
Loading Attribute Values
You may need to load the same values that Structure shows on the Structure Board, especially if it's a total value, progress value or other Structure-
specific value. This is done via .StructureAttributeService

About Attributes

One of the core concepts in Structure is the Attribute abstraction. An attribute is something that can provide a value of specific type and meaning for any
row in a forest.

For example, a "Summary" attribute would produce the value of Summary field for issues, the name of a folder for folders and a person's full name for
users. Some attributes may be applicable only to certain item types and would provide empty value for all other items.

Besides item-based attributes, which provide values that depend only on the item in the forest, there are forest-based attributes, which are calculated
based on the whole forest and items in it.

General Approach to Loading Values

Let's assume that, after , you have instance and an instance of for a forest. We can Reading Structure Content StructureComponents ForestSpec
read a number of attributes for a number of rows by going to StructureAttributeService.

1. Figure out which Attributes do you need

The service accepts multiple attribute specs in one request. If you need several attributes calculated – it's better to do that in one request.

List<AttributeSpec<?>> attributeSet = new ArrayList<>();
attributeSet.add(CoreAttributeSpecs.KEY);
attributeSet.add(CoreAttributeSpecs.SUMMARY);
attributeSet.add(CoreAttributeSpecs.TOTAL_REMAINING_ESTIMATE);

CoreAttributeSpecs class and its parent class, , contain some of the most popular attributes.SharedAttributeSpecs

It's likely that you'll need to build you own attribute specification. For example, to address a numeric JIRA custom field and calculate total of that field based
on sub-issues, you'll need the following.

AttributeSpec<Number> customField =
 AttributeSpecBuilder.create("customfield", ValueFormat.NUMBER).params().set("fieldId", 10000).build();

AttributeSpec<Number> customFieldTotal =
 AttributeSpecBuilder.create(CoreAttributeSpecs.Id.SUM, ValueFormat.NUMBER).params().setAttribute(customField).
build();

attributeSet.add(customFieldTotal);

2. Figure out which Rows do you need to calculate the Attributes for

For example, this could be all rows in that structure.

LongList rows = myStructureComponents.getForestService().getForestSource(forestSpec).getLatest().getForest().
getRows();

3. Call StructureAttributeService

Forests and Attributes are two main concepts that make up the Structure grid. Looking at the Structure Board, you see Forest in the vertical
direction – rows and hierarchy are taken from Forest, and you see Attributes in the horizontal direction – all columns load Attributes from the
server and display those values.

If you need to create a manually, use implementation.LongList LongArray

https://wiki.almworks.com/display/structure/Reading+Structure+Content

This service calculates a matrix of values for each row and attribute you specify.

RowValues values = myStructureComponents.getAttributeService().getAttributeValues(forestSpec, rows,
attributeSet);

4. Read out the result

The returned object contains values for all pairs of requested row and requested attribute.

for (LongIterator ii : rows) {
 String key = values.get(ii.value(), CoreAttributeSpecs.KEY);
 Number total = values.get(ii.value(), customFieldTotal);
 ...
}

There is a variation of method that accepts a , rather than . It is recommended to use the getAttributeValues() Forest ForestSpec
variant that accepts whenever possible, because that variant uses caching.ForestSpec

	Loading Attribute Values

