
Expr Language
Expr Language (pronounced like "expert" without "t") is a simple language that lets you specify an "expression", or a formula, which will be calculated for
an issue or another item. When you use is in a , the expression is calculated for each visible row in the displayed structure or query result.Formula Column

You can see examples of formulas by adding predefined columns in Structure (from the section), and then opening panel. The Calculated column options
language itself and its grammar is quite obvious and is similar to arithmetic expressions with a number of functions.

Language Components

An expression may contains one or more of the following:

Variables, which are bound to specific values when calculating expression for a specific item.
Functions, which may take some arguments, and which produce the result at the moment of calculation.
Numbers and text strings.
Arithmetic, logical operations and parentheses.

Variables

Variables are user-defined names, containing letters (English only), numbers, dot (".") or underscore ("_") characters. The first character should be a letter
or an underscore.

Examples:

Priority
remaining_estimate
abc11
sprint.name

When writing an expression, you'd usually associate a name with some value that an issue or another item has. After the expression is written, Formula
 lets you associate the variables used with specific attributes.Column

A few things to note about variables:

You can use any names, from a simplistic "x" to a "VeryComplicatedCustomFieldName".
But, if Formula Column recognizes the variable name to be similar to a field name, it may automatically assign an attribute to the variable. For
example, "Priority" variable will be automatically mapped to the similarly named field.
But, it is possible (although very unreasonable!) to edit the association and assign a variable with a well-known name to something else. Please
keep that in mind if you need to troubleshoot a formula and double-check the variables.

Functions

A function calculates some value based on its arguments and, sometimes, some external aspect. A function is written as the function name, followed by
parentheses, which might contain arguments.

Examples:

SUM(-original_estimate; remaining_estimate; time_spent)
CASE(priority, 'High*', 5, 1)
TODAY()

There are a number of standard functions available with Structure 4.0 – see for details.Expr Function Reference

A function may take zero, one or more arguments. Some functions take variable number of arguments. Each argument can be another Expr expression
and include calls to other functions.

If you're familiar with writing formulas in , you'll recognize a few things in Expr. In particular, if you know some functions that Microsoft Excel
Excel provides, they have a good chance to be supported by Structure as well.

Variable names are case-insensitive. , and will refer to the same variable.Priority priority pRiOrItY

Function arguments may be separated by comma (,) or semicolon (;). But in every function call you need to use either all commas or all
semicolons.

Function names are case-insensitive, like the variables. You can write or .TODAY() Today()

https://wiki.almworks.com/display/structure041/Formula+Column
https://wiki.almworks.com/display/structure041/Customizing+Columns
https://wiki.almworks.com/display/structure041/Formula+Column
https://wiki.almworks.com/display/structure041/Formula+Column
https://wiki.almworks.com/display/structure041/Expr+Function+Reference

Numbers and Text Strings

Numbers

You can use numbers in your formula. The numbers are always written as a sequence of digits with optionally a dot (".") and a fractional part. Locale-
specific, percents, currency or scientific formats are not supported.

Recognized as a number Not recognized as a number

0 0,0

1234567890123456 1 100 025

11.25 1.234e+04

.111 ($100)

Text Strings

Text strings are a sequence of characters enclosed either in single (') or double quotes ("). Examples:

'a text in single quotes may contain " (a double quote)'
"a text in double quotes may contain ' (a single quote)"
""

Everything within a text string is retained verbatim to participate in the expression evaluation, except for the following:

A sequence of two backslashes () is converted to a single backslash ().\\ \
A sequence of a backslash and a single quote () is converted to a single quote character () in the text values enclosed in single quotes.\' '
A sequence of a backslash and a double quote () is converted to a double quote character () in the text values enclosed in double quotes.\" "

Operations

Expr provides basic arithmetic operations, comparisons and logical operations.

The operations follow the general precedence rules for arithmetics, so is calculated correctly. Comparison operations are done after the A + B * C
arithmetic operations and logical operations are done after comparisons. For detailed specification, see .Expr Language Reference

Operations Comments

+ - * / Convert the value into a number.

= != Equality and non-equality: if either part of the comparison is a number, the other part is also converted into a number. If both values are
strings, then string comparison is used.

String comparison ignores leading and trailing whitespace and is case-insensitive (according to JIRA's system locale).

< <= > >= Numerical comparisons – both values are converted to numbers.

AND, , OR NOT Logical operations.

() Parentheses can be used to group the results of operations prior to passing to other operations.

See Also

Expr Function Reference
Expr Language Reference

You can write a number that is written with a locale-specific decimal and thousands separator as a text value and it will be automatically
converted to a number if needed. For example:

"1 122,25" * 2 2244.5

https://wiki.almworks.com/display/structure041/Expr+Language+Reference
https://wiki.almworks.com/display/structure041/Expr+Function+Reference
https://wiki.almworks.com/display/structure041/Expr+Language+Reference

	Expr Language

