Making Structure Dependency Optional

If you are integrating your plugin with Structure, or when you generally write code that uses Structure API but also should work when Structure Plugin is
not present, you need to declare that dependencies are optional and isolate dependencies in the code.

1. Declare Optional Dependency
Since your plugin must first be loaded as an OSGi bundle, it should declare dependencies from the Structure API packages as optional.

Modify <I npor t - Package> declaration in your pom xmi or at | assi an-pl ugi n. xm and add r esol ti on: =opt i onal classifier. (Add Import-
Package to control APl compatibility if you don't have this declaration yet.)

<| nport - Package>
com al mwrks.jira.structure*;version="[3.4,4)";resol ution:=optional,
com al mwor ks. i nt eger s*; ver si on="0"; resol uti on: =opti onal ,
org.jetbrains. annotations; version="0"; resol uti on: =opti onal

</ | nport - Package>

2. Isolate Dependencies in the Code

So once you have declared the optional resolution of the Structure API classes, your bundle will load - but if your code tries to access a class from the
Structure API, you'll get a NoCl assDef FoundEr r or . To avoid that, you need to isolate the dependency on Structure API classes - typically in some

wrapper classes.

@ This is also a point to make design decisions. So your code can use Structure when it's present, and can work independently when Structure is
not there. Are there any abstractions that address both of these situation? What are the concepts that are realized through Structure APl and
through some other means when Structure is not avialable?

Here's a sample wrapper for the Structure API that provides For est Accessor wrapper (whatever it does) when Structure is available and nul |
otherwise.

public class StructureAccessor {
public static boolean isStructurePresent() {
if (!Conponent Accessor. get Pl ugi nAccessor (). i sPl ugi nEnabl ed("com al mworks. jira.structure")) {
return fal se;
}

try {
Cl ass. for Name("com al mworks. jira.structure. api.StructureManager");

} catch (Exception e) {
return false;
}

return true;

}

public static ForestAccessor getForest(long structureld, User user) {
if (lisStructurePresent()) return null;
St ruct ur eManager structureManager;
try {
struct ureManager = Conponent Manager . get OSG Conponent | nst anceCXf Type(St ruct ur eManager . cl ass) ;
} catch (Exception e) {
return null;
}
/'l check user perm ssions
if (!structureManager.isAccessible(structureld, user, Perm ssionLevel.VIEW false)) {
return null;
}
Forest forest = null;
try {
forest = structureManager.get Forest(structureld, user, false);
} catch (StructureException e) {
return null;

}

return new Forest Accessor (forest);

https://wiki.almworks.com/display/structure016/Controlling+Compatibility
https://wiki.almworks.com/display/structure016/Controlling+Compatibility

	Making Structure Dependency Optional

