
Changing Structure Content
Updating a structure can be done through the same interface that was used for . In this article, we're assuming ForestSource Reading Structure Content
that you've got local variable that you've created according to instructions in the previous article.forestSource

Forest Coordinates

To make a change to a forest, you need to be able to point to a specific part of a forest. This is done by using row IDs, which uniquely identify forest rows.

To point to a specific row in the forest, which you'd like to move or delete, you just use this row's ID.
To point to a specific position in the forest, where you'd like to insert or move rows to, you need to use row IDs of its neighbors, or :coordinates

"Under" coordinate is the row ID of the future parent of the inserted row, or zero if the row is placed at the top level.
"After" coordinate is the row ID of the future preceding sibling of the inserted row under the same parent, or zero if the row is placed as
the first child.
"Before" coordinate is the row ID of the future succeeding sibling of the inserted row under the same parent, or zero if the row is placed
as the last child.

Applying Forest Action

To make a change, you need to call method, passing a specific that you want to apply. forestSource.apply() ForestAction

Adding a single row

To add a single row to the forest, use constructed with the of the item associated with that row.ForestAction.Add ItemIdentity

forestSource.apply(new ForestAction.Add(CoreIdentities.issue(10000), under, after, before))

Adding a sub-forest

To add multiple rows in one action, use that receives an .ForestAction.Add ItemForest

ItemForest is a special container that is used to build a temporary forest with temporary rows, having negative row IDs. The class provides information
both about the hierarchy of inserted temporary rows (via) and a mapping from the temporary row ID to the inserted .Forest ItemIdentity

To create an , you need to use either or .ItemForest ImmutableItemForest ItemForestBuilderImpl

ItemForest itemForest = new ItemForestBuilderImpl()
 .nextRow(CoreIdentities.textFolder("My Issues"))
 .nextLevel()
 .nextRow(CoreIdentities.issue(10000))
 .nextRow(CoreIdentities.issue(10001))
 .build();
forestSource.apply(new ForestAction.Add(itemForest, under, after, before));

Removing a sub-tree

To remove a row, use and pass the row ID being removed. ForestAction.Remove

forestSource.apply(new ForestAction.Remove(LongArray.create(100, 101, 102)));

Moving a sub-tree

 To move a row with its sub-rows, use .ForestAction.Move

You can specify one or more row IDs, which can be from the different parts of the forest. Those rows will be placed one after another at the specified
position.

forestSource.apply(new ForestAction.Move(LongArray.create(100, 101, 102), under, after, before));

All sub-rows of the removed rows will be removed as well. If you need to keep them, apply on them first.ForestMove

https://wiki.almworks.com/display/structure/Reading+Structure+Content

Inspecting the Results

A call to will finish successfully if the operation has been completed and throw a otherwise.ForestSource.apply() StructureException

You can inspect the returned to get information about the of the action (more on effects below).ActionResult effects

You can also use – it is a mapping from the temporary row IDs, used when adding rows, to the newly ActionResult.getRowIdReplacements()
assigned real row IDs, which are now part of the structure.

Effects and Changing Dynamic Structures

You may have noticed that you can apply actions to any forest source, not necessarily a simple structure. It can be a transformed structure, or even a
transformed query. A structure can also contain dynamic parts, created or adjusted by generators, and you can try to apply the actions that would affect
these parts.

A successful action would produce one or more (represented in the as). In simple case of changing a non-Effects ActionResult AppliedEffect
dynamic structure, it would be, unsurprisingly, a structure change. In case the action involves dynamic content, the effects may differ – but the general
concept is that, after the effect takes place, the updated (re-generated) structure will reflect the desired action's result.

Here are some examples of the possible effects.

Action Effect

Adding rows to a static structure Structure is modified

Moving item X from group A to group B, where groups are provided by a grouper by
field F

 The value of F for X is changed from A to B

Removing issue X from under issue Y, when previously X was added automatically by a
Links Extender using link type L

 Link L: YX is deleted

Moving issue upwards when structure is sorted by Agile Rank Issue's Rank is changed

Adding an issue to an arbitrary JQL query result StructureException is thrown – no way to force an issue
to be part of a JQL result

Adding issue X under issue Y within the scope of a Links Extender and when issue Y is
"static" (not added by the extender)

 StructureInteractionException is thrown – there are two
ways to interpret this action

As generators are extensible and can be added by other plugins, the range of possible effects is not limited.

Note that in the last two examples the action is not successful. In the last example, you need to use with parameters, which ForestSource.apply()
would define whether a generator should process the action or if the issue should be inserted into the static structure.

Concurrency and Atomicity

Each can be viewed as a separate transaction. It is atomic, meaning that it is either fully successful or fully failed. ForestAction

There's no way to make a transaction larger. In other words, if you apply two actions to a forest source, it is possible that a concurrent action, done from
another thread, is executed in between your two actions.

Permissions

All actions are executed under the "current" user and with all necessary permission checks. Updating a structure requires permission on the EDIT
structure. Other effects, like changing issue fields, would require permission on the subject issues. EDIT_ISSUE

When permissions are insufficient, the action will not succeed and a will be thrown.StructureException

The current user is generally managed by JIRA and is the same as the user who makes the request. However, you can use class to StructureAuth
"sudo" to another user or to bypass permission checks altogether.

When it comes to effects applied by generators, it is a generator's responsibility to check permissions before applying an action. All generators
bundled with Structure have strict permission checks.

	Changing Structure Content

