keine Kontrolle Berechtigungen."
}

In some cases, requests to structure resources result in an error response containing an error

entity. Any of its fields may be absent.

code Integer code of the error

error Brief technical description of the error. Contains a name of the

corresponding enum constant.StructureError

structureId The ID of the structure involved.

issueId The ID of the JIRA issue involved.

message More detailed message, may contain technical details.

localizedMessage User-displayable message in the REST API user locale or JIRA

default locale if the user is not authenticated.

Top (see page 424)

Structure Resources

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/StructureError.html

Documentation

Version 1 429

GET /structure

GET $baseUrl/rest/structure/2.0/structure
GET $baseUrl/rest/structure/2.0/structure?
name=$name&permission=$permission&withPermissions=$withPermissions
&withOwner=$withOwner&limit=100

A list of all structures visible to the REST API user. Optionally, the result can be filtered by

name or user's access level. By default, permission rules and owners are not included, you

should use query parameters if you want them to be included.

Who can access this resource

All users who have . The returned list access to the Structure Plugin (see page 299)

contains only structures to which the REST API user has at least View (see page 217)

access level.

Request

Query parameters:

name If present, the returned list will contain only structures which names

contain the specified string (case insensitive).

permission If present, the returned list will contain only structures to which the

REST API user has the specified . Must be access level (see page)

equal to one of the names of the enum constants, Permission Level

case-insensitive. is treated in the same way as .NONE VIEW

Please note that Control permission is represented by the ADMIN

enumeration constant.

withPermissions If , permission rules will be included in the response. Default is true

.false

withOwner If , owner will be included in the response. Default is .true false

archived If , the returned list can also contain archived structures. Default true

is .false

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/permissions/PermissionLevel.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html#NONE
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html#VIEW
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/PermissionLevel.html#ADMIN

Documentation

Version 1 430

limit If specified, must be a number. Defines the maximum number of

structures to return.

Each of the filter parameters , , or can be specified only once, name permission issueId

otherwise the first is used. Different parameters are combined with AND.

HTTP headers:

Content-Type Should be one of , .application/json application/xml

Accept Should be one of , .application/json application/xml

Response

Success

200

OK

Response entity contains the only field, , which structures

contains the list of the structure objects, sorted by name.

application/json,

application/xml

Example 1: all structures

GET $baseUrl/rest/structure/2.0/structure

{
 "structures": [
 {
 "id": 1,
 "name": "Global Structure",
 "description": "Initial general-purpose structure.",
 "editRequiresParentIssuePermission": true
 },
 {
 "id": 102,
 "name": "Test plan",
 "description": "Test plan #3",
 "readOnly": true
 },
 {
 "id": 100,
 "name": "Test plan",
 "description": "Test plan #1"
 },
 {
 "id": 101,

Documentation

Version 1 431

 "name": "Test plan",
 "description": "Test plan #2"
 }
]
}

Example 2: only "Test plan"

GET $baseUrl/rest/structure/2.0/structure?name=test+plan

{
 "structures": [
 {
 "id": 102,
 "name": "Test plan",
 "description": "Test plan #3",
 "readOnly": true
 },
 {
 "id": 100,
 "name": "Test plan",
 "description": "Test plan #1"
 },
 {
 "id": 101,
 "name": "Test plan",
 "description": "Test plan #2"
 }
]
}

Example 3: structures that the user can edit with permissions and owners shown

GET $baseUrl/rest/structure/1.0/structure?
permission=edit&withPermissions=true&withOwner=true

{
 "structures": [
 {
 "id": 1,
 "name": "Global Structure",
 "description": "Initial general-purpose structure.",
 "editRequiresParentIssuePermission": true

Documentation

Version 1 432

 },
 {
 "id": 100,
 "name": "Test plan",
 "description": "Test plan #1",
 "permissions": [
 {
 "rule": "set",
 "subject": "group",
 "groupId": "jira-users",
 "level": "edit"
 },
 {
 "rule": "set",
 "subject": "projectRole",
 "projectId": 10010,
 "roleId": 10010,
 "level": "none"
 },
 {
 "rule": "apply",
 "structureId": 101
 }
],
 "owner": "user:jsmith"
 },
 {
 "id": 101,
 "name": "Test plan",
 "description": "Test plan #2",
 "owner": "user:admin"
 }
]
}

Example 4: require XML representation

Note that the same can be achieved by specifying in the HTTP application/xml Accept

header.

GET $baseUrl/rest/structure/1.0/structure.xml?name=test+plan

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<structureList>
 <structures>
 <structure>
 <id>100</id>

Documentation

Version 1 433

 <name>Test plan</name>
 <description>Test plan #1</description>
 </structure>
 </structures>
</structureList>

Error

400 Bad

Request

permission parameter is set to an unknown value, or

request is invalid for other reasons. In the first case,

response contains error entity, in the second it is empty.

application

/json,

application

/xml

403

Forbidden

If Structure Plugin is not accessible to the REST API user,

or if issue with ID does not exist or the REST API issueId

user does not have enough permissions to access it.

Response contains error entity.

application

/json,

application

/xml

404 Not

Found

If is not an integer. Response entity contains a issueId

standard JIRA error HTML page.

text/html

500

Internal

Server

Error

If an internal error has occurred while processing this

request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For

example, the operation may be in Restore (see page 306)

progress.

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 424)

POST /structure

POST $baseUrl/rest/structure/2.0/structure

Create (see page 217) an empty structure by POSTing to this resource.

Who can access this resource

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Documentation

Version 1 434

Only logged in users who have and a access to the Structure Plugin (see page 299)

.permission to create structures (see page 301)

Request

Request entity should contain the new . Structure name, , must structure (see page 425) name

be present and non-empty. Fields , , and are ignored. All rules in id readOnly owner

 are validated according to their respective .permissions rule types (see page 426)

Please note that this resource accepts only JSON structure representation.

HTTP headers:

Content-Type Must be .application/json

Accept Should be one of , .application/json application/xml

Response

Success

201

Created

Response entity contains the created structure with

fields, including and .permissions owner

application/json,

application/xml

Example 1: minimal structure

POST $baseUrl/rest/structure/2.0/structure

Request entity Response entity

{
 "name":"
Test plan"
}

{
 "id": 104,
 "name": "T
est plan",
 "descripti
on": "",
 "permissio
ns": [],
 "owner": "
user:admin"
}

Documentation

Version 1 435

Example 2: structure with some permissions

POST $baseUrl/rest/structure/2.0/structure

Request entity Response entity

{
 "name":"Structure with some
permissions",
 "editRequiresParentIssuePerm
ission":"true",
 "permissions":[
 {
 "rule":"apply",
 "structureId":102
 }
]
}

{
 "id": 105,
 "name": "Structure with
some permissions",
 "description": "",
 "editRequiresParentIssuePerm
ission": true,
 "permissions": [
 {
 "rule": "apply",
 "structureId": 102
 }
],
 "owner": "user:admin"
}

Error

400 Bad

Request

Structure data is not well-formed (syntax error) or invalid

(semantic error.)

Not well-formed structure data examples: request JSON is

syntactically incorrect; JSON contains unknown field; name

is not present or empty; list contains a permissions set

rule with set to an invalid value.level

Invalid structure example: list contains a permissions

rule that fails validation.

Response entity contains error. Problems with rule apply
usually have to indicate the invalid structureId

reference.

application

/json,

application

/xml

403

Forbidden

If REST API user is not logged in or does not have

permissions to access Structure Plugin or to create

structures. Response contains error entity.

application

/json,

application

/xml

Documentation

Version 1 436

500

Internal

Server

Error

If an internal error has occurred while processing this

request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For

example, the operation may be in Restore (see page 306)

progress.

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 424)

GET /structure/{id}

GET $baseUrl/rest/structure/2.0/structure/$id
GET $baseUrl/rest/structure/2.0/structure/$id?
withPermissions=$withPermissions&withOwner=$withOwner

This resource allows to obtain for the particular structure. By structure details (see page 425)

default, and are not included, use query parameters to include them.permissions owner

Who can access this resource

All users who have . To access the access to the Structure Plugin (see page 299)

particular structure, the user has to have at least access level.View (see page 217)

Request

Path parameter:

id the ID of the structure

Query parameters:

withPermissions If , permission rules will be included in the response. Default is true

.false

withOwner If , owner will be included in the response. Default is .true false

HTTP headers:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Documentation

Version 1 437

Content-Type Should be one of , .application/json application/xml

Accept Should be one of , .application/json application/xml

Response

Success

200

OK

Response entity contains the created structure along with all

of its fields.

Field is included if the REST API user has permissions

 permission on this structure.Control (see page 217)

Field is included if the REST API user is either the owner

owner of this structure or has .Browse Users permission

application/json,

application/xml

Example 1: retrieve structure with ID 100 without permissions and owner

GET $baseUrl/rest/structure/2.0/structure/100

{
 "id": 100,
 "name": "Test plan",
 "description": "Test plan #1"
}

Example 2: permissions and owner are requested to be included, but only owner is shown, because the

user has only View access as indicated by readOnly

GET $baseUrl/rest/structure/2.0/structure/102?withOwner=true&withP
ermissions=true

{
 "id":102,
 "name":"Test plan",
 "description":"Test plan #3",
 "readOnly":true,
 "owner":"user:admin"
}

https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions

Documentation

Version 1 438

Example 3: XML representation may be requested in the request URL instead of the Content-Type

HTTP header

GET $baseUrl/rest/structure/2.0/structure/102.xml

<structure>
 <id>102</id>
 <name>Test plan</name>
 <description>Test plan #3</description>
 <readOnly>true</readOnly>
</structure>

Error

400 Bad

Request

One of the query parameters is too long.

403

Forbidden

If REST API user does not have permissions to access

Structure Plugin or does not have at least View (see page

 permission on this structure. Response contains error 217)

entity.

application

/json,

application

/xml

404 Not

Found

If is not an integer in . Response entity id 1..2^63-1

contains a standard JIRA error HTML page.

text/html

500

Internal

Server

Error

If an internal error has occurred while processing this

request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For

example, the operation may be in Restore (see page 306)

progress.

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 424)

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Documentation

Version 1 439

POST /structure/{id}/update

POST $baseUrl/rest/structure/1.0/structure/$id/update

Update one or several fields of a structure by POSTing to this resource.

Who can access this resource

Only logged in users who have and access to the Structure Plugin (see page 299)

 permission on this structure.Control (see page 217)

Request

Request entity should contain those that need to be changed. structure fields (see page 425)

Non-present fields will not be changed (for this user; may change for other users as readOnly

a result of changing .) Fields , , and are ignored.permissions id readOnly owner

Please note that field is modified as a whole, so to add a rule, you have to permissions

provide the new list of rules in the proper order.

If field is present, all rules are validated according to their respective permissions rule types

.(see page 426)

Please note that this resource accepts only JSON structure representation.

HTTP headers:

Content-Type Must be .application/json

Accept Should be one of , .application/json application/xml

Response

Success

200

OK

Response entity contains the updated structure with all

fields, including and .permissions owner

application/json,

application/xml

Example 1: change description of the Global Structure

POST $baseUrl/rest/structure/1.0/structure/1/update

Documentation

Version 1 440

Request entity Response entity

{
 "description":"Company-wide
structure providing the Big
Picture."
}

{
 "id":1,
 "name":"Global Structure",
 "description":"Company-wide
structure providing the Big
Picture.",
 "editRequiresParentIssuePerm
ission":true,
 "permissions":[
 {
 "rule":"set",
 "subject":"anyone",
 "level":"view"
 },
 {
 "rule":"set",
 "subject":"group",
 "groupId":"jira-users",
 "level":"edit"
 },
 {
 "rule":"set",
 "subject":"group",
 "groupId":"jira-
administrators",
 "level":"admin"
 }
]
}

Example 2: changing permission rules

POST $baseUrl/rest/structure/1.0/structure

Documentation

Version 1 441

Request entity Response entity

{
 "permissio
ns":[
 {
 "rule":
"set",
 "subje
ct":"group",
 "group
Id":"jira-
users",
 "level"
:"edit"
 },
 {
 "rule":
"apply",
 "struc
tureId":101
 }
]
}

{
 "id": 105,
 "name": "Structure with some
permissions",
 "description": "",
 "editRequiresParentIssuePermissi
on": true,
 "permissions": [
 {
 "rule": "set",
 "subject": "group",
 "groupId": "jira-users",
 "level": "edit"
 },
 {
 "rule": "apply",
 "structureId": 101
 }
],
 "owner": "user:admin"
}

Error

400 Bad

Request

Structure data is not well-formed (syntax error) or invalid

(semantic error.)

Not well-formed structure data examples: request JSON is

syntactically incorrect; JSON contains unknown field;

 list contains a rule with set to an permissions set level

invalid value.

Invalid structure example: list contains a permissions

rule that fails validation.

Response entity contains error. Responses to problems

with an rule usually have to indicate apply structureId

the invalid reference.

application

/json,

application

./xml

403

Forbidden

Documentation

Version 1 442

If REST API user is not logged in, does not have

permissions to access Structure Plugin, or does not have

 access level to this structure. Control (see page 217)

Response contains error entity.

application

/json,

application

/xml

500

Internal

Server

Error

If an internal error has occurred while processing this

request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For

example, the operation may be in Restore (see page 306)

progress.

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 424)

DELETE /structure/{id}

Deletes (see page 232) the designated structure.

Who can access this resource

Only logged in users who have and access to the Structure Plugin (see page 299)

 permission on this structure.Control (see page 217)

Request

Path parameter:

id the ID of the structure

HTTP headers:

Content-

Type

Must be .application/json

Accept Should be absent or equal to one of , application/json application

./xml

Response

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

Documentation

Version 1 443

Success

200

OK

Contains an object with the only field empty

with value .true

application/json,

application/xml

Note: it should have been instead, but there were reports of some browsers (Firefox) incorrectly 204 No content

processing such results, so it's as it is.

Example

DELETE $baseUrl/rest/structure/1.0/structure/108

{
 "empty": true
}

Error

403

Forbidden

If REST API user is not logged in, does not have

permissions to access Structure Plugin, or does not have

 access level to this structure. Control (see page 217)

Response contains error entity.

application

/json,

application

/xml

404 Not

Found

If is not an integer in . Response entity id 1..2^63-1

contains a standard JIRA error HTML page.

text/html

404 Not

Found

If is an integer in , but the structure with the id 1..2^63-1

specified does not exist or the user does not have id View

 access level to it.(see page 217)

application

/json,

application

/xml

500

Internal

Server

Error

If an internal error has occurred while processing this

request.

503

Service

Unavailable

If Structure Plugin is stopped at the time of request. For

example, the operation may be in Restore (see page 306)

progress.

Documentation

Version 1 444

Other return codes are possible under the normal rules of HTTP communication.

Top (see page 424)

Forest Resource

Forest Resource is responsible for serving forests and forest updates and receiving the forest

actions (change commands) from the client.

Retrieving Forest

Request

GET $baseUrl/rest/structure/2.0/forest/latest?s=$forestSpec
POST $baseUrl/rest/structure/2.0/forest/latest

Returns the hierarchical issue list (forest) of the specified structure.

Parameters:

$forestSpec required The URL-encoded JSON representation of . See also: ForestSpec

.RestForestSpec

POST

content

required While GET method is preferred, POST is more robust because

there's no risk of exceeding URL length with large forest

specifications. The content is the same JSON object (but not URL-

encoded, obviously).

Example:

GET /rest/structure/2.0/forest/latest?s={%22structureId%22:113}

Retrieves latest forest for structure #113.

Response

{
 "spec":{"structureId":113},
 "formula":"10394:0:4/356,10332:0:14707,10374:1:5/240,10348:2:
14717",
 "itemTypes":{

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/forest/ForestSpec.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/rest/RestForestSpec.html

Documentation

Version 1 445

 "4":"com.almworks.jira.structure:type-generator",
 "5":"com.almworks.jira.structure:type-folder"
 },
 "version":{
 "signature":-1659607419,
 "version":1
 }
}

In this reply, the most important part is "formula", which contains serialized information about

the forest.

Each component (delimited by comma) represents a row and looks like this: 10374:1:5/240. In

this example, the numbers are:

10374 is the row ID,

1 is the row depth,

5/240 is the item identity.

If the row contains an issue, it’s just issue ID, otherwise it has the format of <item type>/<long

item id>, or <item type>//<string item id>. Item type is a number, which is expanded in the

“itemTypes” map in the reply.

Changing Forest

To change a forest, you POST one or more change actions to resource. /forest/update

Each action is a serialized version of – for more information about the actions, ForestAction

see .Changing Structure Content (see page 378)

POST $baseUrl/rest/structure/2.0/forest/update

Parameters:

{
 "spec": { "structureId": <id> }, // use structure ID
 "version": { "signature": <signature>, "version": <version> },
// use last seen signature and version
 "actions": [
 {
 "action": "add",
 "under": 0, // at the top level
 "after": 123, // after row ID 123 (not issue iD!)
 "before": 456, // before row ID 456

Documentation

Version 1 446

 "forest": "-100:0:10001" // insert issue 10001, -100
is the temporary row ID which will be mapped into the real row ID
when the method returns
 },
 {
 "action": "move", // works like previously, only row IDs
instead of issue IDs
 "rowId": 123,
 "under": 456,
 "after": 0,
 "before": 124
 },
 {
 "action": "remove",
 "rowId": 442
 }
]
}

Item Resource

Item resource is used to create new items and update existing items.

Creating a New Item

The following request is used to create a new item (issue, folder or other type) and insert it into

a forest.

POST $baseUrl/rest/structure/2.0/item/create

This request should upload a specification of the creation action and coordinates of where to

put the result.

Example

{
 "item": {
 "type": "com.almworks.jira.structure:type-folder",
 "values": { "summary": "New folder name" }
 },
 "forest": {
 "spec": { "structureId": 128 },
 "version": {
 "signature": 0,
 "version": 0

Documentation

Version 1 447

 }
 },
 "items": {
 "version": {
 "signature": 0,
 "version": 0
 }
 },
 "rowId": -100,
 "under": 0,
 "after": 0,
 "before": 0,
 "parameters": {}
}

Parameters

Parameter
(see
example
above)

Meaning

item Defines the item being created.

item.type Item type (complete key of the module that provides this item's main

functionality.)

Use for folders and com.almworks.jira.structure:type-folder

 for issues. See also: com.almworks.jira.structure:type-issue

CoreItemTypes

item.

values

A set of values for the new item. The specific fields depend on the item. For a

folder, it is "summary". For other items, see examples below.

forest.

spec

Forest specification of the forest that will receive the new item. See

 and .ForestSpec RestForestSpec

forest.

version

Last known version of the forest. The reply to this call will contain the update

to that version. Use zero version (as in example) to receive full forest.

items.

version

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/CoreItemTypes.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/forest/ForestSpec.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/rest/RestForestSpec.html

Documentation

Version 1 448

Parameter
(see
example
above)

Meaning

Last known version of instance items set. The reply to this call will contain an

update to the known items. Use zero version (as in example) to receive full

update.

rowId Temporary ID assigned to the created issue. Must be negative. You can use

 in most cases.-100

under /

 / after

before

Forest coordinates to insert the new item into. See Forest Resource (see

.page 444)

Specific parameters for main item types
Folder

This is the example of parameter for a new folder:item

"item": {
 "type": "com.almworks.jira.structure:type-folder",
 "values": { "summary": "New folder name" }
}

The only parameter sent is the folder name.

Issue

This is the example of parameter for a new issue:item

"item": {
 "type": "com.almworks.jira.structure:type-issue",
 "values": {
 "issue": {
 "summary": "issue summary"
 },
 "pid": 10000,
 "issuetype": "3",
 "mode": "new",
 }

Documentation

Version 1 449

}

The above are the minimal fields needed to create a new issue. Note that is a number, but pid

 is a string.issuetype

Reply Example

The following is an example of a reply.

{
 "successfulActions": 1,
 "itemId": "com.almworks.jira.structure:type-issue/10100",
 "oldRowIds": [-100],
 "newRowIds": [61],

 "forestUpdates": [...],
 "itemsUpdate": {...}
}

Most important fields are and . More on the return fields:itemId newRowIds

Field Explanation

successfulActions A number of actions successfully performed by the server. In this

case, it's either 0 or 1.

itemId The ID of the newly created item. See .ItemIdentity

oldRowIds /

newRowIds

Provides mapping from the temporary row IDs used for uploading

the action and the real row IDs obtained after the item was inserted.

forestUpdates Changes to the forest since the version passed in the request.

itemsUpdate Changes to the items set since the version passed in the request.

Updating an Existing Item

The following request is used to update an existing item (issue, folder or other type).

POST $baseUrl/rest/structure/2.0/item/update

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/ItemIdentity.html

Documentation

Version 1 450

Example of the request:

{
 "item": {
 "itemId": "10000",
 "values": {
 "summary": "New Summary"
 }
 },
 "items": {
 "version": { "signature": 0, "version": 0 }
 },
 "forest": {
 "spec": {
 "type": "clipboard"
 },
 "version": { "signature": 0, "version": 0 }
 }
}

Note that although the update does not depend on the forest, the low-level API in the

current version requires the request to specify a forest spec and known version of

items stream. If you don't need to maintain up-to-date items cache and not interested

in updates to a forest where the item is located, just use empty version in field items
and "clipboard" forest spec – like in this example.

Parameters

Parameter
(see
example
above)

Meaning

item.

itemId

The ID of the item.

If it is just a number, like in the example, it is an issue ID. Note that it is still a

value that contains issue ID.String

Instead of a number, it can be a canonical notation of an . For ItemIdentity

example, to update a folder, use "com.almworks.jira.structure:

where 123 is the folder ID.type-folder/123"

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/item/ItemIdentity.html

Documentation

Version 1 451

Parameter
(see
example
above)

Meaning

item.

values

A map of values to be updated. The keys are the same as when the item is

created.

For updating a folder, use ."summary"

items.

version

Known version of the items stream. The response will contain an update

based on that number. Use zeroes, as in example, when updated is not

needed.

forest.

spec and

forest.

version

Monitored forest spec and known version of that forest. The response will

contain a forest update based on those values. When not needed, use a

simple forest (like clipboard in this example) and zeroed version.

Reply

The reply is similar to the reply from calling method, defined above. A positive HTTP /create

status tells that the item has been updated. There is no in the response."itemId"

Value Resource

Value Resource is used to retrieve values of attributes for rows in a given forest.

To learn more about attributes, see .Loading Attribute Values (see page 382)

To retrieve values from Structure, you need a few things first:

A forest specification () for the displayed forest – same as the one used in forestSpec

. Forest specification is needed even if the values do Forest Resource (see page 444)

not depend on the forest.

A list of row IDs for which the values should be loaded. Row IDs can be retrieved from

Forest Resource before calling Value Resource.

A list of attribute specifications. Some examples are given below.

Documentation

Version 1 452

Loading Values

To load values use the following call

POST $baseUrl/rest/structure/2.0/value

The request should come with JSON payload that specifies which values you are interested in.

Example

{
 "requests": [
 {
 "forestSpec": {
 "structureId": 123
 },
 "rows": [
 1820,
 1842,
 2122
],
 "attributes": [
 {
 "id": "summary",
 "format": "text"
 },
 {
 "id": "key",
 "format": "html"
 },
 {
 "id": "progress",
 "format": "number",
 "params": {
 "basedOn": "timetracking",
 "resolvedComplete": true,
 "weightBy": "equal"
 }
 }
]
 }
]
}

Documentation

Version 1 453

1.

2.

3.

4.

As you see in this example, a request body may contain one or more request, each for a

specific matrix of several rows and several attributes. A value for each pair of a row and an

attribute will be calculated.

Parameters

Parameter Meaning

requests[i].

forestSpec

Forest specification that produces the forest from which the rows

are taken.

requests[i].rows Array of row IDs for which values should be loaded.

requests[i].

attributes

Array of attribute specifications that should be loaded for each

row.

The example shows three attributes being loaded – plain text Summary, html-formatted Key

and Progress based on time tracking. For more information about available system attributes,

see javadocs for and .AttributeSpec CoreAttributeSpecs

There is a simple way to learn the attribute spec that you need.

Configure a column that shows the needed value on the Structure Board.

Use your browser's Developer Tools and open Network tab.

Reload structure.

Look for a request to URL and see its input. Use JSON formatters for /value

convenience.

Response

The response will contain one or more matrices with values for each pair of requested row and

attribute. A list of rows is given separately. Then, for each requested attribute, a list of values is

given.

{
 "responses": [
 {
 "forestSpec": {

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/AttributeSpec.html
http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/CoreAttributeSpecs.html

Documentation

Version 1 454

 "structureId": 123
 },
 "rows": [
 1820,
 1842,
 2122
],
 "data": [
 {
 "attribute": {
 "id": "summary",
 "format": "text"
 },
 "values": [
 "Issue 1",
 "Folder 2",
 "Some Other Item 3"
],
 "trailMode": "INDEPENDENT",
 "trails": ["", "", ""]
 }
],
 "forestVersion": {
 "signature": -1385959428,
 "version": 1
 }
 }
],
 "itemTypes": {},
 "itemsVersion": {
 "signature": -558220658,
 "version": 1
 }
}

Parameters

Parameter Meaning

responses[i].

forestSpec

Requested forest spec, from which the rows are taken.

responses[i].rows A list of row IDs for which the values are provided.

responses[i].data

[j].attribute

The attribute specification for which the following values are

calculated.

Documentation

Version 1 455

Parameter Meaning

responses[i].data

[j].values

Array of values. The value at -th place corresponds to the row at k

-th place in .k responses[i].rows

If you are receiving value in any format other than , you need to html-escape that html

value before adding it to the web page.

3.6.5 Structure JavaScript API Reference

Structure's JavaScript API provides ways to extend the client-side functionality of the Structure

plugin.

JavaScript API Functions

This page lists static functions exposed by the Structure API.

window.almworks.structure.api.subClass(className, superclass,
prototype)

Creates a subclass of a specific class. Returns a constructor function that will create the

instances of the class.

This function provides light-weight polymorphism for the purposes of extending Structure's

.classes (see page 457)

Parameters

className string Class name as string (optional, used for friendly instance names in

debugger)

superclass Object Superclass reference

prototype Object Subclass prototype

The returned value – class constructor – takes a single optional parameter.options

The prototype may contain a special initializer method, which is called when an init()

instance is being constructed. Superclass' method is called before subclass' method. init()

Options that were passed to the constructor are passed through to the initializer.

Example

Documentation

Version 1 456

var MyClass = window.almworks.structure.api.subClass('MyClass',
BaseClass, {
 init: function(options) {
 ...
 },

 someMethod: function() {
 ...
 }
});

var options = { ... };
var instance = new MyClass(options);

window.almworks.structure.api.registerColumnType(type, key)

Registers a new column type. If you're extending Structure by adding a new type of column to

the grid, the type must be registered from your additional JavaScript web resource.

Column types are identified by a unique key, which is recorded in the view (see page 233)

specification, along with the type-specific parameters and column name.

Parameters

type Object A instance, implementing a specific column type – see ColumnType

ColumnType Class (see page 467)

key string Column type key (can also be array of strings if the type can handle multiple

variations of a column specification)

Example

window.almworks.structure.api.registerColumnType(new
MyColumnType(), 'com.acme.structure.awesome-column');

We recommend using a unique key that has low chance of conflicting with column

types provided by other, independent developers. A good approach is to have Java-

like package notation for the keys.

Documentation

Version 1 457

window.almworks.structure.api.registerColumnGroup(options)

Registers a new column type group. Column groups are used in the "Add Column" panel to

group column configuration presets, provided by column types.

Parameters

options.

groupKey

string Group key. The same key should be returned by all

's method for all column ColumnConfigurator getGroupKey()

types which need to appear in this particular group.

options.

title

string Group title

options.

order

number Group order is used to sort groups. Order value for groups provided by

Structure are 100, 200, 300 and so on.

Example

window.almworks.structure.api.registerColumnGroup({
 groupKey: 'com.acme.structure.colgroup', title: 'Acme Columns',
order: 50
});

JavaScript API Classes

Structure Javascript API provides a number of classes to be used as base for your own column

type implementations. This should be done using method.subClass() (see page)

Column Class

window.almworks.structure.api.Column

A subclass of Column class represents column objects of a specific type.Columns need to be

subclassed for a particular column type implementation. You can override methods while

subclassing to modify the default behavior.

Example

var api = window.almworks.structure.api;
var MyColumn = api.subClass('MyColumn', api.Column, {

Documentation

Version 1 458

 init: function() {
 ...
 },
 getCellViewHtml: function() {
 return '<div> ... </div>';
 }
});

Properties
context

Contains context information about where the column is used. See The Column Context (see

 for more information.page 394)

spec

Contains column specification object. Specification object is serialized as a part of the overall

view specification and stored on the server and in the browser's local storage. See Column

 for more information.Specifications (see page 393)

Methods
init(options)

Initializer method.

getCellValueHtml(renderingParameters)

Returns HTML that is displayed in the grid cell for a specific issue. The HTML should contain

the value provided by this column. Structure will also wrap the value in decorative elements –

this could be overridden by providing method.getCellViewHtml()

Parameters

renderingParameters.getAttributeValue() returns current row's attribute value

renderingParameters.getRowId() returns current row's id

renderingParameters.getItemId() return current row's item id

Example

var Template = require('almworks/util/Template');
var cellTemplate = new Template('
{awesomefield}');
getCellValueHtml: function(rp) {

Documentation

Version 1 459

 return cellTemplate.renderHtml({ awesomefield: rp.
getAttributeFieldValue({id: 'com.acme.awesome-data', format: 'text
'}) });
}

getCellViewHtml(renderingParameters)

Returns customized HTML that is displayed in the grid cell for a specific issue. By default, calls

 and wraps the retrieved value into the default Structure style. Can be getCellValueHtml()

overridden to allow higher degree of control over the cell appearance.

Parameters

renderingParameters.getAttributeValue() returns current row's attribute value

renderingParameters.getRowId() returns current row's id

renderingParameters.getItemId() return current row's item id

collectRequiredAttributes(attributeSet)

Lets column request attributes that are needed for rendering. The attributes are provided on the

server side by .AttributeLoaderProvider

Parameters

attributeSet.requireAttribute

(attributeSpec,forestSpec)

Method for collecting required attributes.

Parameters are:

attributeSpec is the attribute specification object

forestSpec is the forest specification for the forest,

from which attribute should be loaded (optional)

About Attribute Specs

AttributeSpec defines the attribute and format to be loaded. See Loading Attribute Values (see

 for more information on attributes.page 382)

Some of the attributes are shown below. You can also define your own attribute, calculate it on

the server side and request from your column.

About Forest Spec

Forest specification is optional. When used, it allows you to get attribute value from a different

forest – however, it must be related to the forest being displayed, otherwise it will not have the

same rows.

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/loader/AttributeLoaderProvider.html

Documentation

Version 1 460

For example, you can specify a forest specification with some transformation to display values

from there in the untransformed forest. There are also two special values for :forestSpec

'displayed' is the default value, meaning "use the forest that is being displayed"

'unfiltered' means "use the same forest, but remove all filters that are coming at

the end of transformation chain"

Example

collectRequiredAttributes: function(attributeSet) {
 attributeSet.requireAttribute({id: 'key', format: 'text'});
 attributeSet.requireAttribute({
 id: 'sum',
 format: 'number',
 params: {
 id: 'customfield',
 format: 'number',
 params: {
 fieldId: 10010
 }
 }
 }, 'unfiltered');
 attributeSet.requireAttribute({id: 'com.mycompany.work-stats',
format: 'json'});
}

Some of the attributes provided by Structure:

Attribute Spec Example Description

{id: <jira-field-id>,

format: 'html'}

 The HTML representation of a JIRA issue

field value, as seen on the issue page or

in the Issue Navigator. Structure allows

non-issue items also have these values.

<jira-field-id> is the common

name for the JIRA's standard field id.

This attribute does not load custom

fields.

{id: 'customfield',

format: 'html',

params: { fieldId:

<field-numeric-id> }}

 HTML representation of a custom field

value.

Documentation

Version 1 461

Attribute Spec Example Description

{id: 'project',

format: 'id'}

 Project ID for the issues. The format id

means either a string or a number,

depending on what is being used for

identifying the object.

{id: 'editable',

format: 'boolean'}

 Boolean value telling whether the item

can be edited by the user.

See also for examples of bundled attributes.CoreAttributeSpecs

getDefaultName()

Must return default column name, assigned when user adds column of specified type to the

structure view. Returns empty string by default.

Example

getDefaultName: function() { return 'My Column'; }

isResizable()

Returns whether the column is resizable or not. Returns by default.true

Example

isResizable: function() { return false; }

canShrinkWhenNoSpace()

Returns whether column can shrink beyond minimum size if there's not enough space on the

screen. Returns by default.false

Example

canShrinkWhenNoSpace: function() { return true; }

isAutoSizeAllowed()

Returns if the column should be auto-resized to fit its contents. Returns by default.false

http://almworks.com/structure/javadoc/latest/com/almworks/jira/structure/api/attribute/CoreAttributeSpecs.html

Documentation

Version 1 462

Example

isAutoSizeAllowed: function() { return true; }

getMinWidth()

Returns minimum width of the column in pixels. Returns 27 by default.

Example

getMinWidth: function() { return 100; }

getDefaultWidth()

Returns default width of the column in pixels. Returns 120 by default.

Example

getDefaultWidth: function() { return 100; }

getHeaderCellHtml()

Returns HTML that will be used in the grid header. By default returns cell with column name in

default Structure style.

Example

getHeaderCellHtml: function() { return '<div>' + this.name + '<
/div>'; }

getMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this column to render the

values. See for more information. By default Requesting and Using Metadata (see page 396)

returns , which means that no metadata is needed.null

Example

getMetadataRequests: function() {
 return {
 status: {
 url: baseUrl + '/rest/api/2/status',
 cacheable: true
 }

Documentation

Version 1 463

 };
}

getSortAttribute()

Returns attribute specification for sorting when the user clicks on the header. If is null

returned (the default), the clicking this column header does not result in added sorting

transformation.

isSortDescendingByDefault()

If returns the initial direction of the sorting will be descending.true

ColumnConfigurator Class

window.almworks.structure.api.ColumnConfigurator

ColumnConfigurator class encapculates everything related to column type configuration.

It needs to be subclassed for a particular column type implementation and passed as return

value in method.ColumnType.createConfigurator() (see page 468)

Example

var api = window.almworks.structure.api;

var MyColumnConfigurator = api.subClass('MyColumnConfigurator,
api.ColumnConfigurator, {
 getDefaultColumnName: function() { return 'My Column'; }
 getOptions: function() {
 return [new MyOption1({configurator: this}), new MyOption2
({configurator: this})];
 }
});

Required Methods

You have to override the following methods in the subclass.

getColumnTypeName()

Returns column type name, used in the column configuration panel.

getDefaultColumnName()

Returns default column name.

Documentation

Version 1 464

Other Methods

These methods may be optionally overridden.

init(options)

Optional initializer.

getGroupKey()

Return column preset's group key. See for reference.registerColumnGroup() (see page 457)

getMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this configurator to set up the

UI. See for more information. By default Requesting and Using Metadata (see page 396)

returns , which means that no metadata is needed.null

Example

getMetadataRequests: function() {
 return {
 somedata: { // metadata key
 url: baseUrl + '/some/data/url', // request URL
 cacheable: true, // if the response for
this URL can be reused for other cacheable requests
 extract: function(response) { // response to the AJAX
request
 return response.property || 1; // the actual value for
context.getMetadata('somedata')
 }
 },
 otherdata: {
 url: baseUrl + '/other/data/url',
 cacheable: true
 }
 };
}

getOptions()

Returns array of column type options. Each option should be a subclass of ColumnOption Class

.(see page 465)

Example

getOptions: function() {
 return [new MyOption1({configurator: this}), new MyOption2
({configurator: this})];
}

Documentation

Version 1 465

ColumnOption Class

window.almworks.structure.api.ColumnOption

ColumnOption class represents a single column configuration parameter.

It needs to be subclassed for particular column type implementation and passed as return value

in method.ColumnConfigurator.getOptions() (see page 464)

Options are displayed in column configuration dialog one after another with labels on the left

and inputs on the right.

Example

var api = window.almworks.structure.api;

var MyOption1 = api.subClass('MyOption', api.ColumnOption, {
 title: 'Some option',
 init: function() {
 this.input$ = null;
 },
 createInput: function(div$) {
 this.input$ = div$.append('<input type="text" class="text">').
find('input');
 var params = this.spec.params;
 this.input$.on('change', function() {
 if (params.someOptionAvaiable) {
 params.someOption = $(this).val();
 div$.trigger('notify');
 }
 });
 },
 notify: function() {
 var available = this.spec.params.someOptionAvaiable;
 this.input$.val(available ? (this.spec.params.someOption || '4
2') : '');
 return available;
 }
});

Properties
title

If set, title is displayed as a label to the left of the input controls. Option title representation may

be overridden in method.#createLabel(div$) (see page 466)

Documentation

Version 1 466

Required Methods

You need to override the following methods.

createInput(div$)

Should be overridden to provide custom HTML for the option input. parameter provides div$

parent option element to append your view to. Created input should trigger event on 'notify'

 to notify Structure of any column parameters change.div$

Please honor the AUI Forms HTML layout when creating your input controls!

Example

createInput: function(div$) {
 var self = this;
 this.input$ = $('<input type="text" class="text">').appendTo
(div$).on('change', function() {
 if (self.spec.params.myOption !== $(this).val()) {
 self.spec.params.myOption = $(this).val();
 div$.trigger('notify');
 }
 });
}

Other Methods
init(options)

Optional initializer.

createLabel(div$)

May be overridden to provide custom HTML view for the input label. parameter provides div$

parent option element to append your view to. By default creates a right-aligned label with text

of the property.#title (see page 465)

Please honor the AUI Forms HTML layout if you override this method!

notify()

This method is called when the column configuration has changed. The implementation may

want to update its controls to reflect those changes. The method should return a boolean

indicating whether this option is available. Unavailable options will not be shown on the

configuration panel. The default implementation does nothing and always returns .true

Example

notify: function() {

Documentation

Version 1 467

 this.input$.val(this.spec.params.myOption);
 return true;
}

isInputValid()

Returns if the current column specification is valid from the point of view of this option. true

The column configuration won't be saved unless all of the options approve the specification.

The default implementation does nothing and returns .true

Example

isInputValid: function() {
 // Check that the "field" specification parameter is present.
 return !!this.spec.params.field;
}

ColumnType Class

window.almworks.structure.api.ColumnType

ColumnType class represents column type.

It needs to be subclassed for particular column type implementation.

Example

var api = window.almworks.structure.api;

var AwesomeColumnType = api.subClass('AwesomeColumnType', api.
ColumnType, {
 createSwitchTypePreset: function(context) { return { key: 'com.
acme.structure.awesome-column', params: {} }; },
 createAddColumnPresets: function(context) { return [
 { key: 'com.acme.structure.awesome-column', params: {} },
 { key: 'com.acme.structure.awesome-column', name: 'Awesome
Column with a Twist', params: { twist: true } }
]; },
 createConfigurator: function(context, spec) { return new
AwesomeColumnConfigurator({context: context, spec: spec}); },
 createColumn: function(context, spec) { return new AwesomeColumn
({context: context, spec: spec}); }
});

api.registerColumnType(new AwesomeColumnType(), 'com.acme.
structure.awesome-column');

Documentation

Version 1 468

Methods
createSwitchTypePreset(context)

Returns default column specification to use when the user switches to this column type from

another column type in the column configuration panel. May return if the column type is null

unavailable.

createAddColumnPresets(context)

Returns an array of column presets (specifications) for this type to be offered to the user in the

Add Column panel. May return an empty array if the column type is unavailable.

createColumn(context, spec)

Returns a new instance of subclass for the specified column specification. May return Column

 if the specification is invalid, the column type is unavailable, etc.null

createConfigurator(context, spec)

Returns a new instance of subclass for the specified column ColumnConfigurator

specification. May return if the specification is invalid, the column type is unavailable, etc.null

getPresetMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this column type to create

presets. Unless the AJAX requests fail, the metadata will be available through context.

 when or getMetadata(key) createSwitchTypePreset()

 is called. See createAddColumnPresets() Requesting and Using Metadata (see page 396)

for more information. By default returns , which means that no metadata is needed.null

getColumnMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this column type to create

 instances. Unless the AJAX requests fail, the metadata will be available through Column

 when is called, and also will be available context.getMetadata(key) createColumn()

to the created instance via . See Column this.context Requesting and Using Metadata (see

 for more information. By default returns , which means that no metadata is page 396) null

needed.

getConfigMetadataRequests()

Returns a JavaScript object specifying the metadata needed by this column type to create

 instances. Unless the AJAX requests fail, the metadata will be ColumnConfigurator

available through when is called, context.getMetadata(key) createConfigurator()

and also will be available to the created instance via . ColumnConfigurator this.context

See for more information. By default returns Requesting and Using Metadata (see page 396)

, which means that no metadata is needed.null

getMetadataRequests()

Documentation

Version 1 469

Returns a JavaScript object specifying the metadata needed by this column type. Unless the

AJAX requests fail, the metadata will be available through context.getMetadata(key)

when , , , createSwitchTypePreset() createAddColumnPresets() createColumn()

or is called, and also will be available to the created and createConfigurator() Column

 instances via . See ColumnConfigurator this.context Requesting and Using Metadata

 for more information. By default returns , which means that no metadata is (see page 396) null

needed.

Example

getMetadataRequests: function() {
 return {
 somedata: { // metadata key
 url: baseUrl + '/some/data/url', // request URL
 cacheable: true, // if the response for
this URL can be reused for other cacheable requests
 extract: function(response) { // response to the AJAX
request
 return response.property || 1; // the actual value for
context.getMetadata('somedata')
 }
 },
 otherdata: {
 url: baseUrl + '/other/data/url',
 cacheable: true
 }
 };
}

3.6.6 Web Resource Contexts

The resources from the following web resource contexts are included by Structure pages:

Web
resource
context

Pages that include it

structure.

widget

Structure Board (see page 16), Structure Gadget (see page 24)

See Loading Additional Web Resources For Structure Widget (see page 408

 for the recommended way of extending the widget.)

structure.

printable

Printable page (see page 187)

Documentation

Version 1 470

For details about how to use web resource contexts, see .Atlassian Developer Documentation

3.7 API Usage Samples

Use the sample plugins to learn by example. Download the source bundle from this page and

use it with the latest API version.

3.7.1 Download

Name Version Published

custom-itemtype-1.0.0.jar 1 2017-08-28 00:06

labels-extender-1.0.0.jar 1 2017-04-05 02:22

scheduled-sync-1.0.0.jar 1 2017-04-05 02:22

status-bar-column-2.0.0.jar 1 2017-04-05 02:22

structure-api-examples-3.1.0.zip 1 2017-08-28 00:06

The provided code is not production-quality and not supported. It is provided as a

sample of how one can use Structure API.

The sample code is in public domain – feel free to copy, modify and base your work

on it.

3.7.2 Example List

Sample
Plugin

Description

simple-

plugin

Very basic demo of using .StructureManager

scheduled-

sync

A plugin that allows to schedule periodical full synchronization (resync).

https://developer.atlassian.com/display/JIRADEV/Web+Resource+Plugin+Module#WebResourcePluginModule-WebResourceContexts
https://wiki.almworks.com/download/attachments/32223506/custom-itemtype-1.0.0.jar?version=1&modificationDate=1503878810000&api=v2
https://wiki.almworks.com/download/attachments/32223506/labels-extender-1.0.0.jar?version=1&modificationDate=1491358975000&api=v2
https://wiki.almworks.com/download/attachments/32223506/scheduled-sync-1.0.0.jar?version=1&modificationDate=1491358975000&api=v2
https://wiki.almworks.com/download/attachments/32223506/status-bar-column-2.0.0.jar?version=1&modificationDate=1491358975000&api=v2
https://wiki.almworks.com/download/attachments/32223506/structure-api-examples-3.1.0.zip?version=1&modificationDate=1503878810000&api=v2

Documentation

Version 1 471

Sample
Plugin

Description

foo-

synchronizer

A skeleton project for starting your own synchronizer plugin.

status-bar-

column

Adds a column to the Structure widget that shows a colored bar, depending

on the statuses of the sub-issues.

labels-

extender

A plugin that adds Labels Extender, which includes issues in the structure

based on issue key mentioned in Labels field of the parent issue.

custom-

itemtype

A plugin that adds a new item type based on JIRA projects and an inserter

which adds projects from one or more categories.

3.8 Structure 3 API Changes

3.8.1 1. State of the API

In Structure 3 we had to change API in an incompatible way because the underlying

architecture of the product had changed. If you have integration with Structure 2, most likely it

won't work with the new Structure and some effort is needed to migrate the code.

As of Structure versions 3.0 – 3.1, the new API is not yet finalized and thorough documentation

is not yet published. We plan to spend additional effort on making the APIs simple, stable and

well-documented and publish the final documentation then.

Until that time, it's possible to use the current non-published API with Structure 3, however:

There’s no public documentation on it. The sources of the API artifact are published, but

they mostly don’t have javadocs yet.

There will be backwards-incompatible changes while we finalize the API. The concepts

and interfaces will stay mostly the same, but some classes may be moved and

optimized. This is less likely to impact REST API, although we plan to introduce new

REST APIs that would be simpler than the low-level API we have now.

There will be new interfaces that would make it easier to deal with the new concepts.

Right now it may be a little “low-level” and somewhat more complicated than it needs to

be.

Although the documentation about the new API is not available, Structure team will be happy to

assist you in migrating your code to work with Structure 3.

Documentation

Version 1 472

This article lists some of the most frequently used API calls. If you need to do something that is

not covered by this article or have any questions, please write us at support@almworks.com

3.8.2 2. Conceptual Changes

2.1. Forests and Rows

In Structure 2, a structure's content was called a . That is still the case, however, the forest
forest now contains rather than issues. A row has a Row ID – a long integer primary key rows
for the row. Given row ID, you can retrieve information about the item displayed in that row.

The data structure that represents a forest didn't change. Previously a forest was represented

by an array of pairs . Now the forest is represented by an array of pairs (issueID, depth)

.(rowID, depth)

The concept of a row may seem superfluous, but it's actually required for uniquely

identifying a specific position in a forest. Issue ID (or Item ID) is not sufficient because

an issue can be located at multiple places in the forest.

2.2. Items

Each row has an associated an issue, a folder, a project or any other type of items. In – item
Structure 3, item types are extendable and an add-on may provide additional types of items to

Structure. An item is identified by , which consists of: Item Identity

Item Type, represented by a complete module key of a JIRA plugin module that provides

the item type, and

Item ID, represented by a long integer (for example, issue ID for issues) or by a either
string (a user key for users).

Sometimes item type is omitted; in that case the implied item type is "issue".

Some of the most popular item types are:

Item
Type

Module Key Meaning
of Item ID

Comments

Issue com.almworks.jira.

structure:type-issue

Issue ID

(long)

Default when item type is not

specified

Folder com.almworks.jira.

structure:type-folder

Folders are introduced in

Structure 3

Documentation

Version 1 473

Item
Type

Module Key Meaning
of Item ID

Comments

Either

folder ID

(long) or

folder i18n

name

(string)

User com.almworks.jira.

structure:type-user

User key

(string)

Generator com.almworks.jira.

structure:type-generator

Generator

ID (long)

A generator is an automation

rule embedded in the structure.

Page com.almworks.structure.

pages:type-confluence-

page

Page ID

(ID

modulo

1e9)

Confluence pages are added as

a type by Structure.Pages

extension

2.3. Attributes

Attributes are a generalization of a JIRA's issue fields. An attribute is something that can be

calculated for an item. For example, an issue has such attributes as "summary", "key",

"priority". But purely Structure-related values are also attributes, such as "sequential number",

or "aggregate progress", or "sum of story points". The attributes can also be retrieved for any

types of items – for a Confluence page (provided by Structure.Pages extension), "summary"

would be the title of the page, "labels" would be the labels, and a new attribute "author" would

provide the initial author of the page.

Attributes are identified by an attribute specification, or . It is usually represented attribute spec
as a JSON object with an ID and parameters.

2.4. Concept Comparison

 Structure 2 Structure 3

A structure's content is ... Forest Forest

Documentation

Version 1 474

 Structure 2 Structure 3

Things that can be placed into a structure are ... Issues Items (including issues)

Forest consists of ... Issues Rows

A position in a forest is identified by ... Issue ID Row ID

A value in the Structure grid is displayed by ... Column Column

A column requests from the server ... Fields Attributes

3.8.3 3. REST API

3.1. Retrieving Structure Forest

GET /rest/structure/2.0/forest/latest?s={%22structureId%22:$id}

This method retrieves a content of a structure. If structure has generators, the generated

content is returned. Generators are preserved in the forest.

Parameters:

$id – structure ID

Return value sample:

{
 "spec":{"structureId":171},
 "formula":"10394:0:4/356,10332:0:14707,10374:1:5/240,10348:2:
14717",
 "itemTypes":{
 "4":"com.almworks.jira.structure:type-generator",
 "5":"com.almworks.jira.structure:type-folder"
 },
 "version":{
 "signature":-1659607419,
 "version":1
 }
}

Documentation

Version 1 475

In this reply, the most important part is "formula", which contains serialized information about

the forest, much like in Structure 2.Each component (delimited by comma) represents a row

and looks like this: . In this example, the numbers are:10374:1:5/240

10374 is the row ID,

1 is the row depth,

5/240 is the item identity. If the row contains an issue, it’s just issue ID, otherwise it has

the format of , or <item type>/<long item id> <item type>//<string item

. Item type is a number, which is expanded in the “itemTypes” map in the reply.id>

3.2. Updating a Structure Forest

POST /rest/structure/2.0/forest/update

Parameters:

{
 "spec": { "structureId": <id> }, // use structure ID
 "version": { "signature": <signature>, "version": <version> },
// use last seen signature and version
 "actions": [
 {
 "action": "add",
 "under": 0, // at the top level
 "after": 123, // after row ID 123 (not issue iD!)
 "before": 456, // before row ID 456
 "forest": "-100:0:10001" // insert issue 10001, -100
is the temporary row ID which will be mapped into the real row ID
when the method returns
 },
 {
 "action": "move", // works like previously, only row IDs
instead of issue IDs
 "rowId": 123,
 "under": 456,
 "after": 0,
 "before": 124
 },
 {
 "action": "remove",
 "rowId": 442
 }
]
}

Documentation

Version 1 476

3.3. Creating a structure

POST /rest/plugins/structure/2.0/structure

Parameters:

{
 "name": "my structure",
 "description": "my description",
 "permissions": [] // same format you see when you GET
structure
}

3.4. Deleting a structure

 DELETE /rest/plugins/structure/2.0/structure/<id>

3.8.4 4. Java API

4.1. Versions

As Structure 3 API is finalized, it's getting a lot of refactoring and version changes. A new

Structure version may have a backward-incompatible API, although incompatibilities may be

isolated and your code has a good chance to work fine. However, the major version is

promoted every time a backward-incompatible change is made, therefore you need to carefully

set up the version of imported API packages – either set them optimistically (for example,

 – up to version 15) and test your integration with a new release to see that there are [12,15)

no errors; or set the version as usual – for example, – but then you might need to [12,13)

recompile with each new release of the API. The latter approach is recommended for in-house

customizations.

Version Supported JIRA
Versions

Introduced in Structure
Version

OSGi
Import

OSGI Import
(Optimistic)

12.0.0 JIRA 6.3+ 3.0.0 "[12,13)" "[12,15)"

12.1.0 JIRA 6.3+ 3.0.1 "[12.1,13)" "[12.1,15)"

Documentation

Version 1 477

13.0.0 JIRA 6.3+ 3.1.0 "[13,14)" "[13,16)"

13.0.1 JIRA 6.3+ 3.1.1 "[13,14)" " [13,16)"

The API versions and sources are available from the public Maven repositories –

http://mvnrepository.com/artifact/com.almworks.jira.structure/structure-api

4.2. Retrieving Structure's Forest

To get the content of a structure, you need to use interface, which can be ForestService

injected. It has method that will return a given getForestSource() ForestSource

which is a specification of what kind of forest you are retrieving. For getting just ForestSpec,

a content of a structure, use . Once you have a ForestSpec.structure(structureId)

, you can use to retrieve an ForestSource forestSource.getLatest().getForest()

instance of – which should be familiar from the Structure 2 API.Forest

But now contains row IDs, not issue IDs, so to get information about what issues (or Forest

other items) are in the forest, you need to "dereference" each row ID.

4.3. Working with Rows

For working with rows, use . To get an item ID from a row ID, use RowManager rowManager.

. This gives you instance. To see if it is an getRow(rowId).getItemId() ItemIdentity

issue, use and to get issue ID in that case, use CoreIdentities.isIssue(itemId)

.itemId.getLongId()

To get all row IDs for a given issue ID (for example, to find an issue in a forest), you can use

. These row IDs may be rowManager.findRows(CoreIdentities.issue(issueId))

from multiple forests, so you need to see if the forest that you have contains some of those IDs.

4.4. Getting Totals and Other Values

To calculate totals or other Structure-calculated values, you need to use

.StructureAttributeService

StructureAttributeService.getAttributeValues() has the following parameters:

ForestSpec – use the same forest spec that you use to retrieve the forest;

row IDs – you need to specify for which rows (not issues!) the values are requested;

a collection of – specify which attributes are requested.AttributeSpec

http://mvnrepository.com/artifact/com.almworks.jira.structure/structure-api

Documentation

Version 1 478

You need to build a list of attribute specs to specify what to calculate. There are several ways

to get a correct attribute spec:

Some specs are defined in .CoreAttributeSpecs

You can build a spec using .AttributeSpecBuilder

You can parse a JSON representation of a spec into a then extract "id" and Map,

"params".

Examples:

Attribute Spec

Story Points

AttributeSpecBuilder
 .create(“customfield", ValueFormat.NUMBER)
 .params()
 .set("fieldId", 10000) // 10000 – the id of
"Story Points" custom field
 .build()

 Story Points

AttributeSpecBuilder
 .create("sum", ValueFormat.NUMBER)
 .params()
 .setAttribute(storyPoints) // storyPoints =
the attribute spec for Story Points
 .set("distinct", true) // exclude
duplicates
 .build()

4.5. Changing Structure

To change a structure, you need to use method. Each UpdatableForestSource.apply()

update is a separate transaction – the concept of a ForestTransaction used in Structure 2 has

been removed.

To get an instance of you need to cast retrieved UpdatableForestSource ForestSource

from .ForestService

Examples:

Documentation

Version 1 479

Operation Code

Add an issue with ID 10200 to structure, under parent row with ID

1040, after row with ID 1900 and before row with ID 2000
forestSource.
apply(new
UpdatableForest
Source.Update.
Add(

CoreIdentities.
issue(10200), 1
040, 1900, 2000
))

Remove rows with IDs 10100 and 10102

forestSource.
apply(new
UpdatableForest
Source.Update.
Remove(
 LongArray.
create(10100, 1
0102)))

Move row with ID 1010 as the first row under parent row with ID

1040, before a row with ID 1060
forestSource.
apply(new
UpdatableForest
Source.Update.
Move(
 LongArray.
create(1010), 1
040, 0, 1060))

Documentation

Version 1 480

1.

2.

4 Structure FAQ

4.1 Frequently Asked Questions

4.2 Cannot Create an Issue With +Next
Issue (+Sub-Issue) Because of the
Required Fields

4.2.1 Question

I have a number of fields required for the issues. When I try to use Structure's or +Next Issue
 button, the creation of the issue fails, because the values of the required fields +Sub-Issue

were not provided.

4.2.2 Answer

You can enter other fields when creating a new issue.

Use to add the required fields to the view."+" button (see page 48)

When entering a new issue, use and to switch between edited fields. You Tab Shift+Tab
can also click in a cell to edit it, or use other .Keyboard Shortcuts (see page 278)

If the initial creation of an issue has failed, you don't have to lose the entered data.

Just add the required fields and double-click on the value you need to edit, or click Edit
button in the toolbar. You can change the values of the new issue and try to create it

again.

For convenience, you can set up a separate view for entering new issues (or modify the preset

view called), so you can quickly switch between different sets of columns. See Entry Saving

 for details.and Sharing Views (see page 53)

Documentation

Version 1 481

4.3 Plugin Manager Says Structure Is
Unlicensed

4.3.1 Question

I have a valid license installed. Why do I see Structure as or having Unlicensed Action
 in the Plugin Manager?Required

4.3.2 Answer

That may be so because Plugin Manager is not aware of ALM Works licenses. To verify the

true status of your Structure license, please check Administration | Structure | License
 page. If it shows you that the license is OK, you can safely ignore the status of the Details

Structure license in Plugin Manager.

Structure supports two kinds of licenses — purchased via Atlassian and issued by ALM Works.

For details, please see .Setting Up Structure License (see page 292)

4.4 No Check Mark Displayed for a
Resolved Issue

4.4.1 Question

Why do I see a resolved issue in Structure, but there's no green check mark, which usually

indicates that an issue is resolved?

This article answer these questions as well:

Why do I see a check mark on a unresolved issue?

Why does an open issue that still in the work have 100% progress indication?

When I turn on "Unresolved" filter button, why do I see some of the resolved issues

anyway?

4.4.2 Answer

The JIRA's notion of a "Resolved Issue" (or "Completed Issue") can be quite confusing. The

source of confusion is that an issue is considered to be resolved based on its field, Resolution
not based on its Status:

Unresolved means that the Resolution field is empty, regardless of issue Status.

Resolved means that the Resolution field has some value, regardless of issue Status.

Documentation

Version 1 482

1.

2.

3.

4.

If an issue has a non-empty Resolution field (i.e. considered Resolved):

The green check mark is displayed in Structure on that issue;

The issue is filtered out by the Unresolved button;

The progress of the issue is 100% regardless of other fields.

See also: , , Flags Column (see page 71) Filtering (see page 139) Progress Column (see page

56)

Problems Caused By Custom Workflows

The default workflow in JIRA contains the "Resolved" status and if you select this status, JIRA

requires you to select some non-empty value for the Resolution field too. Thus, the issue gets

the Resolved status and becomes truly resolved (or completed), because it has a value in the

Resolution field.

The confusion may arise, if in a custom workflow / screen configuration, Resolution field is not

set as required or not added to the screens, associated with transitions to the Resolved status.

In this case, a user may move an issue to the Resolved status, but the issue will still be

unresolved/uncompleted, because the Resolution field is still empty.

If you have such a configuration, in the Structure this problem may manifest itself when you are

trying to use the Unresolved filter button (which works as a shorthand for filtering using JQL: "

"). The issues with the Resolved status but with no Resolution will still Resolution is EMPTY

be visible even if you switch the filter on.

Solution:

Edit your workflow: in all transitions to a status that should be considered resolved, use a

screen with the Resolution field.

In all transitions to a status that should not be considered resolved, use "Clear

Resolution" step.

Make Resolution field required. (It will matter only if Resolution is added to the screen

configuration.)

Check all screens - "Edit Issue" screen and all screens not mentioned in (1) above

should not contain Resolution field.

Problems Caused By Manually Added "Unresolved" Resolution Value

To make matters worse, sometimes JIRA administrators add a new resolution option, named

"Unresolved". Then, for example, on the workflow's "Reopen" step configuration, instead of

clearing the Resolution, they change it to this "Unresolved" value.

Documentation

Version 1 483

1.

2.

The problem is that the new "Unresolved" resolution is still a non-empty value, and any issue

having this value in the Resolution field will be considered resolved, by JIRA and Structure and

other plugins.

But on the issue page, the user will see . So it will be practically Resolution: Unresolved
impossible to distinguish this resolved (completed) issue from the issues which are really

unresolved (have empty Resolution field).

Solution:

Use JIRA's Bulk Change to clear resolution from all issues that have Resolution

"Unresolved".

Remove resolution "Unresolved".

4.5 Structure plugin won't start

4.5.1 Question

I try to install (enable) Structure plugin, but it doesn't work. When I reload Plugin Manager page,

Structure plugin is disabled. What is the problem?

4.5.2 Answer

Structure plugin may fail to start due to the following reasons. To better understand what's

going on, check JIRA logs (or) and verify each of catalina.out jira-application.log

the following possible causes.

1. Structure database cannot be created or opened, filesystem read-only
or full

Structure stores all its data in sub-directory of the JIRA home directory. At first structure/

launch, it tries to create that directory and shuts down if fails to do so. At every start it tries to

open the database contained there and also shuts down if fails to do so. In all cases, there

should be a big warning or error message in the JIRA log.

Possible actions:

Create sub-directory manually and grant full permissions on it to the structure

account that is used to run JIRA.

Verify that filesystem is not read-only.

Verify that there's enough free disk space (at least 100 MB).

Verify that Structure's database is not opened with some other tool, like Derby console.

Documentation

Version 1 484

See also: Structure Files Location (see page 320)

2. Some of the required system plugins are disabled

Structure relies on some of the system plugins. If they are disabled, you may get all kind of

weird messages from JIRA when it tries to start Structure.

Note that it is quite likely that the error messages will be completely unrelated to the disabled

plugins. For example:

com.atlassian.plugin.PluginParseException: Unable to load the
module's display conditions: Could not load 'com.almworks.jira.
structure.web.UserCanCreateStructureCondition' in plugin com.
almworks.jira.structure
... stack trace ...
Caused by: com.atlassian.plugin.web.conditions.
ConditionLoadingException: Could not load 'com.almworks.jira.
structure.web.UserCanCreateStructureCondition' in plugin com.
almworks.jira.structure
... stack trace ...
Caused by: java.lang.IllegalStateException: Cannot autowire
object because the Spring context is unavailable. Ensure your
OSGi bundle contains the 'Spring-Context' header.
... stack trace ...

Possible actions:

Open , click . Verify Administration | Plugins | Manage Plugins Show System Plugins
that all plugins are enabled. If some are disabled, enable them, then try to enable or

reinstall Structure.

If for some reason you need to keep some of the plugins disabled, and Structure wouldn't start

without them, please write to .support@almworks.com

3. Incomplete download or corrupt plugin JAR file

It is possible for the Plugin Manager to download the plugin JAR file only partially, if there are

any problems with the server or the connection.

Also, it has been reported that if you download the plugin manually with Internet Explorer, it

completely messes up the JAR file and turns it into a ZIP file with absolutely invalid content.

To verify that you have a correct JAR file, locate plugin JAR in plugins/installed-

 directory under your JIRA home. Structure plugin has the word "structure" in its file plugins

name. Verify that the JAR file MD5 hash is the same as listed on the page.Download Archive

https://wiki.almworks.com/display/structure/Download+Archive

Documentation

Version 1 485

4. Incorrect JIRA setup

A symptom that provides evidence in favor of this cause is that contain JIRA application logs

one or several lines that look like the following:

ERROR [plugin.osgi.factory.OsgiPlugin] Unable to start the Spring

context for plugin com.almworks.jira.structure

In order for Structure plugin to work, it requires some of standard Atlassian plugins, such as the

one that allows Structure to post to the . We have been reported of cases Activity Streams

where these plugins cannot start because

 variable was set in in -Datlassian.org.osgi.framework.bootdelegation JAVA_OPTS

 (), as recommended in setenv.sh setenv.bat this comment to the Upgrade to JIRA 4.2

. If you are using JIRA 5.0 or later, please try to remove the variable from Guide JAVA_OPTS

and see whether it resolves the problem.

If none of the above help resolve the problem, please contact ALM Works support.

4.6 After an Issue is Moved to
Another Project, It Cannot Be Found
in the Structure

4.6.1 Question

An issue was added to the structure. Afterwards, the issue was moved in JIRA to another

project. Now, the issue cannot be found in the structure, either by summary, or by the new or

old issue key. What happened?

4.6.2 Answer

Please check that the project where the issue was moved to is enabled for Structure (see page

. Structure plugin ignores issues in the projects that are not Structure-enabled, so the 298)

moved issue is ignored too, as if it ceased to exist.

If you need this issue in the structure, either include the project where the issue resides now

into the or move the issue to an already list of Structure-enabled projects (see page 298)

Structure-enabled project, e.g., to the original project.

https://confluence.atlassian.com/pages/viewpage.action?pageId=16121981
https://confluence.atlassian.com/display/JIRA/Adding+the+Activity+Stream+Gadget
https://confluence.atlassian.com/display/JIRA/Updating+JIRA+Plugins+for+JIRA+4.2?focusedCommentId=228623879#comment-228623879
https://confluence.atlassian.com/display/JIRA/Updating+JIRA+Plugins+for+JIRA+4.2?focusedCommentId=228623879#comment-228623879

Documentation

Version 1 486

4.7 User Cannot Access Structure,
Although Permissions Have Been Granted

4.7.1 Question

Initially, the user (either a normal JIRA user or a JIRA administrator) could not access Structure

plugin because it was not or not enabled for the user (see page 299) enabled in any project

. A JIRA administrator has granted permissions for the user (by either adding (see page 298)

her to the group that can access Structure or enabling the group the user belongs to for

Structure access) or enabled Structure for some projects. However, the user still cannot see

the Structure menu and cannot access any structure. How to resolve this problem?

4.7.2 Answer

Configured permissions related to Structure are cached on the server, so for a couple of

minutes after the JIRA administrator makes changes to the permissions, the user may not be

able to access Structure. These caches will last for approximately 5 minutes before they

automatically refresh, after that the user will be able to use Structure.

There is a way to enforce cache refresh: the user should do a of a JIRA page in hard refresh
their browser, after that they should be able to use Structure immediately. In most browsers,

hard refresh is achieved by clicking the Refresh button while holding or button. Ctrl Shift

There's a good list of ways to do a hard refresh in all popular browsers on Wikipedia: http://en.

.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

4.8 Issues Not Added to a Structure
when Using Links Synchronizer or
Import

4.8.1 Question

I'm trying to use Links synchronizer (Import) with link type X but the issues are not added to the

structure.

4.8.2 Answer

Link synchronizer's ability to add issues to the structure is controlled by the parameter.Scope

If you'd like to add issues that have a link of type X to the structure, run Import with all
 turned on.Synchronize all issues

http://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache
http://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

Documentation

Version 1 487

Note that if you install a synchronizer (rather than run an Import) with

 on, it will continuously work both ways - removing Synchronize all issues
issues from the structure will cause links to be removed. If you run a Resync

 and choose direction from Structure to Links, then all links of (see page 340)

type X between issues that are not in the structure (but from projects enabled

for Structure) will be . If you Resync an empty structure to links with deleted
 on, you'll effectively remove all links of that type.Synchronize all issues

If you'd like to add of the linked issues to the structure, you need to first add them some
via or , and then run Import Search (see page 136) Filter Synchronizer (see page 345)

with selected. Use Synchronize issues that are already in the structure Expand to...
options if you want the synchronizer to add missing sub-issues or parent issues to the

structure.

See also: Links Synchronizer (see page 349)

4.9 Where to find JIRA Server ID

Structure license is tied to a particular JIRA Server and for generating a license for a server, a

Server ID is required.

Server ID is a 16-digit code, that JIRA Administrator can look up in JIRA menu Administration |

System Info or in Administration | Structure | License Details.

4.10 Integration with JIRA Agile
(Greenhopper)

4.10.1 Question

We're using JIRA Agile (GreenHopper) - are there any conflicts with Structure? Can we see the

Structure's hierarchy in JIRA Agile?

4.10.2 Answer

You can use JIRA Agile and Structure side by side. Structure plugin stores its data in a

separate place, so it will not conflict with any other plug-in.

By default, Structure's hierarchy and issue order are independent from JIRA Agile's, but you

can install a to have Agile Rank JIRA Agile (GreenHopper) Synchronizer (see page 353)

synchronized with the position in the Structure and Epics synchronized with the positions of

stories under epics in the Structure.

Documentation

Version 1 488

JIRA Agile displays the hierarchy of a selected issue in a separate Structure-provided tab in the

issue details panel.

See also: , JIRA Agile (GreenHopper) Synchronizer (see page 353) Structure on Agile Boards

(see page 34)

4.11 Using Subtasks and Structure

4.11.1 Question

Should I disable sub-tasks to use Structure?

4.11.2 Answer

Not necessarily. While Structure plugin can be a good replacement for sub-tasks, they can be

used in parallel — for example, if you want to try Structure on a single project without affecting

other JIRA users.

Structure treats sub-tasks as any other issues. You can also install a Sub-Tasks Synchronizer

, which makes sure that JIRA sub-tasks are positioned under their JIRA parent (see page 344)

issues.

4.12 Difference from Sub-tasks

4.12.1 Question

How is issue hierarchy provided by Structure plug-in different from the standard sub-tasks?

4.12.2 Answer

Sub-tasks have several major limitations:

sub-tasks are only a one-level hierarchy;

sub-tasks are separate issue types;

sub-tasks always inherit project and security level from their parent task.

None of these limitations are present in Structure. At the same time, Structure plugin provides

all the features that sub-tasks have, and more.

See also: Structure Widget Overview (see page 35)

Documentation

Version 1 489

1.

2.

4.13 Changes Made to Links Are Not
Written to Activity Stream and Issue
History

4.13.1 Question

Link creation and removal operations, when performed by link synchronizers or extenders, are

not written to the issue history and activity streams. Why?

4.13.2 Answer

They are not written because doing so may affect JIRA performance. If you want them to be

written (to activity stream only at the moment), please perform the following steps:

Add a new JIRA startup system property: -Dstructure.bulkLinkProcessor.

useLinkManager=true

This page describes how to add JIRA startup properties.

Restart JIRA

4.14 Performance Considerations

For those, who have large JIRAs (hundreds of thousands of issues) there are a few things to

bear in mind when working with the Structure.

The recommended limit for the number of issues in one structure is 100K and with this

Structure already might be working noticeably slower, especially if there are many users

working with the Structure Board at the same time.

So what we recommend is to distribute the issues between several smaller structures (5-10K

issues per structure works perfectly) - the number of structures does not affect the performance

that much.

Another thing that may affect the performance are the . Incorrect synchronizers (see page 332)

synchronizers configuration may lead to conflicts when one synchronizer reverses the actions

of the other, and vice versa. There is a safeguard mechanism that stops the cycle and sends

warnings, but the next user action might trigger it again, so there's a possibility of wasted CPU

cycles and overgrowth of the structure change history.

https://confluence.atlassian.com/display/JIRA/Setting+Properties+and+Options+on+Startup

Documentation

Version 1 490

1.

2.

3.

4.

There were also several customer specific issues, which only reproduced in the customer's

environment, but they were successfully resolved each time.

If necessary, you can also to reduce the switch off some parts of the structure (see page 320)

load (for example, the Structure panel on the Issue Page) and limit the group of users (see

 Structure is exposed to.page 331)

4.15 How to restore the structure
using History

Sometimes you might want to restore a structure to some previous state. For example, if it was

incorrectly modified by some user, or if some synchronizer was not configured correctly and it

did not work the way the user expected.

Here is what you can do in this situation:

Open the structure panel.History (see page 182)

In the history, find and select the moment when the structure was in the desired state

(before the unwanted changes took place).

Press CTRL+A to select all issues and press CTRL+C to cut them to clipboard.

Switch off history panel and press CTRL+V – this should rearrange structure according to

the view you selected in the history.

If you have some complicated synchronizers (for example, the ones, which use S-JQL

in their configuration), it may be a good idea to temporarily disable the synchronizers

before restoring and then enable them back and run the resync.

4.16 Can I export a structure to
Microsoft Word so that it can be
emailed as a document?

Exporting a structure to MS Word directly is not supported at this time. The nature of Structure

plugin is such, that the format and the presentation of data is much closer related to MS Excel

than that of MS Word. To export to Excel just click a drop-down arrow on the button Export
located on the right of the , and choose . Structure will create Structure Toolbar Export to Excel
an MS Excel file with the same name as the structure that you are exporting and will save it in

your browser's folder.Download

Documentation

Version 1 491

Once you have the file, you can open it, copy the data you need and paste it into any MS Word

file for further formatting.

Another way to convert a structure into a document that can be shared with a customer, is to

use | and then use any "PDF Printer" to save it as a PDF File.Export Printable Page

Documentation

Version 1 492

1.

a.

b.

2.

3.

4.

5.

6.

5 Structure Troubleshooting

5.1 Collecting Support Zip

ALM Works support may ask you to collect a Support Zip during a support case investigation.

To collect Support Zip, you will need permissions in your System Administrator
JIRA. You will also need a way to transfer files from the host that runs JIRA instance.

If you do not have the required access, please ask your JIRA administrator or your

system administrator for assistance.

To collect a Support Zip:

Open page.Administration | System | Logging and Profiling

Enter STRUCTURE TROUBLESHOOTING into the field, turn Optional Message
on and press .Log Rollover Mark

Scroll down and click , enter Configure logging level for another package
package name then select logging level DEBUG and click . com.almworks Add

Reproduce the problem being investigated.

Open , switch to tab. Administration | System | Atlassian Support Tools Support Zip
Select options , , , Application Properties Thread Dump JIRA Application Logs

. Unselect all other options. Click .Tomcat Logs Create

Use access to the system that hosts JIRA to get the support zip file. If the file is larger

than 100 MB, please create the support zip again but also turn on option Limit File Sizes.

Send the resulting ZIP file to ALM Works support by email or attach it to the support

request in .ALM Works JIRA

After you've collected the support zip, you can go back to Administration | System |
 and set the logging level for to WARN - it's Logging and Profiling page com.almworks

the default level.

5.2 HAR Network Report

HAR Network Report is something we (ALM Works Support) may ask you to collect, to help us

understand a tricky problem that we could not reproduce.

https://support.almworks.com

Documentation

Version 1 493

1.

2.

3.

4.

5.

HAR stands for , a text-based format for the log of network HTTP Archive Format

communications between a user agent (the browser) and a web server. You can also

use this report with a for in-depth analysis of your JIRA page load HAR Viewer

performance. (Be aware though that with an online viewer you may transfer sensitive

or security-related information to a third party.)

5.2.1 Collecting HAR Report with Google Chrome

Open a new Chrome window and navigate to the page where the problem happens.

Press or use menu to open a section Ctrl+Shift+I Wrench | Tools | Developer Tools
with developer tools. Switch to the tab there. Make sure tab is selected Network All
below.

Reload the page by using or clicking the Reload button. This will make Network Ctrl+R
tab log all network exchange during page load.

The network tab will start collecting information or network exchange

automatically after it's opened. If you know that the problem is not related to the

initial page load, you may skip this step to avoid adding extra data to the log. If

unsure, reload the page to collect the full report.

Reproduce the problem being analyzed.

After the problem has been reproduced, on the column in the Network right-click Name
tab and choose either or Save all as HAR Copy all as HAR

http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-viewer/

Documentation

Version 1 494

5.

6. Paste the report into an e-mail to our support, or attach the saved .HAR file.

5.3 Troubleshooting Synchronizers

Structure synchronizers (see page 332) work in background and can lead to changes in the

structures or issue data that might be hard to trace. Complex configuration rules don't make

things better, so it's important for JIRA admin to be able to track which synchronizers are doing

what and what has caused a particular change a user is complaining about.

5.3.1 Structure Audit Log

Starting with Structure 3, all standard synchronizers record all actions they have taken in the

database and allow the administrator to undo the changes. Navigate to Administration |
 to query history or apply undo.Structure | Support | Synchronizer Audit Log

5.3.2 Log Files

To get detailed reports about what's going on, you can reconfigure your JIRA logging so that

structure synchronizers can produce more verbose messages. Also, you might want to direct

messages from the synchronizers into separate log files.

The appearance of detailed synchronizer messages is governed by the log level: the lower the

log level, the more detailed messages can appear. By default, log level for structure

synchronizers is , and you can set it to lower levels, like (the lowest one.) You can WARN DEBUG

set the logging level either (until the next JIRA restart) or temporarily (see page 494)

.permanently (see page 495)

To see the list of possible log levels and other general information regarding logging in JIRA,

please refer to .JIRA logging documentation

Temporarily change log level for structure synchronizers

https://confluence.atlassian.com/display/JIRA/Logging+and+Profiling

Documentation

Version 1 495

1.

2.

3.

Temporarily change log level for structure synchronizers

If you set log level in this way, it will not persist after you restart JIRA. This is a relatively

simpler way than setting the log level permanently.

Log in as a user with the global permission.JIRA System Administrators

Select | | | (tab). Administration System Troubleshooting and Support Logging & Profiling
The 'Logging' page will be displayed, which lists all defined log4j categories (as package

names) and their current logging levels.

Locate and click the link that reads "Configure logging level for another package", and a

dialog will be displayed. For troubleshooting bundled synchronizers, specify package

name ; choose the appropriate logging level, e.com.almworks.jira.structure.ext

g. .DEBUG

Permanently change log level for structure synchronizers or set up
separate log files for synchronizers

This way, you need to modify the file, which is located in the log4j.properties JIRA

.installation directory

The package name that all bundled synchronizers log under is com.almworks.jira.

. You can add the following lines to have debug messages from synchronizers structure

show on the console and/or in the log file (depending on their respective log levels):

log4j.logger.com.almworks.jira.structure = DEBUG, console, filelog
log4j.additivity.com.almworks.jira.structure = false

Or, you can set up a separate log file for synchronizer actions:

log4j.appender.structure-sync=com.atlassian.jira.logging.
JiraHomeAppender
log4j.appender.structure-sync.File=structure-sync.log
log4j.appender.structure-sync.Threshold=TRACE
log4j.appender.structure-sync.MaxFileSize=20480KB
log4j.appender.structure-sync.MaxBackupIndex=1
log4j.appender.structure-sync.layout=org.apache.log4j.
PatternLayout
log4j.appender.structure-sync.layout.ConversionPattern=%d %t %p %X
{jira.username} [%c{4}] %m%n

log4j.logger.com.almworks.jira.structure = DEBUG, structure-sync,
console
log4j.additivity.com.almworks.jira.structure = false

https://confluence.atlassian.com/display/JIRA/Managing+Global+Permissions
https://confluence.atlassian.com/display/JIRA/JIRA+Installation+Directory
https://confluence.atlassian.com/display/JIRA/JIRA+Installation+Directory

Documentation

Version 1 496

1.

2.

3.

5.4 Structured JQL Troubleshooting

If a query doesn't work as expected, please try the following Structured JQL (see page 245)

steps.

Double-check if the query itself correctly expresses what you are searching for. Feel free

to ask a question on or write to if you need Atlassian Answers support@almworks.com

help with S-JQL.

Probably, JIRA indexes that are used for searching have become corrupt. Please try to

do a — note that you should use full reindex of JIRA Lock JIRA and rebuild index
option, the other one is known to not help when indexes are corrupted.

If the query still returns strange results, please go to the Structured JQL Troubleshooting

page and follow the instructions outlined there:

<base URL>/secure/StructuredJqlTroubleshooting.jspa

Here, refers to the .base URL JIRA base URL

On this page, you will be able to run a Structured JQL query and collect extensive logs

which we in ALM Works can inspect in order to track down the issue.

5.5 Collecting Performance Snapshots

Performance snapshots allow ALM Works support team to analyze performance-related

problems on your JIRA server without direct access to it.

5.5.1 1. Download and install Atlas-Yourkit plugin.

Get the latest version from this page. In JIRA 4.3 and later, you can install this plugin without

JIRA restart.

The performance analysis plugin and redistributed parts of YourKit profiler are free, but if you'd

like to analyze the performance snapshots yourself, you'll need to obtain YourKit license and

download YourKit software (they provide a free evaluation period).

Name Version Published

atlas-yourkit-0.2.jar 1 2017-04-05 02:22

5.5.2 2. Load Profiling Agent

https://answers.atlassian.com
https://confluence.atlassian.com/display/JIRA/Search+Indexing
https://confluence.atlassian.com/display/JIRA/Configuring+JIRA+Options
https://wiki.almworks.com/download/attachments/32223442/atlas-yourkit-0.2.jar?version=1&modificationDate=1491358965000&api=v2

Documentation

Version 1 497

1.

2.

3.

5.5.2 2. Load Profiling Agent

Open menu (hint: Administration | Troubleshooting and Support | YourKit Profiling
in JIRA 4.4 and later versions, press ("g" twice) and search for "yourkit").g,g

If agent is already loaded, you'll see profiling controls - skip this step then.

Click to load profiling agent. You'll need to have JDK installed. If you don't Load Agent
have JDK installed – follow the link on that page, download and install a matching JDK

on JIRA host. It is not necessary to restart JIRA, just install the JDK and load agent.

There's certain risk that JVM will crash when loading profiling agent into JVM. A safer

method of loading profiling agent is by changing JIRA start-up parameters (in setenv.

/) and specifying parameters with other options. See sh setenv.bat agentpath

 for details.YourKit Documentation

5.5.3 3. Capturing CPU Performance Snapshot

After profiling agent is loaded, you can click on the YourKit page, then Start CPU Sampling
perform the actions that make JIRA slow, or wait for some time to collect the statistics. When

finished, click . Performance snapshot will be saved to a directory within Stop CPU Sampling
your JIRA Home, and the path will be shown on the YourKit page.

5.5.4 4. Capturing Memory Snapshot

Click "Take Memory Snapshot" - memory dump will be collected and saved in a file under your

JIRA Home. Do not take memory snapshots unless you need to!

Taking memory snapshot is usually a long operation, which could last several minutes.

During that time JIRA will be completely frozen. Make sure you've got enough disk

space (several GBs). Don't panic - it does take that much time. After you click the

button the page will be reloading. The browser may fail to load the page due to

timeout - check JIRA logs to see when snapshot is finished.

5.5.5 5. Sending the Snapshots to Support Team

By default, snapshots are written into directory. Locate <jira_home>/yourkit/snapshots

it and create a ZIP archive of all relevant snapshot files.

Please send the ZIP to us as described here: .Sending Files to Support Team (see page 503)

5.5.6 6. After Profiling Session

http://yourkit.com/docs/10/help/agent.jsp

Documentation

Version 1 498

1.

2.

5.5.6 6. After Profiling Session

There's no way to unload the profiling agent. You may want to continue running JIRA with the

profiling agent loaded, since it does not product much overhead. (Make sure you have stopped

all the monitoring.)

For a safer / cleaner environment, you can restart JIRA. (If you made additional effort to enable

profiler agent in script, you'll need to comment that options out.)setenv

5.5.7 Performance Snapshot Without Yourkit Plugin

Performance Profile allows ALM Works support team to analyze performance-related problems

on your JIRA server without direct access to it.

We are using Java Profiler product called . In order to collect the profile, you'll need to YourKit

download freely distributed "agent" library, connect it to your JIRA instance and capture a

performance snapshot. You will need to purchase a license from YourKit only if you want to

analyze the captured profile yourself.

No special knowledge is required to collect the performance profile, but being familiar

with using the command-line on the server that runs JIRA helps.

1. Download Profiling Agent

Download the ZIP with profiling agent from here: jira-profiler-v1-yjp956.zip md5sum

e3ea2b72ef4b22584c641425275050d0

Unpack the downloaded ZIP file into the directory where you have JIRA installed (JIRA not
home!). This will create directory under your JIRA installation <jira_install>/profiler

path.

You can unpack the profiler into any other directory, but this instructions and our

scripts assume that the profiler is unpacked into JIRA install dir.

If you will be able to restart JIRA before profiling, this is all you need — you can proceed to

.restarting JIRA with Profiling (see page 499)

1.1. Additional Download to Profile JIRA Without Restart

If you need to profile JIRA without restarting it first (and assuming it is not already started with a

profiler agent), you will need to download full distribution of the YourKit Java Profiler:

Open http://yourkit.com/download/index.jsp

http://yourkit.com/
http://almworks.com/.files/jira-profiler-v1-yjp956.zip
http://yourkit.com/download/index.jsp

Documentation

Version 1 499

2.

3.

4.

1.

a.

b.

2.

a.

Click on type of download - the installer! ZIP archive is typically ZIP Archive NOT
downloaded under "Solaris" section - it is the correct link even if you run JIRA on

Windows.

License key is not required for our purpose! Do not request evaluation license. (Unless

you intend to do an evaluation of YourKit, of course.)

Unpack the downloaded ZIP into – this is the directory <jira_install>/profiler

created at step 1. Unpacking will create a sub-directory there - for example,

.<jira_install>/profiler/yjp-9.5.6

2. Restart JIRA with Profiling

If you need to profile without restart, skip this step.

The following instruction is provided for a standalone JIRA installation.

To restart JIRA with profiling, you need to pass additional options to Java that runs JIRA. This

is done by editing on Windows or <jira_install>\bin\setenv.bat <jira_install>

 on a Unix-based OS and pointing Java to a profiler agent that you have /bin/setenv.sh

unpacked at step 1.

Find out which profiler agent to use.

Look into directory. Typically there will be two <jira_install>/profiler/bin

sub-directories for your operating system: 32-bit and 64-bit. The bitness must

match the bitness of JVM that runs JIRA. You can verify which Java your JIRA

runs on if you open in JIRA and look for "Java VM". Administration | System Info
If it mentions "64-Bit", then JIRA runs on a 64-bit Java.

Note the name of the subdirectory under directory that corresponds to profiler

the bitness of target JVM: it may be or or something like that.win64 linux-x86-32

Edit script:setenv

On Windows, set or append the following parameters to

 in JVM_SUPPORT_RECOMMENDED_ARGS <jira_install>\bin\setenv.bat

(following is a single long line):

Documentation

Version 1 500

2.

a.

b.

3.

4.

5.

6.

set JVM_SUPPORT_RECOMMENDED_ARGS=-agentlib:%~dp0..
\profiler\bin\win64\yjpagent=port=10001,onlylocal,dir=%
~dp0..\profiler\snapshots,delay=20000 -XX:
MaxPermSize=500m

On other OS, set or append the following parameters to

 in JVM_SUPPORT_RECOMMENDED_ARGS <jira_install>/bin/setenv.sh

(following is a single long line):

JVM_SUPPORT_RECOMMENDED_ARGS="-agentpath:`dirname \"$0\"
`/../profiler/bin/linux-x86-64/libyjpagent.so=port=10001,
onlylocal,dir=`dirname \"$0\"`/../profiler/snapshots,
delay=20000 -XX:MaxPermSize=500m"

Note that in the lines above, you should change or to the name of win64 linux-x86-64
the directory where the correct profiler agent for your OS/Java is located.

You may also need to change to make profiling agent listen on some other port=10001
TCP port - in case port 10001 is already taken.

Stop JIRA and start it again.

Watch for YourKit message like <jira_install>/logs/catalina.out [YourKit

Java Profiler 9.5.6] Loaded.

Use Copy & Paste to copy the parameters and then edit them in the setenv.sh

If the parameters are set incorrectly, JIRA start may fail. Verify that you have specified

the agent directory correctly. Also verify that directory path does <jira_install>

not contain spaces.

Profiler agent will use directory to write <jira_install>/profiler/snapshots

performance snapshots - it must be write-accessible to the JIRA process.

Now you can proceed to .#Running Profiling Session (see page 502)

Documentation

Version 1 501

1.

2.

3.

4.

a.

b.

3. Attach Profiler Agent to JIRA without Restarting

If you have restarted JIRA with profiling, skip this step.

If possible, restart JIRA with profiling instead of attaching profiler agent on the fly.

You will need the full distribution of YourKit downloaded at step 1.1. You will need to run a Java

program as specified below - with the same version of Java that JIRA runs on. We assume that

it is in your PATH variable in the command-line, but if it's not - you need to specify a full path to

.java

Find out the process ID of the process that runs JIRA. You can use command from jps

the Java distribution.

Find out the location of JDK (Java Development Kit). If you don't have JDK installed (only

JRE), this procedure won't work. Typically JDK home is stored in the command-line

environment variable JAVA_HOME.

Change current directory to . (You may have <jira_install>/profiler/yjp-9.5.6

a different version of yjp.)

Run the following command, substituting JIRA process ID instead of .PID

On Windows:

java -cp lib\yjp.jar;%JAVA_HOME%\lib\tools.jar com.
yourkit.Main -attach PID port=10001,onlylocal,
dir=<jira_install>\profiler\snapshots

Replace <jira_install> with the full path of the JIRA installation folder.

On other OS:

java -cp lib/yjp.jar:$JAVA_HOME/lib/tools.jar com.
yourkit.Main -attach PID port=10001,onlylocal,
dir=`pwd`/../snapshots

The command should output something like this:

Documentation

Version 1 502

1.

2.

3.

Attaching to process 60108 using options port=10001,onlylocal,

dir=..\snapshots The profiler agent has attached. Waiting while it

initializes... The agent is loaded and is listening on port 10001.

You can connect to it from the profiler UI.

4. Running Profiling Session

To successfully run a profiling session, you need to have JIRA running with a profiling agent, as

explained above. The agent does not add much overhead when being idle — it sits there

waiting for your commands to start a profiling session.

4.1. General Procedure

The profiling session is controlled by sending commands to the profiling agent (within the JIRA

process). The program that is used to send the commands is yjp-controller-api-

, located in . The common format for running this redist.jar <jira_install>/profiler

program is:

java -jar yjp-controller-api-redist.jar localhost 10001 <command>

The is replaced with some actual command, and if you changed the default port of <command>
the agent from 10001 to something else, you need to specify that port number here instead of

10001. This command should be run from directory.<jira_install>/profiler

We are assuming that is on your PATH. If not the case, use the full path to java java

executable.

4.2. CPU Performance Analysis

If JIRA is unresponsive or burns CPU extensively, you can run CPU analysis session.

Start session with the following command:

java -jar yjp-controller-api-redist.jar localhost 10001 start-
cpu-sampling

Let JIRA work for some time. If needed, take a specific action that causes the problem to

manifest.

Documentation

Version 1 503

3.

1.

2.

3.

4.

5.

Stop session and record a snapshot:

java -jar yjp-controller-api-redist.jar localhost 10001
capture-performance-snapshot

5. Sending the Snapshots to Support Team

By default, snapshots are written into directory. <jira_install>/profiler/snapshots

Locate it and create a ZIP archive of all relevant snapshot files. If the ZIP is less than 10

Megabytes, it's ok to send it to us by e-mail.

If the ZIPPed snapshot is 10 MB or larger, you need to use FTP to send it over to us:

Use any FTP client (or from the command line).ftp lftp

Connect to host f.almworks.com

Use login name and password almftp almftp

Upload files to the root folder.

After the upload is finished, please send us an e-mail with a notification that you have

uploaded the snapshots.

You will not be able to list or download files from that FTP, and your FTP client may

show errors about that. That's ok and should not prevent you from uploading

snapshots.

6. After Profiling Session

You may want to continue running JIRA with the profiling agent loaded, since it does not

product much overhead. Make sure you have stopped all the monitoring.

For a safer / cleaner environment, you can restart JIRA with the profiling options in setenv

script commented out.

5.6 Sending Files to Support Team

When you need to send files to ALM Works support team, please use one of the following

methods (listed in the order of preference).

Documentation

Version 1 504

5.6.1 1. Attach to the Support Request in ALM Works Service Desk
(Preferred)

File size limit: 20 MB

If the files pertain to a Support Request on , please use Service https://support.almworks.com

Desk to upload and attach the files to the ticket. Size limit is 20 MB per upload.

5.6.2 2. Send Files by E-mail

File size limit: 20 MB

You can send the files to . Maximum total attachments size is 20 MB.support@almworks.com

If you don't have a preceding e-mail communication with support about the problem in question,

please add a short comment or a reference to the problem being diagnosed.

5.6.3 3. Upload Files Directly to Our Server

File size limit: 5 GB

If you need to send us files larger than 20 MB, please let us know. We will send you a custom

link that will allow you to upload such files directly to our secure server.

The files you have uploaded are safe – they cannot be accessed by anyone except

ALM Works support.

5.7 Alternative Structure Gadget for
IE8 and IE9

This article applies to JIRA 6.0 and later.

There is a known problem that Structure gadget (either added to a JIRA dashboard or a

Confluence page) is not displayed properly when viewed in Internet Explorer 8 or 9. For that

case, Structure is shipped with alternative gadgets which work in these and all modern

browsers. This article describes how to enable and use the alternative gadgets.

Temporary Solution Warning

https://support.almworks.com/servicedesk/customer/portal/8

Documentation

Version 1 505

1.

2.

3.

4.

These gadgets are supplied as a temporary solution for Internet Explorer 8-9 users.

Once JIRA discontinues support of these browsers in one of its future versions,
 in favor of the all-we will remove them in the corresponding Structure version

purpose general gadget. When upgrading to that future version, you'll need to recreate

all alternative gadgets with the general one.

5.7.1 Enable alternative gadgets

There are several kinds of alternative gadgets, one for each JIRA version. By default, all

alternative gadgets are disabled. You will need to enable the one that works with the version of

your JIRA.

To enable a gadget, please do the following:

Open | .Administration Add-ons | Manage Add-ons

Locate Structure plugin and expand its row.

Click the link that looks like the following: "179 of 182 modules enabled".

Use the Search feature of your browser to locate the gadget by its name or unique ID.

Determine the appropriate name by the following table:

JIRA
version

Gadget name Unique ID

6.0–

6.0.8
gadget:Structure (IE 8-9 Compatible, Works with JIRA 6.0.x) structure-gadget-ie-jira60

6.1–

6.1.7
gadget:Structure (IE 8-9 Compatible, Works with JIRA 6.1.x) structure-gadget-ie-jira61

There is no gadget compatible with JIRA 6.2. We are looking into ways to

provide it; to be notified of the progress on it, watch/vote this issue in our JIRA:

 - Make gadget accessible from IE 8-9 on JIRA 6.2/JIRA 6.3 (HJ-1703

Open)

Click the Enable button to the right of the module name. (Should you later need to

disable the gadget, you'd need to click the Disable button.)

https://jira.almworks.com/browse/HJ-1703?src=confmacro
https://jira.almworks.com/browse/HJ-1703?src=confmacro

Documentation

Version 1 506

4.

5.

6.

1.

2.

It is recommended to enable only the gadget appropriate for your JIRA version.

A gadget designed for other JIRA version will not work in most cases — users

will see empty space or a piece of code in place of the gadget. (All other JIRA

functionality, including Dashboard, is not affected.)

This is necessary to consider when upgrading your JIRA.

So, for example, if you first enable the alternative gadget on JIRA 6.0, then

when you later upgrade to JIRA 6.1, the gadget will stop working. You will need

to enable the gadget for JIRA 6.1 and recreate all of the existing gadgets.

Afterwards, it is recommended to disable the gadget for JIRA 6.0.

It is recommended to disable the general gadget, so that you don't accidentally use it. To

do that, on the same page locate the gadget by name () and click gadget:Structure

the Disable button to the right of it.

Go to a JIRA dashboard and check that you can add the enabled gadget. The alternative

gadgets are named "Structure (IE Compatible)".

5.8 Troubleshooting Performance and
Stability Issues

In cases when JIRA's performance deteriorates or if the system becomes unstable or

unresponsive, it is important to achieve two goals:

Bring system back to normal in the shortest amount of time.

Collect information that would help analyze the problem and make sure it does not

appear again.

The second goal is strategically very important, however, it might get overlooked in a rush to

make things work "now". For example, JIRA administrator may be inclined to restart a stuck

JIRA instance quickly in order for it to get back to working state as fast as possible. But if

thread dumps are not collected, the developers will never know where JIRA was stuck, so the

same problem may happen again.

The first goal is of course also very important. Sometimes JIRA administrator manages to

restore system functioning, sometimes help from Atlassian and ALM Works support teams is

needed. Support engineers and developers would typically take into account all information

they have, analyze it and try to pinpoint the source of the problem. Often additional information

is required from the JIRA administrator, and sending requests and replies back and forth takes

precious time.

Documentation

Version 1 507

1.

2.

3.

This article is intended to provide JIRA administrators with advice about how to collect

maximum information about a performance or stability problem, when that problem happens.

The list is not intended to be complete, additional information may still be needed, however,

providing all listed information gives a good chance that a support engineer will be able to

identify a problem and provide advice sooner.

5.8.1 1. Thread Dumps

Thread dumps are the most important information when system is unresponsive or has

performance issues. They allow to peek into what's going on inside JIRA's JVM process.

Please refer to for instructions of Atlassian documentation on generating a thread dump

manually capturing a thread dump on the server.

Thread dumps are also a part of the Support Zip (3 dumps are generated in one zip),

however, generating a support zip might be unavailable if JIRA is hanging.

For best diagnosis, please collect 5-6 thread dumps with 3-4 second interval.

Please collect 5-6 thread dumps with 3-4 second interval.

5.8.2 2. Verbose Logging

If the problem has temporary but reproducible manner, you can turn on verbose logging so that

the engineers can gather more information from the logs. To do so:

Open page.Administration | System | Logging and Profiling

Enter STRUCTURE TROUBLESHOOTING into the Optional Message field, turn on Log

Rollover and press Mark.

Scroll down and click , enter package Configure logging level for another package
name then select logging level and click .com.almworks DEBUG Add

Then you can try to reproduce the problem and collect the support zip.

Do not forget to turn off the DEBUG logging after the problem has been resolved,

otherwise you may get too many messages in the logs during normal operation.

https://confluence.atlassian.com/adminjiraserver071/generating-a-thread-dump-802593021.html

Documentation

Version 1 508

1.

2.

3.

1.

2.

1.

2.

3.

4.

5.8.3 3. Support Zip

Support zip is the most important thing after thread dumps. It allows engineers to have full

understanding of the environment and retrospect using the logs into what was going on. If you

had Verbose Logging on before problem appeared, it gives even more details.

To collect a support zip:

Open , switch to tab.Administration | System | Atlassian Support Tools Support Zip

Open , switch to tab. Administration | System | Support Tools Create Support Zip
Select all options. Click .Create

Download the resulting ZIP file and send it to the support teams: either attach it to the

ticket, or, if the file is large, request a URL for uploading.

On JIRA Data Center, collect Support Zips on each node.

5.8.4 4. Browser Console Log

If the problem seems to be on the client side, in the browser – if there are errors or if the

browser is hanging or some button or link does not respond, check out the browser's error

console. Depending on the browser type, the console may be opened with different menus or

keyboard shortcuts.

Reproduce the problem

Copy all contents from the console and send it to support.

Also, please include browser type and version, as well as the information about

operating system.

5.8.5 5. HAR Report

HAR report is also taken on the browser and contains logs of network communications with the

server. Use this log to provide information that can help troubleshoot issues with slow loading

of data or general slow responsiveness on the client side.

Use Google Chrome

Open menu, More Tools | Developer Tools.

Switch to Network tab

Documentation

Version 1 509

4.

5.

6.

Reproduce the problem

Right click in the table and select "Save as HAR with content..." or "Copy All as HAR".

Paste or save HAR as a file.

HAR with content provides more information but it may contain your JIRA's data.

Review the contents before sending it out to support.

5.8.6 6. Screenshots or Video

When there's a visible and informative behavior demonstrated by the system, a screenshot or a

video showing the problem would go a long way in getting the support engineers understand

the issue.

You can use operating system's native tools to capture a video, or install a third-party

tool for that. Feel free to ask ALM Works Support for recommendations if you don't

have preferable screen capturing tool.

	Structure User's Guide
	Basic Concepts
	Default Structure
	Favorite Structures

	Structure Menu
	JIRA Pages with Structure
	Structure Board
	Making Structure Board Your Jira Home

	Structure on the Issue Page
	Pinned Issue
	Unique Features
	Collapsing/Showing Structure Section
	Structure Selection
	Adding Issue to a Structure
	Structure Tools
	Views and Options Drop-Downs
	Adjusted Time Tracking Section
	Activity tab

	Structure Options for the Issue Page
	Which Structure is Displayed?
	Auto-Minimize?
	Options Scope and Default Options

	Structure Gadget
	Adding Structure Gadget to Dashboard
	Configuring the Gadget
	Configuring Gadget View
	Using the Gadget
	Using Structure Gadget in Confluence
	How to Add Structure Gadget

	Adding Structure Gadget to Confluence Configuration
	Setting Up CORS Filter in JIRA
	Nginx Configuration Option

	Structure on the Project Page
	Scope
	Layout
	Project Page Options
	Perspectives are Unavailable

	Structure on Agile Boards
	Adding Columns
	Switching Issues
	Editing Issue Fields

	Working with the Structure Widget
	Structure Widget Overview
	Displaying Full Cell Content
	Switching Between Structures
	Using Structure Widget for Searching

	Navigating Structure
	Navigating with Mouse
	Navigating with Keyboard
	Selecting Multiple Items
	Special Selection Markers
	Changing Multiple Items
	Exiting Multi-Select Mode

	Main Structure Toolbar
	Available Actions

	Configuring View
	Using Views
	Views Menu
	Switching View with Keyboard

	Customizing Columns
	Adding Columns
	Configuring Columns
	Removing Columns
	Rearranging Columns
	Resizing Columns and Autosize

	Horizontal Scrolling
	Pinned Columns
	Saving Horizontal Scrolling Settings

	Saving and Sharing Views
	Saving View Adjustments
	Sharing a View

	Widget Columns
	Issue Key Column
	Summary Column
	Field Columns
	Displaying Aggregate Values

	Icons Column
	Progress Column
	How is Progress Calculated?
	Individual Issue Progress Calculation
	Total Progress Calculation

	Progress Based on Time Tracking
	Calculating Progress for Issue Without Sub-Issues
	Calculating Progress for Issue with Sub-Issues
	Examples
	1. Example without time estimates
	2. Example with time tracking information
	3. More complex example

	Progress Based on Resolution Only
	Calculating Progress for Issue Without Sub-Issues
	Calculating Progress for Issue with Sub-Issues
	Example: Resolution Only with Story Points

	Progress Based on Status
	Calculating Progress for Issue Without Sub-Issues
	Calculating Progress for Issue with Sub-Issues
	Example: Progress Based on Status, All Sub-Issues Are Equal

	Progress Based on Percent Field
	Calculating Progress for Issue Without Sub-Issues
	Calculating Progress for Issue with Sub-Issues
	Examples
	A: Percent Field, All Sub-Issues Are Equal
	B: Percent Field, Story Points

	Images Column
	Viewing Full-Size Images

	Work Logged Column
	Displaying Aggregate Values
	How is Work Logged Calculated?

	Special Columns
	Flags Column
	JIRA Actions Column

	Sequential Index Column
	Formula Column
	Configuring Formula Column
	1. Write Formula
	2. Verify Formula's Correctness
	3. Define Variables
	4. Optionally, Turn On Aggregation
	5. Optionally, Select a Number Format
	5.1 About Work Time Option

	6. Give Column a Meaningful Name

	Sharing Formula Columns
	Sorting by Calculated Value
	See Also
	Advanced Formula Configuration
	Creating and Advanced Formula Column
	1. Main Formula
	2. Temporary Column with Total Number of Bugs
	3. Temporary Column with Total Number of Issues
	4. Define Main Formula Variables
	5. Final Steps

	Bundled Formulas
	Expr Language
	Language Components
	Basic Constructs
	Variables
	Functions
	Numbers and Text Strings
	Numbers
	Text Strings

	Operations

	Advanced Constructs
	Aggregate Functions
	Local Variables
	Comments

	See Also
	Expr Function Reference
	Functions
	Conditional Functions
	CASE
	CHOOSE
	DEFINED
	DEFAULT
	IF
	IFERR
	ISERR

	Numeric Functions
	ABS
	CEILING
	FLOOR
	MAX
	MIN
	MOD
	POW
	ROUND
	SIGN
	SQR
	SQRT

	Text Functions
	CONCAT
	EXACT
	LEFT
	LEN
	LOWER
	MATCH
	MID
	REPEAT
	REPLACE
	REPLACE_AT
	RIGHT
	SEARCH
	SUBSTRING
	TRIM
	UPPER

	Date and Time Functions
	DATE
	DATE_ADD
	DATE_SET
	DATE_SUBTRACT
	DAY
	DAYS_BETWEEN
	DATETIME
	END_OF_MONTH
	FORMAT_DATETIME
	HOUR
	HOURS_BETWEEN
	MAKE_DATE
	MAKE_DATETIME
	MINUTE
	MONTH
	MONTHS_BETWEEN
	NOW
	PARSE_DATETIME
	SECOND
	START_OF_MONTH
	TODAY
	TRUNCATE_TIME
	TRUNCATE_TO_HOURS
	TRUNCATE_TO_MINUTES
	TRUNCATE_TO_SECONDS
	WEEKDAY
	YEAR
	YEARS_BETWEEN

	Duration Functions
	CALENDAR_DAYS
	CALENDAR_HOURS
	CALENDAR_MINUTES
	CALENDAR_SECONDS
	DURATION
	FORMAT_DURATION
	JIRA_DAYS
	JIRA_DURATION
	JIRA_WEEKS

	Miscellaneous Functions
	ME
	NUMBER
	TEXT

	Aggregate Function Reference
	Aggregation Functions
	SUM
	COUNT
	AVG
	MAX
	MIN
	JOIN
	PARENT

	Aggregation Modifiers
	#all
	#truthy
	#strict
	#children
	#leaves
	#subtree
	#ancestors
	#reverse
	#separator
	#beforeChildren
	#afterChildren
	#fromDepth
	#toDepth
	#distinct
	#depth

	Expr Language Reference
	Conventions
	Comments

	Values
	Undefined
	Text
	Numbers
	Text to Number Conversion
	Falsy and Truthy Values

	Variables and functions
	Identifiers
	Variables
	Local Variables
	Function Calls
	Aggregate Function Calls

	Single-argument operators
	NOT
	+ -

	Logical and arithmetic operators
	Logical operators
	Comparison operators
	Equality: = (==).
	Inequality: <> (!=)
	Ordering

	Arithmetic operators

	Precedence of operators
	Railroad diagrams
	expression
	logical-expression
	arithmetic-expression
	function-call
	aggregation-expression

	Expr Pattern Matching
	Exact Matching
	Wildcard Matching
	Regular Expression Matching

	Expr Error Codes

	Wiki Markup in Formula Columns
	Using Wiki Markup
	Markup Options
	Export
	Examples
	Example 1: Progress Warnings
	Example 2: Project Markers

	Notes Column
	Permissions
	Who can view notes?
	Who can edit notes?

	Searching and Filtering
	Simple, JQL, and S-JQL Search
	Simple Search
	JQL Search
	S-JQL Search

	Filtering
	Default Quick Transformations

	Pinned Item Mode
	Turning Pinned Mode On and Off
	Limitations Imposed by the Pinned Item Mode
	When Pinned Issue Is Missing from Structure

	Identifying Duplicate Items
	Finding Duplicates
	Filtering by Duplicates
	Pinning Duplicates

	Transformations
	Available Transformations
	Working with Transformations
	Using Transformations
	Sorting and Filtering
	Transformations Panel
	Add
	Edit
	Remove a Transformation
	Hide Transformations Panel
	Remove All Transformations
	Save Transformations

	Quick Transformations
	Quick Transformations Panel
	To activate a quick transformation
	To deactivate a quick transformation

	Defining Quick Transformations
	Adding a Quick Filter
	Adding an Extender, Grouper or Sorter Transformation

	Modifying Quick Transformations

	Default Transformations

	Two-Panel Mode
	Resizing Secondary Panel
	Swapping panels
	Structure Widget on Secondary Panel
	Issue Clipboard

	Changing Structure
	Adding Existing Issues to Structure
	Moving Items within Structure
	Basic Moves
	Advanced Moves
	Drag-and-Drop
	Cut & Paste

	Moving Multiple Items
	Back-to-Back Moves
	Moving Items with Automation

	Removing Items from Structure
	Changing Multiple Items
	Using Drag and Drop
	Moving Items
	Copying Items
	Dragging Multiple Items
	Cancelling Drag
	Scrolling Structure While Dragging

	Using Cut, Copy and Paste
	Copy / Paste Scenarios
	Moving Items Between Structures
	Step 1 - Cut/Copy
	Step 2 - Paste

	Moving Items Within a Structure
	Copy/Cut
	Paste

	Undoing Changes

	Working with Issues
	Viewing Issue Details
	Working with an Issue
	Separate View for Issue Details
	Resizing the Issue Details Panel
	Details and Secondary Panels
	Using the Keyboard

	Creating New Issues
	Create a New Issue in Structure
	Categories: Copy from...
	Editing Other Fields during Creation
	Creating Sub-Tasks

	
	Create Issues Using the "Create Issue" Dialog
	Creating Epics
	Additional Keyboard Shortcuts
	Uploading New Issue to the Server

	Editing Issues
	Edit Mode
	Learn More
	Entering Edit Mode
	Changing Fields
	The Field Editor
	Allowed Changes

	Using Keyboard in Edit Mode
	Entering Edit Mode
	Keyboard Shortcuts in the Edit Mode

	Correcting Input Errors
	Input Errors when Creating a New Issue

	Editing from Gadget
	On E-mail Notifications

	Bulk Change
	Cloning Multiple Issues
	Using JIRA Actions
	Using Actions Drop-Down
	Using JIRA Shortcuts
	No Page Reload

	Viewing History of a Structure
	Limitations of the History View
	Printing a Previous Structure Version
	Exporting a Previous Structure Version to XLS Format

	Full Screen Mode
	Printing Structure
	Exporting Structure to XLS (Excel)
	Compatibility
	Row Groups
	Columns
	Printing

	Real-Time Collaboration

	Automation
	Types of Generators
	How to Add a Generator
	How to Edit a Generator
	How to Remove a Generator
	Generators
	Insert
	Filter
	Additional Options
	Inserter/Extender Duplicates Filter
	Basic Example
	Multiple Parents Example
	Example With Link Cycles

	Sort
	Group
	Extend
	Linked issues
	Stories under Epics
	Sub-tasks
	Child issues from Portfolio for JIRA

	Generators Options
	Defining Generator Scope

	Paused Automation
	Resuming Automation
	Changing Allowed Generation Time for a Structure
	Changing Default Generation Time Limit
	System-Wide Hard Limit

	Manual Adjustments
	Enabling Manual Adjustments
	Mark Adjusted Content

	Manual Adjustments are NOT Reflected in Jira
	Special Considerations When Using Manual Adjustments
	Why is Manual Adjustment Necessary?
	Order of Operations with Manual Adjustments
	Adding New Generators After Manual Adjustment

	Undoing Manual Adjustments

	Managing Structures
	Locating a Structure
	Finding Structures by Name, Access Level or Owner
	Finding a Structure by Its ID

	Structure Details
	Editing Structure Details

	Creating New Structures
	Structure Permissions
	Access Levels
	Default Access
	Permission Rules
	Examples
	Edit Issue JIRA Permission and Editing Structure
	Permissions Caching

	Customizing View Settings
	Switching Between Default and Customized View Settings
	Configuring Views Menu
	Configuring Default View

	Copying a Structure
	Copying Structure As-Is vs. Cloning Issues
	New Structure
	Copying Structure and Cloning Issues
	How Issue Cloning Works
	Cloning Parameters
	Required Permissions
	Executing Bulk Cloning
	Checking Clone Progress
	Cancelling Cloning
	Cloning Queue

	Copying Synchronizers
	Synchronizers Copying Parameters
	Required Permissions
	Copied Synchronizers

	Archiving a Structure
	Unarchiving Structure
	Searching for Archived structures
	Synchronizers

	Deleting a Structure

	Managing Views
	Locating a View
	Changing View Settings
	Renaming a View and Changing Other Properties

	View Sharing and Permissions
	Changing permissions
	Private and Public Views

	Associating Views with Structures
	Copying a View
	Deleting a View

	Template Structures and Projects
	Configuring Template Structures
	Creating Issues and a Structure from Template
	Template Projects

	Sharing a Perspective
	Structure Activity Stream
	Available Filters
	Reading Activity Stream
	Activity Streams Performance

	Structured JQL
	S-JQL Cookbook
	1. Find issues added to a structure
	2. Quick Filter for JIRA Agile's (GreenHopper) Scrum Board to display only low-level issues in a structure
	3. Retrieve all Epics in a certain status and all of their children
	4. Find Test Cases associated with Stories in an active sprint
	5. Find all issues that are blocking critical issues
	6. Find all unassigned issues in a part of a project
	7. Top-level view on unfinished parts of a project
	8. Find violations of the rule "Tasks must be under Epics or Stories"
	9. Find violations of the rule "An issue cannot be resolved if it has unresolved children"
	10. Find issues that can be resolved because all their children are resolved
	11. Get a view of a second (third, ...) level of the hierarchy
	12. Get the contents of a folder

	S-JQL Reference
	Multiple instances of items
	Constraints
	Basic constraint
	JQL constraint
	leaf and root
	Specific issue
	Function constraint (folder, item)
	Syntax
	folder()
	item()

	Empty constraint

	Negation
	Relational constraint
	Relations
	Operators
	Sub-constraints
	self and issues relations: adding sub-constraint matches to the result set
	issue relation

	Combining constraints with Boolean operators
	Railroad diagrams
	structure-query
	constraint
	basic-constraint
	operator

	List of S-JQL keywords

	structure() JQL function
	Function arguments need to be quoted if they contain spaces or non-letters
	What if structure name or structure query itself contains quotes?
	Example 1
	Example 2: escaping with backslash

	Backward compatibility with structure() JQL function prior to Structure 2.4

	Keyboard Shortcuts
	Keyboard Shortcuts (PC)
	Keyboard Shortcuts (Mac)
	Quick Action Lookup

	Getting Help

	Structure Administrator's Guide
	Installing Structure
	Migrating Data from Structure 2 to Structure 3
	Creating a Backup of Structure 2.x Data
	Restoring Structure Data from 2.x Backup
	After Data Migration
	Upgrade Testy
	Upgrading "Global Structure"

	Memory Guidelines
	Assessing Available Memory
	Heap Memory Requirements
	PermGen Memory Requirements
	Changing Memory Parameters
	Use 64-Bit Java
	Physical Memory Requirements

	Uninstalling and Reinstalling Structure
	Uninstalling Structure
	Reinstalling Structure

	Upgrading and Downgrading
	Upgrading
	Downgrading
	Simplified Downgrade
	Reliable Downgrade

	Setting Up Structure License
	Setting Up Evaluation License
	Licenses from ALM Works and from Atlassian
	Purchasing a Commercial License
	Purchasing from ALM Works
	Purchasing from Atlassian
	Purchasing from Resellers or Atlassian Experts

	Migrating Licenses
	Structure License Parameters
	When Structure is Available for Free
	License Maintenance and Expiration
	Commercial License
	Evaluation License
	License expiration and maintenance expiration warnings

	Getting Started with Structure
	Selecting Structure-Enabled Projects
	Global Permissions
	Who Has Access to the Structure
	Restricting User Access to Structure
	Changing Permission to Create New Structures
	Changing Permission to Manage Synchronizers
	Changing Permission to Access Automation

	Changing Structure Defaults
	Initial Configuration
	Changing Default Structure
	Changing system-level default structure
	Changing project-level default structure

	Changing Default View Settings
	Changing Default Options for the Issue and Project Pages

	Structure Backup, Restore and Migration
	Using Structure Backup
	Backing Up Structure
	Restoring Structure from Backup
	Downgrading from Structure 5.0 or Later

	Migrating Structures

	Automatic Structure Maintenance
	Automatic Structure Maintenance
	Maintenance Schedule
	Maintenance Tasks
	Running Maintenance Tasks Manually

	Workflow Integration
	Structure Workflow Validator
	Structure Workflow Condition

	Running Structure on Jira Data Center
	Archived Projects and Structure
	Archived Issues in Structure
	Restoring an Archived Project

	Anonymous Usage Statistics
	Viewing Current Statistics
	Turning Anonymous Usage Statistics On and Off

	Structure Files
	$JIRA_HOME/structure
	Cache files

	Turning Off Optional Features
	Advanced Configuration
	Setting Application Properties with the Structure Dark Features and Fine Tuning Interface
	Guidelines for Adding/Removing Property and Values

	Setting System Properties
	Setting System Properties on Startup
	Setting System Properties with Script Runner

	Structure size limit
	Structure Automation limits
	Automation Defaults
	Manual adjustments
	Hidden Issue Links
	Synchronizers
	Synchronizer Cycle Guard

	System Requirements
	Atlassian Platform
	Databases
	Browsers
	Server Requirements
	Non-Conforming systems

	Best Practices
	Backup Strategy
	General Approach
	Option 1. Automatic XML Backup + Export Directory Backup
	Option 2. Manual / API-Triggered XML Backup

	Restoring from XML Backup
	Incremental and Differential Backups

	Gradual Deployment
	Turning Optional Functionality Off

	Dark Features
	Alternative initial values for project/type when creating an issue in dialog
	Synchronization
	Importing Structure
	Exporting Structure
	Installing Synchronizer
	Modifying Synchronizer
	Removing Synchronizer
	Turning Synchronizer On and Off
	Running Resync
	Resync Directions
	Running Resync

	Synchronization and Permissions
	Protection from Synchronizer Cycles
	Bundled Synchronizers
	Sub-Tasks Synchronizer
	Sub-Tasks Synchronizer Parameters
	Sub-Tasks Synchronizer Rules

	Filter Synchronizer
	Filter Synchronizer Parameters
	Filter Synchronizer Rules
	Automatic Branches Removal

	Links Synchronizer
	Links Synchronizer Parameters
	Link Type
	Link Direction
	Parent Issue Filter and Sub-Issue Filter
	Scope
	Removal
	Primacy

	Links Synchronizer Preserves Links Between Added List of Issues
	Links Synchronizer Rules

	JIRA Agile (GreenHopper) Synchronizer
	JIRA Agile Synchronizer Parameters
	On Fix Versions
	JIRA Agile Synchronizer Rules
	How to Add Issues to Structure Sync'ed with JIRA Agile
	Syncing Partial Orders

	Status Rollup Synchronizer
	Status Rollup Synchronizer Parameters
	How Status Rollup Synchronizer Works
	How Status is Changed
	Why Can a Workflow Transition Fail
	Changing Resolution
	Manually Changing Status of an Issue That Has Sub-Issues

	Undo Synchronizer Actions
	Synchronizer Audit Log
	Undo Synchronizer Actions

	Structure Developer's Guide
	Structure Developer Documentation
	Structure Concepts, Developer's Perspective
	1. Basic Concepts Overview
	2. A Note on Extensibility

	Accessing Structure from JIRA Plugin
	Setting Up the Integration
	1. Add dependency to your pom.xml
	2. Import StructureComponents
	3. Have Structure API service injected into your component
	Additional Libraries Used in Structure API
	Integers and HPPC
	JetBrains Annotations

	Controlling Compatibility
	Why Declare Compatible Versions
	Importing Specific Range of API Versions

	Making Structure Dependency Optional
	1. Declare Optional Dependency
	2. Isolate Dependencies in the Code

	Structure Services
	Services to Start With
	More Power
	Extreme Power

	Building Forest Specification
	Reading Structure Content
	1. Figure out Structure ID
	2. Create a ForestSpec
	3. Retrieve ForestSource
	4. Retrieve Forest and its version
	5. Iterate through Forest and get StructureRow instances
	6. Analyze the row and process data

	Changing Structure Content
	Forest Coordinates
	Applying Forest Action
	Adding a single row
	Adding a sub-forest
	Removing a sub-tree
	Moving a sub-tree

	Inspecting the Results
	Effects and Changing Dynamic Structures
	Concurrency and Atomicity
	Permissions

	Loading Attribute Values
	About Attributes
	General Approach to Loading Values
	1. Figure out which Attributes do you need
	2. Figure out which Rows do you need to calculate the Attributes for
	3. Call StructureAttributeService
	4. Read out the result

	Creating and Adding Folders
	1. Create the Folder entity
	2. Define folder's identity
	3. Add folder to structure

	Creating Dynamic Structures
	1. Create generator instance
	2. Insert generator into the forest

	Extending Structure Functionality
	Creating a New Column Type
	1. The Plan
	2. The Attributes
	3. AttributeSpec for Status Bar
	4. Status Bar Attribute
	5. Attribute Provider
	6. Client-Side Column
	6.1. API Overview
	6.2. Column Specifications
	6.3. The Column Context
	6.4. Requesting and Using Metadata
	6.5. Column
	6.6. ColumnConfigurator
	6.7. ColumnOption
	6.8. ColumnType
	6.9. Column Groups
	6.10. Web Resources and Contexts

	7. Export Renderers
	7.1. Export Strategies
	7.2. Generic Renderer Provider
	7.3. Advanced Excel Renderer Provider

	Creating a New Synchronizer
	1. Implement StructureSynchronizer
	2. Define structure-synchronizer Module
	3. Test Thoroughly
	Sample Project

	Loading Additional Web Resources For Structure Widget
	Using Web Resource Contexts

	Declaring a New Generic Item Type
	Example
	Programmatic Access to Generic Items
	Generic Item Permissions

	Accessing Structure Data Remotely
	Reference
	Structure Developer Reference
	Structure Java API Reference
	Structure API Versions
	Current Versions
	Version Compatibility
	Getting Versions

	Structure Plugin Module Types
	structure-synchronizer
	Module description sample

	structure-attribute-loader-provider
	Example

	structure-export-renderer-provider
	Export renderer provider example

	structure-item-type
	Example

	new-structure-template
	structure-query-constraint
	Generator Modules
	Example
	Generator Icons

	Structure REST API Reference
	General Notes
	 API Versions
	REST Resource Addresses
	Authentication

	REST Resources
	

	Structure Resource
	Structure Representations
	Structure Fields
	Permission rules
	Set rules
	group
	projectRole
	user
	anyone

	Apply rules

	Error entity

	Structure Resources
	GET /structure
	Request
	Response
	Success
	Example 1: all structures
	Example 2: only "Test plan"
	Example 3: structures that the user can edit with permissions and owners shown
	Example 4: require XML representation

	Error

	POST /structure
	Request
	Response
	Success
	Example 1: minimal structure
	Example 2: structure with some permissions

	Error

	GET /structure/{id}
	Request
	Response
	Success
	Example 1: retrieve structure with ID 100 without permissions and owner
	Example 2: permissions and owner are requested to be included, but only owner is shown, because the user has only View access as indicated by readOnly
	Example 3: XML representation may be requested in the request URL instead of the Content-Type HTTP header

	Error

	POST /structure/{id}/update
	Request
	Response
	Success
	Example 1: change description of the Global Structure
	Example 2: changing permission rules

	Error

	DELETE /structure/{id}
	Request
	Response
	Success
	Example

	Error

	Forest Resource
	Retrieving Forest
	Request
	Example:

	Response

	Changing Forest

	Item Resource
	Creating a New Item
	Example
	Parameters
	Specific parameters for main item types
	Folder
	Issue

	Reply Example

	Updating an Existing Item
	Parameters
	Reply

	Value Resource
	Loading Values
	Example
	Parameters

	Response
	Parameters

	Structure JavaScript API Reference
	JavaScript API Functions
	window.almworks.structure.api.subClass(className, superclass, prototype)
	window.almworks.structure.api.registerColumnType(type, key)
	window.almworks.structure.api.registerColumnGroup(options)

	JavaScript API Classes
	Column Class
	window.almworks.structure.api.Column
	Properties
	context
	spec

	Methods
	init(options)
	getCellValueHtml(renderingParameters)
	getCellViewHtml(renderingParameters)
	collectRequiredAttributes(attributeSet)
	getDefaultName()
	isResizable()
	canShrinkWhenNoSpace()
	isAutoSizeAllowed()
	getMinWidth()
	getDefaultWidth()
	getHeaderCellHtml()
	getMetadataRequests()
	getSortAttribute()
	isSortDescendingByDefault()

	ColumnConfigurator Class
	window.almworks.structure.api.ColumnConfigurator
	Required Methods
	getColumnTypeName()
	getDefaultColumnName()

	Other Methods
	init(options)
	getGroupKey()
	getMetadataRequests()
	getOptions()

	ColumnOption Class
	window.almworks.structure.api.ColumnOption
	Properties
	title

	Required Methods
	createInput(div$)

	Other Methods
	init(options)
	createLabel(div$)
	notify()
	isInputValid()

	ColumnType Class
	window.almworks.structure.api.ColumnType
	Methods
	createSwitchTypePreset(context)
	createAddColumnPresets(context)
	createColumn(context, spec)
	createConfigurator(context, spec)
	getPresetMetadataRequests()
	getColumnMetadataRequests()
	getConfigMetadataRequests()
	getMetadataRequests()

	Web Resource Contexts

	API Usage Samples
	Download
	Example List

	Structure 3 API Changes
	1. State of the API
	2. Conceptual Changes
	2.1. Forests and Rows
	2.2. Items
	2.3. Attributes
	2.4. Concept Comparison

	3. REST API
	3.1. Retrieving Structure Forest
	3.2. Updating a Structure Forest
	3.3. Creating a structure
	3.4. Deleting a structure

	4. Java API
	4.1. Versions
	4.2. Retrieving Structure's Forest
	4.3. Working with Rows
	4.4. Getting Totals and Other Values
	4.5. Changing Structure

	Structure FAQ
	Frequently Asked Questions
	Cannot Create an Issue With +Next Issue (+Sub-Issue) Because of the Required Fields
	Question
	Answer

	Plugin Manager Says Structure Is Unlicensed
	Question
	Answer

	No Check Mark Displayed for a Resolved Issue
	Question
	Answer
	Problems Caused By Custom Workflows
	Problems Caused By Manually Added "Unresolved" Resolution Value

	Structure plugin won't start
	Question
	Answer
	1. Structure database cannot be created or opened, filesystem read-only or full
	2. Some of the required system plugins are disabled
	3. Incomplete download or corrupt plugin JAR file
	4. Incorrect JIRA setup

	After an Issue is Moved to Another Project, It Cannot Be Found in the Structure
	Question
	Answer

	User Cannot Access Structure, Although Permissions Have Been Granted
	Question
	Answer

	Issues Not Added to a Structure when Using Links Synchronizer or Import
	Question
	Answer

	Where to find JIRA Server ID
	Integration with JIRA Agile (Greenhopper)
	Question
	Answer

	Using Subtasks and Structure
	Question
	Answer

	Difference from Sub-tasks
	Question
	Answer

	Changes Made to Links Are Not Written to Activity Stream and Issue History
	Question
	Answer

	Performance Considerations
	How to restore the structure using History
	Can I export a structure to Microsoft Word so that it can be emailed as a document?

	Structure Troubleshooting
	Collecting Support Zip
	HAR Network Report
	Collecting HAR Report with Google Chrome

	Troubleshooting Synchronizers
	Structure Audit Log
	Log Files
	Temporarily change log level for structure synchronizers
	Permanently change log level for structure synchronizers or set up separate log files for synchronizers

	Structured JQL Troubleshooting
	Collecting Performance Snapshots
	1. Download and install Atlas-Yourkit plugin.
	2. Load Profiling Agent
	3. Capturing CPU Performance Snapshot
	4. Capturing Memory Snapshot
	5. Sending the Snapshots to Support Team
	6. After Profiling Session
	Performance Snapshot Without Yourkit Plugin
	1. Download Profiling Agent
	1.1. Additional Download to Profile JIRA Without Restart

	2. Restart JIRA with Profiling
	3. Attach Profiler Agent to JIRA without Restarting
	4. Running Profiling Session
	4.1. General Procedure
	4.2. CPU Performance Analysis

	5. Sending the Snapshots to Support Team
	6. After Profiling Session

	Sending Files to Support Team
	1. Attach to the Support Request in ALM Works Service Desk (Preferred)
	2. Send Files by E-mail
	3. Upload Files Directly to Our Server

	Alternative Structure Gadget for IE8 and IE9
	Enable alternative gadgets

	Troubleshooting Performance and Stability Issues
	1. Thread Dumps
	2. Verbose Logging
	3. Support Zip
	4. Browser Console Log
	5. HAR Report
	6. Screenshots or Video

