
1.

S-JQL Reference

structure() JQL Function Reference

To specify a structure condition in JQL, use the following format:

issue in structure(structureNameopt, structureQueryopt)

Function arguments:

structure
Name

Opti
onal

The name of the structure. If you omit the structure name, system-wide will be searched. Remember to enclose Default Structure
the name in double quotes ("") if it contains spaces or non-letters.

structure
Query

Opti
onal

Use this parameter to select only a part of the structure. This parameter specifies a in a language similar to JQL, Structure Query Str
, which is discussed below.uctured JQL

Structured JQL Language Reference

Structure query is a hierarchical condition on the issues added to the structure. Structure query is expressed in the Structured JQL language (S-JQL),
described in this section.

List of Structured JQL topics:

Constraints
Basic constraint
Negation
Relational constraint

Relations
Operators
Sub-constraints

 relation: adding sub-constraint matches to the result setissue
Combining constraints with Boolean operators
Quoting structure query argument in the JQL functionstructure()
Backward compatibility with JQL function prior to Structure 2.4structure()
Railroad diagrams

Constraints

Structure query consists of . Each constraint matches some issues in the structure. In the simplest case, the whole structure query consists of a constraints
single constraint; for now, we will consider only this case.

There are two types of constraints: and constraints.basic relational

^ up to the list of S-JQL topics

Basic constraint

A basic constraint is one of the following:

A JQL query enclosed in square brackets:

You can use structure ID instead of the structure name. You can see structure ID in the URL of the Structure Board if you open Manage
 page and click structure name.Structure

If a user does not have , they will not be able to create new queries with the function and existing queries will access to structure structure()
have function return an empty set. However, the user will still see function offered in the JQL completion drop-structure() structure()
down.

This reference assumes that you are familiar with and capabilities of JIRA.Advanced Searching Advanced Searching Functions

https://wiki.almworks.com/display/structure0211/Default+Structure
https://wiki.almworks.com/display/structure0211/Who+Has+Access+to+the+Structure
https://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://confluence.atlassian.com/display/JIRA/Advanced+Searching+Functions

1.

2.

3.

4.

[status = Open]

This kind of basic contraint matches all issues in the structure that satisfy the JQL query.

Issues having special positions within the structure:

leaf

or

root

The first constraint matches issues at the bottom level of the hierarchy, i.e., issues that do not have children.
The second constraint matches issues at the top level of the hierarchy, i.e., issues that do not have a parent.

A comma-separated list of issues:

TS-129, TS-239

or just a single issue:

TS-129

You can specify issue key, as above, or issue ID:

19320

This kind of basic constraint matches just the referenced issues. If some of the issues are not contained within the structure, they are ignored. If
none of the issues are contained within the structure, the constraint matches no issues.

An empty constraint matching no issues:

empty

This constraint plays the same role as JQL's keyword. It is intended to be used as a in relational constraints, which are EMPTY sub-constraint
discussed further.

^ up to the list of S-JQL topics

Negation

Any constraint, basic or relational, can be negated using keyword . This produces a constraint that matches all issues that the original constraint NOT
doesn't:

not root

matches all issues that are not top-level issues in the structure.

You can always enclose a constraint in parentheses to ease understanding. So, all issues in the structure except and are matched by this TS-129 TS-239
structure query:

not (TS-129, TS-239)

^ up to the list of S-JQL topics

Relational constraint

1.

A basic constraint matches issues that satisfy a condition. A relational constraint matches issues issues that satisfy a condition. related to Related
corresponds to a relationship between issues in the structure, like parent-child.
For example,

TS-129

is a basic constraint that matches a single issue ;TS-129

child in TS-129

is a relational constraint matching an issue such that its child is .TS-129

Relational constraint has the form . Here, is a constraint on the relatives of issues to be relation operator subConstraint subConstraint
matched; other parts of relational constraint are discussed in the following sections.

^ up to the list of S-JQL topics

Relations

S-JQL has the following relations:

child: issue is a child (sub-issue) of another issue in the structure.
parent: issue is a parent of another issue in the structure.
descendant: issue is a descendant (sub- or sub-sub-...-issue) of another issue in the structure.
ancestor: issue is an ancestor (parent, parent-of-parent, or parent-of-parent-...-of-parent) of another issue in the structure.
sibling: issue is a sibling of another issue in the structure. Two issues are considered siblings if they are under the same parent issue.
prevSibling: issue is a previous (preceding) sibling of another issue in the structure.
Issue is a preceding sibling of issue if it is a sibling of and is higher than (comes before .)A B B A B A B
nextSibling: issue is a next (following) sibling of another issue in the structure.
Issue is a following sibling of issue if it is a sibling of and is lower than (comes after .)A B B A B A B
issue is a relation of an issue to itself. Its role is explained later, in the , because first one has to grok how operators and relation sectionissue
sub-constraints work.
There are also combinations of with all other relations, listed for completeness below.issue
childOrIssue
parentOrIssue
descendantOrIssue
ancestorOrIssue
siblingOrIssue
prevSiblingOrIssue
nextSiblingOrIssue

^ up to the list of S-JQL topics

Operators

These are the operators used in S-JQL:

IN, NOT IN, IS, IS NOT, =, !=, OF

operator specifies how is applied to :subConstraint relation

IN, , and put constraint on the relatives of a matched issue.IS =

For example, consider

child in (TS-129, TS-239)

Note that the form of relational constraint is similar to the form of JQL clause, .field operator value
Indeed, let's describe in English a JQL query : it matches issues having that is values .type in (Epic, Story) type in Epic, Story
Now, let's describe in English a structure query : it matches issues having that is constraint "parent in [type = Epic] parent in type =

".Epic
As you can see, the form that can be used to describe the structure query is similar to that of JQL.

Those familiar with XPath may have recognized these relations; indeed, they work like the corresponding XPath axes.

1.

2.

3.

Here, is , so an issue's relative in question is its child in the structure. Thus, an issue matches if relation child at least one of its children is TS
. or -129 TS-239

NOT IN, , and are negated versions of , , and . That is, an issue is matched if it any issue matching IS NOT != IN IS = is not related to subConstr

.aint

For example, consider

child not in (TS-129, TS-239)

An issue matches if ; thus, this constraint matches all issues that either have no children or do not have any of no child is nor TS-129 TS-239
these two issues among their children.

OF matches the relatives of issues that satisfy .subConstraint

For example, consider

child of (TS-129, TS-239)

An issue matches if .it is a child of either or TS-129 TS-239

To have a model of how operators (,) and work and to understand the difference between them, consider the table below. Suppose that we IN IS = OF
take all issues in the structure and put each of them, one by one, in column . For each issue, we take all of its relatives and put each of them, one by issue
one, in column . Thus we get pairs of issues. We examine each pair, and if one of the components satisfies , we add the other relative subConstraint
component to the result set. Which component is added, depends on the operator:

operator issue relative

in add to result set satisfies subConstraint

of satisfies subConstraint add to result set

There is no difference between these three operators, unlike JQL. Different forms exist to allow for more natural-looking queries with
some sub-constraints.

As an important consequence, issue that has no relatives is matched.

Using one of these operators in a relational constraint is the same as using (or , or) and negating the whole relational IN IS =
constraint. Thus, the constraint above is equivalent to

not (child in (TS-129, TS-239))

But, using one of these operators is the same as using operator and negating !very not IN subConstraint

First, is not the same as . Think of it as of relationships in a human family: having a having relatives other than X not having relatives X
relative other than brother (e.g., a sister) is the same as not having a brother, because one may have both a sister and a brother.not
Second, an issue with no relatives is not matched by the transformed query.

For example,

child in (not (TS-129, TS-239))

matches all issues that have at least one child that is neither nor . That is, the only issues that are not matched are TS-129 TS-239
leaves and those that have only or as children.TS-129 TS-239

^ up to the list of S-JQL topics

Sub-constraints

Any constraint can be used as a sub-constraint, whether basic, relational, or a .combination of those
For example,

child of root

selects issues on the second level of the hierarchy. To select issues on the third level of the hierarchy, you can once again use relation and the child
previous query as :subConstraint

child of (child of root)

There is a special basic constraint, , which matches no issues. It is used as a sub-constraint to match issues that have no relatives as per .empty relation

For example, let's take relation and see what the corresponding relational constraints with different operators mean.child

child is empty matches all issues that have no children (equivalent of)leaf

child is not empty matches all issues that have at least one child (equivalent of)not leaf

child of empty matches all issues that are not children of other issues (equivalent of)root

Of course, using or is more convenient, but you can apply to any other relation. For instance, matches an issue if leaf root empty sibling is empty
it is the only child of its parent.

^ up to the list of S-JQL topics

issue relation: adding sub-constraint matches to the result set

A relational constraint with relation behaves exactly as its sub-constraint, possibly negated if operator (,) is used.issue NOT IN IS NOT !=
Thus,

issue in [status = Open]

is equivalent to

[status = Open]

Similarly,

issue not in [status = Open]

is equivalent to

One may note that for any relation, there is a corresponding "inverse": for example, is the inverse of , and vice versa. A relational child parent
constraint that uses operator (,) is equivalent to a relational constraint that uses an inverse relation with operator . That is,IN IS = OF

child in (TS-129, TS-239)

is the same as

parent of (TS-129, TS-239)

Again, different forms of expressing the same constraint exist to allow for more natural-looking queries.

not [status = Open]

When combined with another relation, allows to add the issues matched by to the resulting set. For example,issue subConstraint

descendant of TS-129

returns all of the children of at all levels, but does not return itself. To add , use :TS-129 TS-129 TS-129 descendantOrIssue

descendantOrIssue of TS-129

^ up to the list of S-JQL topics

Combining constraints with Boolean operators

We can now define a structure query as a , that is, a structure query consists of constraints connected with and . Boolean combination of constraints AND OR
When two constraints are connected with , together they will match issues that are matched by both constraints. This allows you to limit the results. AND
Likewise, when two constraints are connected by , together they will match issues that are matched by at least one of the constraints. This allows you to OR
expand the results.

Note that has higher precedence than . That means that the Structure queryAND OR

leaf or (parent of leaf) and [status = Open]

matches all issues that are either leaves, or are parents of leaves in status . In order to also constrain leaf issues to be in the status , you need Open Open
to use parentheses:

(leaf or (parent of leaf)) and [status = Open]

^ up to the list of S-JQL topics

Quoting structure query argument in the JQL functionstructure()

When specifying structure query as a parameter of the JQL function, you should enclose it in "double quotes" or 'single quotes' if it contains structure()
spaces or non-letters. Please note that if you are using quotes of one kind, you cannot use quotes of the same kind in the inner JQL constraint.

This query will not parse:

You should use single quotes in the inner JQL constraint instead:

issue in structure("My personal structure", "child of [Status = 'Awaiting Deployment']")

If some values in the inner JQL constraint contain quotes, you should escape them with a backslash:

issue in structure("My personal structure", "child of [fixVersion = 'funky\"Version']")

^ up to the list of S-JQL topics

Backward compatibility with JQL function prior to Structure 2.4structure()

issue in structure("My personal structure", "child of [Status = "Awaiting Deployment"]")

Prior to Structure 2.4, JQL function did not take structure query as an argument; you could specify only one issue key or ID, and you would structure()
get the referenced issue along with all of its children at all levels. As you might have noticed, this old-style usage can be interpreted as a structure query,
but according to the rules of S-JQL, it would return just the referenced issue without its children. To maintain backward compatibility, any structure query in
Structure 2.4 that consists of a single basic constraint that references issues by their keys or IDs matches not only these issues, but all of their children as
well.

That means that if you were using JQL of the form

issue in structure("My personal structure", TS-129)

then in Structure 2.4 this query will still return and all of its children at all levels (provided that is added to the structure.)TS-129 TS-129

If this backward compatibility bites you (if, say, you need to check whether an issue is added to a structure), prepend the structure query with :issue in

issue in structure("My personal structure", "issue in TS-129")

This JQL will match only if it is in the structure.TS-129

^ up to the list of S-JQL topics

Railroad diagrams

As a final piece of reference, here's the S-JQL syntax in the form of .railroad diagrams

structure-query

constraint

basic-constraint

S-JQL keywords are case-insensitive, and all underscores in keywords are optional.

S-JQL admits using and in place of , as well as and in place of .&& & AND || | OR

http://en.wikipedia.org/wiki/Railroad_diagram

jql-query is any valid JQL query subject to the .quoting restrictions
issue-key is any valid JIRA issue key.
issue-id is any valid JIRA issue ID.

relation

operator

S-JQL admits using and in place of .|| | OR

^ up to the list of S-JQL topics

	S-JQL Reference

