
Expr Language Reference
Expr language defines expressions, which are evaluated in the context of an item within a structure. This article describes the syntax of the language and
the rules that govern the evaluation.

Conventions
Comments

Values
Undefined
Text
Numbers
Text to Number Conversion
Falsy and Truthy Values

Variables and functions
Identifiers
Variables
Local Variables
Function Calls
Aggregate Function Calls

Single-argument operators
NOT
+ -

Logical and arithmetic operators
Logical operators
Comparison operators

Equality: = (==).
Inequality: <> (!=)
Ordering

Arithmetic operators
Precedence of operators
Railroad diagrams

expression
logical-expression
arithmetic-expression
function-call
aggregation-expression

Conventions

Similarity to Excel formula language was a design goal, so if you are unsure how Expr behaves, think Excel.
The language is case-insensitive.
Whitespace is not meaningful. It is only required to separate word operators and identifiers; in all other cases there can be an arbitrary number of
whitespace symbols.
Currently, language constructs support only English letters and a few punctuation symbols. However, values can contain any Unicode symbols.

Comments

At any place where a formula allows whitespace, you can use comments. Comments can span multiples lines or just one.

Multi-line comments start with " and end with and can span multiple lines. Multi-lined comments cannot be nested./*" "*/"
Single-line comments start with " and continue through the end of the line.//"

Values

All expressions, when evaluated, produce either a value or an error. All values in Expr are either numbers, text or a special value called .undefined

Undefined

Undefined value is represented by the word undefined.

Undefined value is used when the variable value is not specified. For example, variable has value undefined if the issue is unassigned. Assignee

Functions can return this value when the result of the function is not specified. For example, the function IF(N = 0; "No apples"; N = 1; "One
 only has a specified value when N is equal to 0 or 1. If N is equal to anything else, it returns .apple") undefined

Text

A text value consists of 0 or more Unicode symbols. Its literal representation consists of the value enclosed in single quotes (') or double quotes (").
Example: represents text value . Similarly, represents the same text value."Major" Major 'Major'

If the text value itself contains quotes, you'll need to insert a backslash (\) before them. Example: represents the text "Charlie \"Bird\" Parker"
value . Alternatively, you can use another kind of quotes to enclose the literal representation: Charlie "Bird" Parker 'Charlie "Bird" Parker'.

If you need to use the backslash at the end of text value, you will need to insert another backslash before it. Example: represents "C:\Users\John\\"
text value C:\Users\John\.

Numbers

Aside from representing some quantity, a number value can also represent a point in time or a duration of time. In this case, you can use Format settings
in the to properly display the results as dates or durations.Formula Columns

There are two forms of literal representations of numbers:

a whole number: 42
a fractional number: 0.239

Note that only dot (.) can be used as a decimal separator. Comma (,) is used to delimit function arguments. Thus, will be understood as MAX(X, 0,618)
the maximum of three quantities: , 0, and 618.X

Group separators are not supported, so is not a literal representation of number 100000100 000 .

Text to Number Conversion

Some functions expect their arguments to be number values. In case an argument is a text value, we try to interpret it as a number. This can be useful if
the value comes from a variable that represents a text custom field, which contains numbers — e.g., imported from some external system.

If conversion is successful, that number is used as the value for that argument. If conversion is not successful, functions can either produce an error,
ignore that argument, or substitute some default — it depends on the function; see Expr Function Reference for details.

The first step is to accommodate for variations in number formatting. Conversion supports these formatting symbols:

decimal fraction separators:

comma ,

dot .

digit group separators:

comma ,

dot .

apostrophe '

space

Conversion expects that the text contains 0 or 1 decimal mark, and 0 or more group separators of the same kind. If the text contains any other formatting
symbols, conversion fails. Decimal mark must come after all group separators, otherwise conversion fails.

Technical note: internally, numbers are represented as decimal floating-point numbers with 16 digits of precision and half-even rounding. Most
of the operations are carried out in this form; however, some of the more sophisticated functions, such as , might first convert the numbers SQRT
into binary floating-point, calculate the result and then convert it back into decimal floating-point.

https://wiki.almworks.com/display/structure052/Formula+Columns
https://wiki.almworks.com/display/structure052/Expr+Function+Reference

If the text contains only one formatting symbol, and it's a dot (), it is always treated as a decimal mark. If the text contains only one formatting symbol, and .
it's a comma (), then it is treated as a decimal mark if a comma is used as a decimal separator mark in the ; otherwise, it is treated , Jira default language
as a group separator. For instance, if the default Jira language is English, will become 101112, whereas if it is German locale, it will be "101,112"
101.112. And regardless of language, " will become 1100.23: space is interpreted as a group separator, and comma can only be the decimal 1 100,23"
fraction separator here.

If the group separator is a dot (), then all groups except the first one must have 3 digits; otherwise, conversion fails..

After determining decimal mark and group separator symbols, conversion removes all group separator symbols and replaces the decimal mark with a dot.
Note that if text contains several whole numbers separated by spaces, conversion will think it is one number, for example, " will become 10 11 12"
101112. Similarly, will become 101112. "10,11,12"

The final step of conversion is to recognize the resulting text as either Expr's literal number representation or scientific or engineering notation. Examples:
0.239
-1.32e5
12e-3

Falsy and Truthy Values

A value is if it is:falsy

undefined,
number 0,
empty text value (or), or a text value that contains only space characters."" ''

All other values are By convention, when predefined functions or logical operators need to construct a truthy value, they use number .truthy. 1

Variables and functions

Other kinds of expressions are variables and function calls.

Identifiers

An identifier consists of letters (Latin alphabet only: a-z, A-Z), digits (0-9), dot () or underscore () characters. The first character must be a letter or an . _
underscore.

Variables

Variables are represented by identifiers. Variables are defined in the settings and are mapped to a Jira field or other attribute of an item.Formula Columns

Conceptually, you can think of a variable as the cell of some column for the item, in the context of which the expression is evaluated. As such, it might or
might not have a value, and that value can be either textual or numeric. Each variable is resolved to a value once during the expression evaluation. If the
variable cannot be resolved, its value is .undefined

Local Variables

Local variables are similar to Variables, but they are not mapped to the item's attribute or Jira field, but rather defined and calculated right in the expression.

The declaration syntax is the following:

WITH = : <local_variable_name> <expression> <expression_with_local_variable>

Note the colon (":") that separates the expression assigned to the variable and the expression where the variable is used.

A few facts about local variables:

<expression_with_local_variable> may start with another local variable definition, so you can introduce many local variables. When
defining a second variable, you can use the first variable already defined, and so on.
Local variables can "shadow" previously defined local and free (mapped) variables with the same name. If you write "with priority = 10:

, then when calculating " , the value of will be 10, even if there was a variable attached to the <expression>" <expression>" priority
issue's priority in the enclosing scope.
The construct is itself an expression, so you can use it, enclosed in parentheses, anywhere an expression can be used. The name with...
defined in this expression is not visible outside the expression.with...

Function Calls

A function consumes zero or more values, and can produce a value. A function call consists of a function name (an identifier), followed by its arguments
enclosed in parentheses. An argument can be any expression. Different arguments are separated by commas () or semicolons () — for one function , ;
call, all separators must be the same.

A function call can evaluate only some or even none of the arguments, depending on the function. This is useful for functions that perform choices. For
example, in an function, the argument that wasn't chosen is not evaluated, so the whole expression doesn't produce an error when that argument IF
produces an error.

https://confluence.atlassian.com/adminjiraserver071/choosing-a-default-language-802592304.html
https://wiki.almworks.com/display/structure052/Formula+Columns

Aggregate Function Calls

An aggregate function call takes an expression and calculates it for all sub-items (or for another sub-set of the structure, as defined in the function's
documentation).

An aggregate function may have one or more modifiers that govern aspects of function execution. Each modifier starts with hash sign ("#"), then comes the
name (an identifier), an optional equal sign ("=") and a value, which can be a string or numeric constant. If a value is omitted, it is assumed to be (a 1
representation of in Expr).true

An aggregate function must be followed by the expression in curly braces ("{}"), which provides the values being aggregated.

You can use whitespace between any elements of the aggregate function calls.

Examples:

SUM{x}
SUM#all{x}
SUM#all#leaves{x}
JOIN#separator=", "{key}
JOIN #separator=", " #fromDepth=0 #toDepth=-1 { Key }

Not all modifiers will work with every aggregate function. Using an incompatible modifier will result in an error. To learn more about available modifiers and
their restrictions, see .Aggregation Modifiers

Single-argument operators

Expressions with a single-argument (or) operator have the following syntax: . unary <op> <expression>

<expression> can be any Expr language expression in parentheses. If it is a literal value representation, a variable or a function call, parentheses are
optional.

If evaluation produces an error, the operator also produces an error.<expression>

NOT

Instead of , an exclamation mark () can also be used.NOT !

The operator produces if evaluates to a truthy value, and otherwise.0 <expression> 1

+ -

The operator first attempts to convert the value of to a number. If conversion succeeds, produces this number, and produces the <expression> + -
negated number. If conversion fails, and the value of is falsy, it produces . Otherwise, it produces an error.<expression> undefined

Logical and arithmetic operators

Two or more expressions can be combined using operators: . If any subexpression produces an error, <expression1> <operator> <expression2>
the operator produces the same error.

Logical operators

OR (||, |)

AND (&&, &)

OR examines each expression from left to right and produces the value of the first expression that evaluates to a truthy value. If no expression evaluates to
a truthy value, it returns . Once a truthy expression is found, no other expressions are evaluated. This prevents unnecessary computations and undefined
protects against producing an error if any of the subsequent expressions produce an error.

AND works in much the same way, except that it is looking for the first value.falsy

Examples (assuming the default variable assignment):

assignee || "UNASSIGNED" – This will produce either the issue's assignee user key or (if the issue is unassigned) the text value "UNDEFINED
".
!assignee && status = "OPEN" – This will produce if the issue is unassigned and in status , and otherwise.1 OPEN 0

Comparison operators

All comparison operators:

Produce or 0 1

https://wiki.almworks.com/display/structure052/Aggregate+Function+Reference#AggregateFunctionReference-AggregationModifiers

Can work only on two arguments
Start with evaluating both expressions
Have the same precedence

Equality: .= (==)

If both values are numbers, returns if they are equal.1

If both values are text, returns if they are equal, ignoring differences in letter forms and leading and trailing whitespace (thus 1 " cote " = "côte"
).

If both values are undefined, returns .1

In all other cases, returns .0

Inequality: () <> !=

Works in the same way as the equality operator, but returns when both values are equal or undefined, when they are not.0 1

Ordering

< (less than)

> (greater than)

<= (less than or equal)

>= (greater than or equal)

All operators work on numbers, producing the result of their comparison.

If either of the values is text, the operator attempts to convert it to number. If the conversion fails, the operator behaves as if the corresponding value was
undefined.

If any value is undefined, strict operators (,) produce Non-strict (,) produce , unless values are undefined (because they are equal).< > 0. <= >= 0 both

Arithmetic operators

Arithmetic operators are: addition (), subtraction (-), multiplication () and division (/). + *

These operators convert their arguments to numbers. A non-empty, non-number argument would produce an error. Falsy non-number values are treated
as zero.

Examples:

"" + 1 1
"foo" + 1 error
"" * 1 0
"foo" * 1 error
"" - 1 -1
1/0 error

Precedence of operators

Precedence defines which operators evaluate first: if operator A has lesser precedence than B, then in expression <expression1> A <expression2>
 first B is evaluated, then A. B <expression3>

Single-argument operators are always evaluated first. Other operators in Expr language have the following precedence:

5 (highest) * /

4 + -

3 = <> < > <= >=

If one value is a number and the other value can be converted to a number, both values are treated as numbers. However, if both values are
text, they will be treated as text, even if both can be converted to a number. You can use the function to force a value to be numeric.NUMBER

3.4 = 3.40 1
3.4 = "3.40" 1
"3.4" = "3.40" 0
NUMBER("3.4") = "3.40" 1

https://wiki.almworks.com/display/structure052/Expr+Function+Reference#ExprFunctionReference-NUMBER

2 AND

1 (lowest) OR

Railroad diagrams

These diagrams display the complete syntax of Expr language.

expression

local-variable-name is an .identifier

logical-expression

comparison-operator is one of these: .= <> < > <= >=

logical-operator is one of these: .AND OR

arithmetic-expression

variable-name is an .identifier

literal is either a , a or .number literal text UNDEFINED

arithmetic-operator is one of these: .+ - * /

function-call

function-name is an .identifier

aggregation-expression

aggregation-name and are . aggregation-parameter identifiers

aggregation-parameter-value is either a or a with optional sign (either or).text number literal + -

	Expr Language Reference

