
Aggregate Function Reference
All standard aggregate functions and available modifiers are listed on this page.

An aggregate function call contains an expression in curly braces ("{}"), which is calculated for the item and all sub-items (or, in some cases, for another
subset of related items in the structure), and then the resulting values are aggregated according to the meaning of the aggregate function.

Aggregation Functions
SUM
COUNT
AVG
MAX
MIN
JOIN
PARENT

Aggregation Modifiers
#all
#truthy
#strict
#children
#leaves
#subtree
#ancestors
#reverse
#separator
#beforeChildren
#afterChildren
#fromDepth
#toDepth
#distinct
#depth

Aggregation Functions

SUM

Sum calculates a numerical total for the values calculated for the item and/or its sub-items.

Note that when the value of the expression under aggregation is not numeric (and cannot be to number), it is ignored.converted

Accepts modifiers: , , , .#all #children #leaves #strict

COUNT

It is not possible to include both upward-looking and downward-looking aggregate functions within the same formula. When using one of the two
 aggregate functions, PARENT and JOIN (when used with an upward-looking modifier), you cannot include any of the other upward-looking

aggregate functions listed above.

For example, the formula for calculating the percentage of Story Points of an issue compared to the aggregate Story Points of parent (its story_
) because PARENT looks one level up in your hierarchy, while SUM aggregates the levels points / PARENT {SUM {story_points}} would fail,

below.

We are working to fix this limitation in a future version.

If a certain issue (or another kind of item) is included multiple times in the sub-tree, the sum will include the value for that issue only . This once
behavior can be overridden by using the #all modifier.

https://wiki.almworks.com/display/structure/Expr+Language#ExprLanguage-NumbersandTextStrings

Count calculates a count of defined values (or truthy values, if the #truthy modifier is specified) for the item and/or its sub-items.

Accepts modifiers: , , , , .#all #children #leaves #strict #truthy

AVG

Avg calculates an average of defined values for the item and/or its sub-items. The result for avg is generally the same as sum/count. Returns nothing if
there are no defined values for {x}.

Accepts modifiers: , , , .#all #children #leaves #strict

MAX

Max returns the maximum defined value for the item and/or its sub-items. Numeric, date, duration and text fields can be compared. Text fields are
compared lexicographically.

Accepts modifiers: , , .#children #leaves #strict

MIN

Min returns the minimum defined value for the item and/or its sub-items. Numeric, date, duration and text fields can be compared. Text fields are compared
lexicographically.

Accepts modifiers: , , .#children #leaves #strict

If a certain issue (or another kind of item) is included multiple times in the sub-tree, it will be counted only . This behavior can be overridden once
by using the #all modifier.

If a certain issue (or another kind of item) is included multiple times in the sub-tree, the average value will include the value for that issue only on
. This behavior can be overridden by using the #all modifier.ce

JOIN

Join concatenates (joins) strings from the item and its parents (or other items, if modifiers are used).

By default it joins all parent string values from root to the self value.
If the current row has children and modifier is set, join appends the values for children, wrapping them into characters (braces by #subtree
default).
Wrapping characters can be set by and (see example for to see how it works).#beforeChildren #afterChildren #subtree

Accepts modifiers: , , , , , , , , , , , .#ancestors #subtree #children #leaves #strict #reverse #separator #beforeChildren #afterChildren #fromDepth #toDepth #distinct

PARENT

Parent extracts the value from the parent row or from an ancestor row by specified depth.

Accepts modifier: . #depth

Aggregation Modifiers

#all

Tells the aggregate function to include duplicate items. By defaults, aggregate functions ignore duplicate items.

SUM#all{X}
COUNT#all{X}

Can be used with: , , .sum count avg

#truthy

Only count row if the subexpression produces a . truthy value

COUN
T#tr
uthy
{X}

Can be used with: .count

https://wiki.almworks.com/display/structure052/Expr+Language+Reference#ExprLanguageReference-FalsyandTruthyValues

#strict

Do not process the current row item as part of the aggregation.

Cannot be used together with , or , since these already exclude the current row.#children #ancestors #leaves

JOIN
#str
ict
{X}
SUM#
stri
ct
{X}

Can be used with: , , , , , .sum count avg join min max

#children

Only process direct children of the current row.

JOIN
#chi
ldre
n{X}
SUM#
chil
dren
{X}

Can be used with: , , , , , .sum count avg join min max

#leaves

Only process leaves (items without children) in the subtree of the current row.

JOIN
#lea
ves
{X}
SUM#
leav
es
{X}

Can be used with: , , , , , .sum count avg join min max

#subtree

Process the whole subtree of the current row. This is default behavior for , , , , .sum count avg min max

JOIN
#sub
tree
{X}

Can be used with: .join

#ancestors

Only process ancestors of the current row. This is default behavior for , .join parent

Can be used with: .join

#reverse

Reverses the order of row processing.

JOIN
#rev
erse
{X}

Can be used with: .join

#separator

Defines the separator for string joining. This modifier has a string parameter. The default is ", ".

JOIN#se
parator
="->"
{X}

Can be used with: .join

#beforeChildren

See .#afterChildren

#afterChildren

Defines the exit separator between children and parent rows. This modifier has a string parameter. The default exit separator is:

"(" - for #beforeChildren
")" - for #afterChildren

JOIN#subtree#beforeChildren="<
{"#afterChildren="}>"{X}

Can be used with: .join

#fromDepth

Specifies the position of the first row the aggregate function should take as input for a sequence.

Position is specified by an integer parameter denoted as n below:

Positive values mean the absolute depth of the row in the structure, e.g. n=1 means root.
Negative values mean the depth relative to current row, e.g. n=-1 is the current item's direct parent.
Default is 1.
n should not be 0.

This modifier does not work with any tree types except .#ancestors

JOIN#f
romDep
th=-1
{X}
JOIN#f
romDep
th=2
{X}

Can be used with: .join

#toDepth

Specifies the position of the last row the aggregate function should take as input for a sequence.

Position is specified by an integer parameter denoted as n below:

Positive values mean the absolute depth of row in the structure, e.g. n=1 means root.
Negative values mean the depth relative to current row, e.g. n=-1 is the current item's direct parent.
0 means current row.
Default is 0.

This modifier does not work with any tree types except .#ancestors

JOIN#
toDep
th=-1
{X}
JOIN#
toDep
th=2
{X}

Can be used with: .join

#distinct

Makes only concatenate distinct values. A duplicate value won't be added more than once if this modifier is on.join

Modifiers and don't work when this option is on. #beforeChildren #afterChildren

Can be used with: .join

#depth

Specifies the position of the parent that possesses value.

Position is specified by an integer parameter denoted as n below:

Positive values mean the absolute depth of the row in the structure, e.g. n=1 means root.
Negative values mean the depth relative to the current row, e.g. n=-1 is the current item's direct parent.
Default is 1.
n should not be 0.

PARENT#depth=-1{X} // default one
PARENT#depth=-2{X} // "grandparent"
PARENT#depth=1 {X} // root row
PARENT#depth=2 {X}

Can be used with: .parent

	Aggregate Function Reference

