
Expr Language
Expr Language (pronounced like "expert" without the "t") is a simple language that lets you specify an "expression", or a formula, which is calculated for
an issue or another item.

Expr can be used in:

Formula Columns - the expression is calculated for each visible row in the displayed structure or query result.
Automation - formulas can be used to filter a structure (Filter by Attribute), sort the structure (Sort by Attribute), or group issues (Group by Text
Attribute) based on the results of a formula.
Effectors - the results of a formula can be written to a Jira field using the .Attribute to Issue Field Effector

Expr fundamentals are easy to learn, and yet the language is powerful enough to address complex needs. The following guide will cover the basic
requirements of the Expr language.

Language Components
Value Types
Basic Constructs

Variables
Function Calls
Chained Function Calls
Numbers and Text Strings
Operations
Property Access
Conditional Expression

Advanced Constructs
Local Variables
Aggregate Functions
User Functions
Embedded Queries (JQL and S-JQL)
Comments

Additional Resources

For a more in-depth study, see our and .Expr Language Reference Formula Reference Documentation

Language Components

An expression may contain one or more of the following:

Variables - these are mapped to , such as issue fields, custom progress, or a .attributes value from another column
Arithmetic and logical operations - add, subtract, multiply, divide, or compare items.
Numbers
Text strings
Function calls - apply specific calculations to the provided arguments and return a result to be used in the expression.
Property access - a particular item property-, such as an author of a work log entry.get the value of
Conditional ("IF") expressions - calculate different results based on a specified set of criteria.

There are also more advanced constructs:

Aggregate Functions - calculate an aggregate (such as the sum or average) of an expression's values calculated for multiple items in the structure.
Local Variables - introduce a value and reuse it multiple times in the formula.
User Functions - define a function, or a functional expression, to be reused in the formula or applied to an array of values.
JQL and S-JQL queries inside a formula - condition the results based on whether an item matches a query.
Comments - document larger formulas.

Value Types

With Expr you can build formulas that operate on:

Basic values – numbers and text, which are either a part of the formula, or read from a simple attribute or Jira field, such as an issue's Summary
or Story Points.
Items – values representing a particular object, such as User, Issue, Worklog, Status and others, and typically read from the corresponding Jira
field.
Array values – a sequence of values, allowing you to represent multi-value fields such as Fix Versions, or multiple Entities, in the case of the work

 attribute.logs
User function values – representing a piece of formula that is typically applied to each element in an array, for example, for filtering.
Key-value maps – in rare occasions, these values are produced by the supplied functions like GROUP.
Undefined – a special value that means "nothing" or "no value".
Error values – produced if there was a problem calculating a formula.

You can view examples of Expr formulas in or by adding to your structure. To see the formula, simply open Sample Formulas bundled formulas
the panel.column options

https://wiki.almworks.com/display/structure/Structure+Columns
https://wiki.almworks.com/display/structure/Automation
https://wiki.almworks.com/display/structure/Effectors
https://wiki.almworks.com/display/structure/Attribute+to+Issue+Field+Effector
https://wiki.almworks.com/display/structure/Expr+Language+Reference
https://wiki.almworks.com/display/structure/Formula+Reference+Documentation
https://wiki.almworks.com/display/structure/Mapping+Variables
https://wiki.almworks.com/display/structure/Columns+as+Variables
https://wiki.almworks.com/display/structure/Sample+Formulas
https://wiki.almworks.com/display/structure/Bundled+Formulas
https://wiki.almworks.com/display/structure/Customizing+Columns

Basic Constructs

Variables

Variables are user-defined names, which represent attributes, such as:

Jira issue fields
Calculated attributes like Progress
Structure-specific attributes like Item type
Attributes provided by other Jira apps
Another formula
Values from another Structure column

Naming Variables

Variables can contain letters (English only), numbers or underscore ("_") characters. Variables cannot contain spaces, and the first character must be a
letter or an underscore.

Examples:

priority
sprintName
remaining_estimate
abc11

As you write your formula, Structure attempts to map your variables to well-known attributes. For example, the "remaining_estimate" variable above will
automatically be mapped to the Remaining Estimate field. See for more information.Mapping Variables

Function Calls

A function calculates a value based on its arguments and, sometimes, some external aspect. A function call is written as the function name, followed by
parentheses, which may or may not contain arguments.

Examples:

SUM(-original_estimate, remaining_estimate, time_spent)
CASE(priority, 'High*', 5, 1)
TODAY()

Function names are case-insensitive. You can write TODAY() or Today().

There are 100+ standard functions available with Structure – see for a complete list.Expr Function Reference

Chained Function Calls

The chained notation allows you to easily apply a sequence of functions to a value, simply by listing each function one after the other, separated by a (.)
dot.

Standard notation: F3(F2(F1(x)))
Chain notation: x.F1().F2().F3()

When you use the chain notation, the value that comes before the dot becomes the first argument for the function. If the function takes multiple arguments,
the rest of the arguments must be written in parentheses.

For example:

created.FORMAT_DATETIME("yyyy").CONCAT(" year issue")

Normally, you don't need to worry about the value types when writing a formula. The language engine will try to make sense of the formula and
convert the values as needed. For more complex formulas, or if something doesn't work as expected, see for the Expr Function Reference
expected types for each function.

Variable names are case-insensitive. , and will all refer to the variable.Priority priority pRiOrItY same

Function arguments may be separated by comma (,) or semicolon (;). But in every function call within a formula, you need to use either all
commas or all semicolons.

https://wiki.almworks.com/display/structure/Mapping+Variables
https://wiki.almworks.com/display/structure/Expr+Function+Reference
https://wiki.almworks.com/display/structure/Expr+Function+Reference

In this example, FORMAT_DATETIME takes the date value in "created" and formats it based on the argument in parenthesis ("yyyy"). CONCAT takes the
result from FORMAT_DATETIME and joins it with " year issue".

Numbers and Text Strings

Numbers

Formulas support whole numbers, decimals, or fractions. Commas, spaces, locale-specific, percentage, currency or scientific formats are not supported.

Recognized as a number Not recognized as a number

0 0,0

1000 1,000

1234567890123456 1 100 025

11.25 1.234e+04

.111 ($100)

Text Strings

Text strings are a sequence of characters enclosed either in single (') or double quotes ("). Examples:

'a text in single quotes may contain " (a double quote)'
"a text in double quotes may contain ' (a single quote)"
""

Everything within a text string is retained exactly when the expression is evaluated or displayed, except for the following:

A sequence of two backslashes () is converted to a single backslash ().\\ \
A sequence of a backslash and a single quote () is converted to a single quote character () for text values enclosed in single quotes.\' '
A sequence of a backslash and a double quote () is converted to a double quote character () for the text values enclosed in double quotes.\" "

Text Snippets

Text Snippets allow you to generate strings using variables and expressions. This is particularly helpful in formulas that utilize wiki markup.

When using text snippets:

The snippet should be enclosed with """ (three double quotes, at the beginning and at the end)
The expression portion of the snippet is introduced using the '$' symbol and should be enclosed in braces { }

""" $var1 + $var2 = ${var1 + var2} """

""" this $glass is half-${IF optimist: 'full' ELSE: 'empty'} """

Operations

Expr provides basic arithmetic operations, comparisons, text operations and logical operations.

Operations Comments

+ - * / Basic operators. When used, the value is converted to a number. Follows the general precedence rules for arithmetic, so (2 + 3 * 4 =
14).

= != Equality and non-equality: if either part of the comparison is a number, the other part is also converted into a number. If both values are
texts, then text comparison is used.

Text comparison ignores leading and trailing whitespace and is case-insensitive (according to Jira's system locale).

You can write a number that is written with a locale-specific decimal and thousands separator as a text value, and it will be automatically
converted to a number if needed. For example:

"1 122,25" * 2 2244.5

1.
2.
3.
4.

< <= > >= Numerical comparisons. When used, both values are converted to numbers.

AND, , OR NOT Logical operations.

CONCAT An operation that joins together two text strings. Works similar to the function of the same name: is the same as a CONCAT b CONCAT
.(a, b)

() Parentheses can be used to group the results of operations prior to passing them to other operations.

Order of Operations

When several types of operations are used, they are done in the following order:

Arithmetic operations
Text operations (CONCAT)
Comparison operations
Logical operations.

For detailed specification, see .Expr Language Reference

Property Access

Formulas can get the value of an item's property using the following notation: object.property

fixVersion.releaseDate //returns the release date for the fixVersion

You can also string multiple property calls together:

project.lead.emailAddress //returns the email address of the lead for the project

For a complete list of supported properties, see .Item Property Reference

Conditional Expression

Simple "IF" expressions can be declared using the , but for more elaborate IF cases, with multiple conditions and/or requiring an ELSE option, IF() function
a conditional expression can be used.

WITH total = x + y:
 IF total > 0:
 x / total
 ELSE : error

Note: the ":" after "ELSE" is optional – in the example above, we've included it for readability.

Advanced Constructs

Local Variables

Local variables are helpful when an expression needs to be used in the same formula several times. For example:

IF time_spent + remaining_estimate > 0 :
 time_spent / (time_spent + remaining_estimate)

You can see that in this formula we are using " twice – once when we check that it's not zero (so we don't time_spent + remaining_estimate"
divide by zero) and again when we divide by it.

Instead of repeating the expression every time, we can rewrite this formula using the construct: WITH

WITH total_time = time_spent + remaining_estimate :
 IF total_time > 0 :
 time_spent / total_time

You can define multiple local variables in succession. You can also use previously defined local variables when defining additional local variables. For
example:

https://wiki.almworks.com/display/structure/Expr+Language+Reference
https://wiki.almworks.com/display/structure/Item+Property+Reference
https://wiki.almworks.com/display/structure/Expr+Function+Reference

WITH total_time = time_spent + remaining_estimate :
WITH progress = (IF total_time > 0 : time_spent / total_time) :
 IF(progress > 0.5, "Great Progress!", progress > 0.2, "Good Progress", "Needs Progress!")

Aggregate Functions

An aggregate function calculates some aggregate value (like sum or minimum) based on the values in a number of rows, typically for all sub-issues. Aggreg
ate functions are written very similar to standard functions, except they use curly braces: SUM{x}.

Examples:

SUM { remaining_estimate + time_spent } – calculates the total effort (estimated and actual) for the issue and all its sub-issues.
MAX { resolved_date - created_date } – calculates the maximum time it took to resolve an issue, among the issue and its sub-issues.

They can also contain , which influence how the aggregation works:modifiers

SUM#all { business_value } – this will force the function to include values from all duplicate items in the total. (By default, duplicates are
ignored.)

See for a complete list of available aggregate functions and modifiers.Aggregate Function Reference

User Functions

A User Function allows you to define a locally-used function within a formula. User functions can be defined in a similar manner as local variables:

WITH square(x) = x * x :
 square(impactField) / square(storyPoints)

In this example, the user function is given a name ("square") and then used to perform the same calculation on multiple fields. To learn more, see the langu
 age reference.

User Functions for Arrays - using the "$" character

When you need to perform an operation on each element in an array, you can use a user function such as the one above, or simplify it using “$” to indicate
each element in the array.

worklogs.FILTER($.author = ME())

In this example, the "$" tells Structure to apply "author = ME()" to each element in worklogs - if the author is the current user, it returns true and that
worklog will be included in the FILTER results.

This method becomes very powerful when you combine multiple user functions together. To learn more, see the .language reference

Embedded Queries (JQL and S-JQL)

You can embed JQL and queries inside an Expr formula, using a construct similar to . The result will be a boolean Structured JQL Aggregate Functions
value:

1 (true) if the current row matches the query
0 (false) otherwise

For example:

Note the position of the colon (") – it must be present where each local variable definition ends.:"

Any local variables used inside an aggregate function must also be declared inside the function - within the { } .

https://wiki.almworks.com/display/structure/Aggregate+Function+Reference
https://wiki.almworks.com/display/structure/Expr+Language+Reference#ExprLanguageReference-UserFunctions
https://wiki.almworks.com/display/structure/Expr+Language+Reference#ExprLanguageReference-UserFunctions
https://wiki.almworks.com/display/structure/Expr+Language+Reference#ExprLanguageReference-ImplicitFunctionalExpression($)
https://wiki.almworks.com/display/structure/Structured+JQL

// Collect total story points from all sub-issues assigned to members of Team2 group, unless the stories are
under folder "Special"
SUM {
 IF JQL { assignee in membersOf("Team2") } :
 IF NOT SJQL { descendant of folder("Special") } :
 storyPoints
}

Comments

Comments are helpful when you have a large formula or when a reader might need explanations of what is being calculated. It's a good idea to add
comments wherever the formula is not trivial.

To add a single line of comment, begin the comment with //
To add multiple lines of comment, start the comment with and end the comment with /* */

Example:

// This is a single-line comment.

/* This is a multi-line comment.
 It can be useful for longer explanations. */

Additional Resources

Sample Formulas
Wiki Markup in Formula Columns
Formula Reference Documentation

Since JQL is a Jira-based query, it will work only on issues; the result will be on other types of items. S-JQL can be used for more complex 0
queries applicable to the whole structure.

https://wiki.almworks.com/display/structure/Sample+Formulas
https://wiki.almworks.com/display/structure/Wiki+Markup+in+Formula+Columns
https://wiki.almworks.com/display/structure/Formula+Reference+Documentation

	Expr Language

