
S-JQL Reference
Structure query is a hierarchical condition on the items added to the structure. Structure query is expressed in the Structured JQL language (S-JQL),
described in this article.

List of Structured JQL topics:

Multiple instances of items

If there are multiple instances of an item in the structure, some of these instances might match the query, and some might not.

Consider the following structure:

TS-239
 TS-42
TS-123
 TS-239

Here, issue TS-239 is present two times — one at the root position, and another under another issue. Query will match the first instance but not the root
second one.

This difference is visible when you are filtering in the Structure Widget (see). However, matches an issue if of Filtering structure() JQL function at least one
its instances in the structure matches the S-JQL query. In this example, will return issue in structure(root) TS-239, TS-123.

Constraints

Structure query consists of . A constraint matches items in the structure. In the simplest case, the whole structure query consists of a single constraints
constraint; for now, we will consider only this case.

There are two types of constraints: basic and relational constraints.

^ up to the list of S-JQL topics

Basic constraint

A basic constraint matches items that satisfy a condition — regardless of their relative positions to other items.

JQL constraint

JQL constraint matches all issues in the structure that satisfy a JQL query. To specify it, specify the JQL query enclosed in square brackets:

[status = Open]

leaf and root

This basic constraint matches items that are located at special positions within the structure.

leaf

root

The first constraint matches items at the bottom level of the hierarchy, i.e., items that do not have children (sub-items).
The second constraint matches items at the top level of the hierarchy, i.e., items that do not have a parent.

Specific issue

Parts of this article assume that you are familiar with capability of JIRA.Advanced Searching

https://wiki.almworks.com/display/structure040/Filtering
https://wiki.almworks.com/display/structure040/structure%28%29+JQL+function
https://confluence.atlassian.com/display/JIRA/Advanced+Searching

This kind of basic constraint matches just the referenced issues. If some of the issues are not contained within the structure, they are ignored. If none of
the issues are contained within the structure, the constraint matches no issues.

You can specify a comma-separated list of issue keys:

TS-129, TS-239

One issue key:

TS-129

Issue ID (or a list of them):

19320

Function constraint (folder, item)

Functions in S-JQL play the same role as in JQL: it is an extension point, so any vendor can develop their own functions to match items in a custom way.

Structure comes bundled with a few functions: (matching all folders or folders by name) and (matching all items of the specified type or items by folder item
name).

Syntax

A function constraint has a and zero or more , depending on the function you are using:name arguments

folder(Urgent)

In the example above, function name is and its argument is folder Urgent.

You can insert any amount of spaces around the name and arguments:

folder (Urgent)

Multiple function arguments should be separated by commas:

item(Status, In Progress)

If an argument contains commas or parentheses, you need to enclose it in "double quotes" or 'single quotes':

item(Status, "Done, Sealed, and Delivered")
folder("NU (non-urgent) issues")

The former example matches Status items in structure that are named If this name wasn't enclosed in quotes, the query Done, Sealed, and Delivered.
would mean that function is given four arguments: , , and .item Status Done Sealed and Delivered
The latter example matches folders named If quotes were not used, the query would be incorrect because the first closing NU (non-urgent) issues.
parenthesis would be understood as the end of 's arguments.folder

If your argument contains quotes, you need to use another type of quotes to enclose it. Suppose that you need to match a version named 3.0, 3.0.1
:"Armageddon"

item(version, '3.0, 3.0.1 "Armageddon"')

You can also escape the quotes using backslash (\). Suppose that the version is named 3.0 Beta 1 "Armageddon's Near":

item(version, '3.0 Beta 1 "Armageddon\'s Near"')

If you need to use backslash character on its own, you can escape it with another backslash (\\). Suppose that you need to match a folder named \
(backslash) and related characters:

folder ('\\ (backslash) and related characters')

Note that if you don't need to enclose your argument in quotes, then you don't need to escape quotes or backslashes contained within it:

folder (Joe's)
folder (\)

Finally, if there's only one argument and the argument doesn't contain spaces (or is enclosed in quotes), you can omit the parentheses:

folder Urgent
folder "Not urgent"

folder()

This function matches folder items in the structure, optionally filtering them by name.

Without arguments, this function matches all folders:

folder()

With one argument, this function matches folders by name (that you see in the column). A folder is matched if its name the text Summary starts with
specified in the first argument. Difference between capital and small letters is ignored.

For example, the following queries match folders named , , and ; and do not match folders namedMy issues Issues for Carol Non-issues Is
orsuing Issuance:

folder issue
folder Issue

If you specify several words separated by spaces, will match only folders containing all of these words.folder

There's an advanced matching option for those who like to use regular expressions.

To tell that you are specifying a regular expression, enclose it in slashes ():folder /

folder /i.*ue/

If the argument starts with a slash but doesn't end with a slash, regular expression matching doesn't occur, and it's matched as a simple text. If you
need to write a simple text search where a text starts and ends with a slash, escape the leading slash with a backslash ():\

folder \/???/

The query in the example above matches folder /???/.

Another advanced topic is how to query for the exact word (e.g., match but notissue issues).

This is called . Strict searching is turned on when the starts and ends with a double quote ("). Note, however, that quotes strict searching search text
are stripped off from function arguments, since quoting is also used to allow specifying spaces or parentheses in the search text. Thus you'll need to
enclose the search text in single quotes ('):

folder '"issue"'

item()

If you're familiar with how works, then it's useful to think of this argument in the same way as of the simple query. Simple Search in structure
The only difference is that doesn't recognize issue keys.folder

https://wiki.almworks.com/display/structure040/Simple%2C+JQL%2C+and+S-JQL+Search#Simple,JQL,andS-JQLSearch-JQLSearch-text

1.
2.

3.

This function matches items of the specified type in the structure, optionally filtering them by name. It is a generalization of folder() function to other
item types.

The function takes two arguments: and (optional). The second argument works in the same way as the argument for function.item type name folder()

You can reference either standard item types (provided by Structure plugin) or item types provided by third-party plugins.

If you need to match items of all types, use asterisk (*). The following query finds all items that have the word “Infrastructure” in their Summary, regardless
of their type:

item(*, Infrastructure)

Structure provides the following item types:

issue
project
version
project-component
issuetype
status
resolution
priority
label
user
group
date
cf-option
folder
generator
loop-marker
sprint
missing
tempo-account (when Tempo Timesheets plugin is available)

Structure.Pages plugin provides the following item types:

page

Item types provided by third-party plugins are specified similarly. Here's how function looks up item types:item()

It tries to interpret argument as referring to an item type provided by Structure and looks it up in the list above.type name
If not found, it looks at all item types provided by all plugins (including Structure itself) and checks if the type name the specified text ends with as

. “As a word” means that will match Confluence page item type, but won't. More specifically, the considered word boundaries are a word page age
hyphen (-), underscore (_) and colon (:).
It is an error to specify item type ambiguously, i.e. if there are two item types matching the description. The following forms of argument item type
allow to specify item type more precisely.

Fully qualified item type name, e.g. com.almworks.jira.structure:type-issue or com.almworks.structure.pages:
type-confluence-page.
More generally, the form is <plugin key>:<type name>.
Shortened form of the fully qualified item type name, e.g., or . structure:issue pages:page
More generally, the form is . <plugin key part>:<type name part>
When function looks up item type for the argument, and the argument contains colon (:), the function first tries to interpret is as a item()

fully quailified name. Only if nothing is found, it tries to interpret it as a shortened form.

Empty constraint

An empty constraint matching no items:

empty

Don't confuse “ and “ . For example, matching items of some type” matching issues that have field value equal to that item” item(status,
 matches , not . If you need the latter, use JQL constraint: .Open) status Open issues with status Open [status = Open]

https://wiki.almworks.com/display/pages/Structure.Pages

This constraint plays the same role as JQL's keyword. It is intended to be used as a in relational constraints, which are discussed EMPTY sub-constraint
further.

^ up to the list of S-JQL topics

Negation

Any constraint, basic or relational, can be negated using keyword . This produces a constraint that matches all items that the original constraint doesn't:NOT

not root

matches all items that are not top-level items in the structure.

You can always enclose a constraint in parentheses to ease understanding. So, all items in the structure except issues and are matched TS-129 TS-239
by this structure query:

not (TS-129, TS-239)

^ up to the list of S-JQL topics

Relational constraint

A basic constraint matches items that satisfy a condition. A relational constraint matches items items that satisfy a condition. related to Related
corresponds to a relationship between positions of items in the structure, like parent-child.
For example,

TS-129

is a basic constraint that matches a single issue ;TS-129

child in TS-129

is a relational constraint matching items that have as a child (sub-item).TS-129

Relational constraint has the form . Here, is a constraint on the relatives of items to be relation operator subConstraint subConstraint
matched; other parts of relational constraint are discussed in the following sections.

^ up to the list of S-JQL topics

Relations

S-JQL has the following relations:

child: item is a child (sub-item) of another item in the structure.
parent: item is a parent of another item in the structure.
descendant: item is a descendant (sub- or sub-sub-...-item) of another item in the structure.
ancestor: item is an ancestor (parent, parent-of-parent, or parent-of-parent-...-of-parent) of another item in the structure.
sibling: item is a sibling of another item in the structure. Two items are considered siblings if they are under the same parent item.
prevSibling: item is a previous (preceding) sibling of another item in the structure.
item is a preceding sibling of item if it is a sibling of and is higher than (comes before .)A B B A B A B
nextSibling: item is a next (following) sibling of another item in the structure.
item is a following sibling of item if it is a sibling of and is lower than (comes after .)A B B A B A B
self and are relations of an item (or an issue) to itself. Their role is explained later, in the section, because issue and relationself issue
at first one has to learn how operators and sub-constraints work.
There are also combinations of and with all other relations, listed for completeness below:issue self

Note that the form of relational constraint is similar to the form of JQL clause, .field operator value
Indeed, let's describe in English a JQL query : it matches issues having that is values .type in (Epic, Story) type in Epic, Story
Now, let's describe in English a structure query : it matches items having that is constraint "parent in [type = Epic] parent in type =

".Epic
As you can see, the form that can be used to describe the structure query is similar to that of JQL.

1.

2.

childOrSelf childOrIssue

parentOrSelf parentOrIssue

descendantOrSelf descendantOrIssue

ancestorOrSelf ancestorOrIssue

siblingOrSelf siblingOrIssue

prevSiblingOrSelf prevSiblingOrIssue

nextSiblingOrSelf nextSiblingOrIssue

^ up to the list of S-JQL topics

Operators

These are the operators used in S-JQL:

IN, NOT IN, IS, IS NOT, =, !=, OF

operator specifies how is applied to :subConstraint relation

IN, , and put constraint on the relatives of a matched item.IS =

For example, consider

child in (TS-129, TS-239)

Here, is , so an item's relative in question is its child in the structure. Thus, an item matches if relation child at least one of its children is TS-
. or 129 TS-239

NOT IN, , and are negated versions of , , and . That is, an item is matched if it any item matching IS NOT != IN IS = is not related to subConstra

.int

For example, consider

child not in (TS-129, TS-239)

An item matches if . So, this constraint matches all items that either have no children or do not have any of these no child is nor TS-129 TS-239
two items among their children.

Those familiar with XPath may have recognized these relations; indeed, they work like the corresponding XPath axes.

There is no difference between these three operators, unlike JQL. Different forms exist to allow for more natural-looking queries with
some sub-constraints.

As an important consequence, item that has no relatives is matched.

Using one of these operators in a relational constraint is the same as using (or , or) and negating the whole relational IN IS =
constraint. Thus, the constraint above is equivalent to

not (child in (TS-129, TS-239))

2.

3.

OF matches the relatives of items that satisfy .subConstraint

For example, consider

child of (TS-129, TS-239)

An item matches if .it is a child of either or TS-129 TS-239

To have a model of how operators (,) and work and to understand the difference between them, consider the table below. Suppose that we IN IS = OF
take all items in the structure and put each of them, one by one, in column . For each item, we take all of its relatives and put each of them, one by item
one, in column . Thus we get pairs of items. We examine each pair, and if one of the components satisfies , we add the other relative subConstraint
component to the result set. Which component is added, depends on the operator:

operator item relative

in add to result set satisfies subConstraint

of satisfies subConstraint add to result set

^ up to the list of S-JQL topics

Sub-constraints

Any constraint can be used as a sub-constraint, whether basic, relational, or a .combination of those
For example,

child of root

selects items on the second level of the hierarchy. To select items on the third level of the hierarchy, you can once again use relation and the child
previous query as :subConstraint

child of (child of root)

But, using one of these operators is the same as using operator and negating !very not IN subConstraint

First, is not the same as . Think of it as of relationships in a human family: having a having relatives other than X not having relatives X
relative other than brother (e.g., a sister) is the same as not having a brother, because one may have both a sister and a brother.not
Second, an item with no relatives is not matched by the transformed query.

For example,

child in (not (TS-129, TS-239))

matches all items that have at least one child that is neither nor . That is, the only items that are not matched are TS-129 TS-239
leaves and those that have only or as children.TS-129 TS-239

One may note that for any relation, there is a corresponding "inverse": for example, is the inverse of , and vice versa. A relational child parent
constraint that uses operator (,) is equivalent to a relational constraint that uses an inverse relation with operator . That is,IN IS = OF

child in (TS-129, TS-239)

is the same as

parent of (TS-129, TS-239)

Again, different forms of expressing the same constraint exist to allow for more natural-looking queries.

There is a special basic constraint, , which matches no items. It is used as a sub-constraint to match items that have no relatives as per .empty relation

For example, let's take relation and see what the corresponding relational constraints with different operators mean.child

child is empty matches all items that have no children (equivalent of)leaf

child is not empty matches all items that have at least one child (equivalent of)not leaf

child of empty matches all items that are not children of other items (equivalent of)root

Of course, using or is more convenient, but you can apply to any other relation. For instance, matches an item if leaf root empty sibling is empty
it is the only child of its parent.

^ up to the list of S-JQL topics

self and relations: adding sub-constraint matches to the result setissues

A relational constraint with relation behaves exactly as its sub-constraint, possibly negated if operator (,) is used.self NOT IN IS NOT !=
Thus,

self in [status = Open]

is equivalent to

[status = Open]

Similarly,

self not in [status = Open]

is equivalent to

not [status = Open]

When combined with another relation, allows to add the items matched by to the resulting set. For example,self subConstraint

descendant of TS-129

returns all of the children of at all levels, but does not return itself. To add , use :TS-129 TS-129 TS-129 descendantOrSelf

descendantOrSelf of TS-129

issue relation

issue is a special case of relation that only matches issues. For instance, if on the top level of the structure you have folders and issues, and you self
want to hide all folders, you can write this:

descendantOrIssue of root

This query matches all top-level issues and all their sub-items.

^ up to the list of S-JQL topics

Combining constraints with Boolean operators

We can now define a structure query as a , that is, a structure query consists of constraints connected with and . Boolean combination of constraints AND OR
When two constraints are connected with , together they will match issues that are matched by both constraints. This allows you to limit the results. AND
Likewise, when two constraints are connected by , together they will match issues that are matched by at least one of the constraints. This allows you to OR
expand the results.

Note that has higher precedence than . That means that the Structure queryAND OR

leaf or (parent of leaf) and [status = Open]

matches all issues that are either leaves, or are parents of leaves in status . In order to also constrain leaf issues to be in the status , you need Open Open
to use parentheses:

(leaf or (parent of leaf)) and [status = Open]

^ up to the list of S-JQL topics

Railroad diagrams

As a final piece of reference, here's the S-JQL syntax in the form of .railroad diagrams

structure-query

constraint

basic-constraint

S-JQL keywords are not case-sensitive, and all underscores in keywords are optional.

S-JQL admits using and in place of , as well as and in place of .&& & AND || | OR

http://en.wikipedia.org/wiki/Railroad_diagram

jql-query is any valid JQL query.
issue-key is any valid JIRA issue key.
issue-id is any valid JIRA issue ID.
constraint-name is the name of the function constraint: either bundled with Structure (, , or) or provided by a Structure folder item row_id
extension (plugin).
constraint-argument is one of the following:

either a sequence of non-whitespace characters
or quoted text (inside "double quotes" or 'single quotes'), where quotes can be escaped via backslash: , ; backslash itself can be \" \'
escaped: .\\

See also . Function constraint - Syntax

relation

S-JQL admits using and in place of .|| | OR

operator

^ up to the list of S-JQL topics

	S-JQL Reference

