
S-JQL Cookbook

Here are the most common examples of using S-JQL.

1. Find issues added to a structure
2. Quick Filter for JIRA Agile's (GreenHopper) Scrum Board to display only low-level issues in a structure
3. Retrieve all Epics in a certain status and all of their children
4. Find Test Cases associated with Stories in an active sprint
5. Find all issues that are blocking critical issues
6. Find all unassigned issues in a part of a project
7. Top-level view on unfinished parts of a project
8. Find violations of the rule "Tasks must be under Epics or Stories"
9. Find violations of the rule "An issue cannot be resolved if it has unresolved children"
10. Find issues that can be resolved because all their children are resolved
11. Get a view of a second (third, ...) level of the hierarchy
12. Get the contents of a folder

1. Find issues added to a structure

Goal: Suppose that you are using a structure named "My todo list" as a collection of issues, and you want to see in the Issue Navigator all issues added to
this structure.

How to achieve: In the Issue Navigator, switch to and run the following query:Advanced Searching

issue in structure("My todo list")

If you want to find issues added to the , you can omit the structure name:Default Structure

issue in structure()

^ up to the list of examples

2. Quick Filter for JIRA Agile's (GreenHopper) Scrum Board to display only low-level issues in a structure

Setup: Suppose that you are using a structure named "Project work breakdown" to organize tasks under higher-level "container" issues that provide an
overview of your team's work. In this setting, the actual tasks are at the bottom level of the hierarchy. Also, suppose you are using JIRA Agile's Scrum
Board to manage your sprints.

Goal: You want to see only the actual tasks in backlog, hiding the container issues.

How to achieve: Add a to your JIRA Agile (GreenHopper) board with the following JQL:Quick Filter

issue in structure("Project work breakdown", leaf)

If your structure is organized such that lower levels matter to you on the JIRA Agile board, you'll search for leaf issues and their parents with this JQL:two

issue in structure("Project work breakdown", "leaf or parent of leaf")

^ up to the list of examples

3. Retrieve all Epics in a certain status and all of their children

Setup: You have a structure named "Enterprise Portfolio" with Epics on the top level, Stories beneath them, and Tasks with their Sub-Tasks occupying the
lower levels of the hierarchy.

Goal: You need to see Epics in status with all of their children.Assigned

How to achieve: In the Issue Navigator, switch to and run the following query:Advanced Searching

issue in structure("Enterprise Portfolio", "issueOrAncestor in [type = Epic and status = Assigned]")

If you want to see these issues in the structure, go to and type this query in the in the JQL mode.Structure Board Search Area

http://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://wiki.almworks.com/display/structure052/Default+Structure
https://confluence.atlassian.com/display/GH/Configuring+Quick+Filters
http://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://wiki.almworks.com/display/structure052/Structure+Board
https://wiki.almworks.com/display/structure052/Search

Also, you can type only the last part of the query if you use :S-JQL search mode

issueOrAncestor in [type = Epic and status = Assigned]

^ up to the list of examples

4. Find Test Cases associated with Stories in an active sprint

Setup: Suppose that you have a structure named "Enterprise Portfolio Testing", where you have Epics on the top level, Stories on the second level, then
come Test Sub-Tasks, and finally Test Cases.
You are also using JIRA Agile (Greenhopper) to manage your sprints, which contain Stories. The fact that a Test Case is associated with an Story is
recorded only in the structure.

Goal: You need to find those Test Cases that are associated with Stories in an active sprint.

How to achieve: You can use Issue Navigator's capability or open the structure on the and use its in Advanced Searching Structure Board Search Area
the JQL mode to run this query:

issue in structure("Enterprise Portfolio Testing", "[type = 'Test Case'] and ancestor in [type = Story and
sprint in openSprints()]")

Or, you can type only the last part of the query if you use on the Structure Board:S-JQL search mode

[type = 'Test Case'] and ancestor in [type = Story and sprint in openSprints()]

^ up to the list of examples

5. Find all issues that are blocking critical issues

Setup: Suppose that you have a structure named "Dependency structure" where parent-child relationship corresponds to dependency: each child blocks
its parent. (You might have configured a to synchronize this structure with the "Dependency" JIRA issue link.)Links Synchronizer
Let's also suppose that you consider critical those issues that have priority .Critical

Goal: You want to see all issues that are blocking critical issues, according to the structure.

How to achieve: You'll need to find children of critical issues. You can use Issue Navigator's capability or open the structure on the Advanced Searching St
 and use its in the JQL mode to run this query:ructure Board Search Area

issue in structure("Dependency structure", "child of [priority = Critical]")

Or, you can type only the last part of the query if you use on the Structure Board:S-JQL search mode

child of [priority = Critical]

^ up to the list of examples

6. Find all unassigned issues in a part of a project

Setup: Suppose that you use a structure named "Project work breakdown" to break down your project into smaller pieces, so that if you have an issue
somewhere in the structure, all of its children at all levels constitute a separate part of a project.

Goal: You are focusing on a part of a project under the issue with key , and you want to see unassigned issues in that part of the project.PROJ-123

How to achieve: Use this JQL query to find all unassigned descendants of :PROJ-123

issue in structure("Project work breakdown", "[assignee is empty] and descendant of PROJ-123")

^ up to the list of examples

7. Top-level view on unfinished parts of a project

https://wiki.almworks.com/display/structure052/Search#Search-sjql
http://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://wiki.almworks.com/display/structure052/Structure+Board
https://wiki.almworks.com/display/structure052/Search
https://wiki.almworks.com/display/structure052/Search#Search-sjql
https://wiki.almworks.com/display/structure052/Links+Synchronizer
http://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://wiki.almworks.com/display/structure052/Structure+Board
https://wiki.almworks.com/display/structure052/Structure+Board
https://wiki.almworks.com/display/structure052/Search
https://wiki.almworks.com/display/structure052/Search#Search-sjql

Setup: Let's continue with the "Project work breakdown" structure from the previous example. Suppose that there are several top-level issues representing
different parts of the project.

Goal: You want to have a view on the parts of the project that are yet unfinished.

How to achieve: In the Structure terms, you need to see the root issues that have unresolved descendants. To have a persistent view, create a Saved
 with the following JQL:Filter

issue in structure("Project work breakdown", "root and descendants in [resolution is empty]")

^ up to the list of examples

8. Find violations of the rule "Tasks must be under Epics or Stories"

Setup: You have a structure named "Planning" where you put issues of types Epic, Story, and Task. Your team follows the convention that Tasks are
always put under Epics or Stories. However, as humans are fallible, sometimes a Task ends up being in a wrong place — either on the top level, or under
another Task.

Goal: You need to find Tasks that violate the rule, so that you can put them in the right place.

How to achieve: In the on the , run the following :Search Area Structure Board JQL search

issue in structure("Planning", "[type = Task] and parent not in [type in (Epic, Story)]")

^ up to the list of examples

9. Find violations of the rule "An issue cannot be resolved if it has unresolved children"

Setup: Suppose that "Planning" is a work breakdown structure. Your team follows the convention that an issue cannot be resolved unless all of its children
are resolved.

Goal: You need to find the issues violating this rule.

How to achieve: In the on the , run the following :Search Area Structure Board S-JQL search

[resolution is not empty] and child in [resolution is empty]

^ up to the list of examples

10. Find issues that can be resolved because all their children are resolved

Setup: Suppose that "Planning" is a work breakdown structure. Your team follows the convention that once all children of an issue are resolved, the issue
can be resolved as well.
The best solution for this would be to use a , but suppose that for some reason you want to do it manually.Status Rollup Synchronizer

Goal: You need a way to manually resolve those issues that have all of their children resolved.

How to achieve: Open the structure on the . When you paste the query given below into the (ensure that the is Structure Board Search Area JQL mode
selected), the issues that you can resolve will be shown. You can resolve them one by one. Here's the query you need:

issue in structure("Planning", "[resolution is empty] and not(child is empty or child in [resolution is
empty])")

^ up to the list of examples

11. Get a view of a second (third, ...) level of the hierarchy

Setup: There is a large structure named "Joint Effort" where different users track their issues on several levels: Customer Relations department works with
the top-level issues, Project Managers break them down in several issues on the second level, Team Members work with issues under second-level issues.

Goal: Each user wants to see only the relevant part of the structure. Customer Relations department wants to filter out lower-level issues to focus on the
top-level ones, and Project Managers sometimes want to focus on just the second-level issues in the context of their parent requests.

How to achieve: use the on the to run the specific queries (ensure that the is selected.) Toggle the button Search Area Structure Board S-JQL mode Filter
to hide the issues on the lower levels.

https://confluence.atlassian.com/display/JIRA/Using+Filters
https://confluence.atlassian.com/display/JIRA/Using+Filters
https://wiki.almworks.com/display/structure052/Search
https://wiki.almworks.com/display/structure052/Structure+Board
https://wiki.almworks.com/display/structure052/Search#Search-sjql
https://wiki.almworks.com/display/structure052/Search
https://wiki.almworks.com/display/structure052/Structure+Board
https://wiki.almworks.com/display/structure052/Search#Search-sjql
https://wiki.almworks.com/display/structure052/Status+Rollup+Synchronizer
https://wiki.almworks.com/display/structure052/Structure+Board
https://wiki.almworks.com/display/structure052/Search
https://wiki.almworks.com/display/structure052/Search#Search-jql
https://wiki.almworks.com/display/structure052/Search
https://wiki.almworks.com/display/structure052/Structure+Board
https://wiki.almworks.com/display/structure052/Search#Search-sjql
https://wiki.almworks.com/display/structure052/Filter#Filter-filtering

To see top-level issues, run this query:

root

To see second-level issues (top-level issues will be still displayed, but greyed out), run this query:

child of root

If you would need to dig even deeper, to see the third level but not the lower ones, you'd use this query:

child of (child of root)

^ up to the list of examples

12. Get the contents of a folder

Setup: There is a structure with a folder named "Next Release". Issues are placed there manually and then queried via S-JQL for planning purposes (as
an Agile board filter, for example).

Goal: The users want to see all issues that are located under the specified folder.

How to achieve: In the Issue Navigator, switch to Advanced Searching and run the following query:

issue in structure("My Structure", "descendant of folder('next release')")

Note that the folder name is case-insensitive.

^ up to the list of examples

http://confluence.atlassian.com/display/JIRA/Advanced+Searching

	S-JQL Cookbook

