
Making Structure Dependency Optional
If you are integrating your plugin with Structure, or when you generally write code that uses Structure API but also should work when Structure Plugin is
not present, you need to declare that dependencies are optional and isolate dependencies in the code.

1. Declare Optional Dependency

Since your plugin must first be loaded as an OSGi bundle, it should declare dependencies from the Structure API packages as optional.

Modify declaration in your or and add classifier. (<Import-Package> pom.xml atlassian-plugin.xml resoltion:=optional Add Import-
 if you don't have this declaration yet.)Package to control API compatibility

<Import-Package>
 com.almworks.jira.structure*;version="[16,17)";resolution:=optional,
 com.almworks.integers*;version="0";resolution:=optional,
 org.jetbrains.annotations;version="0";resolution:=optional
</Import-Package>

2. Isolate Dependencies in the Code

So once you have declared the optional resolution of the Structure API classes, your bundle will load - but if your code tries to access a class from the
Structure API, you'll get a . To avoid that, you need to isolate the dependency on Structure API classes - typically in some NoClassDefFoundError
wrapper classes.

Here's a sample wrapper for the Structure API that provides wrapper (whatever it does) when Structure is available and ForestAccessor null
otherwise.

public class StructureAccessor {
 public static boolean isStructurePresent() {
 if (!ComponentAccessor.getPluginAccessor().isPluginEnabled("com.almworks.jira.structure")) {
 return false;
 }
 try {
 Class.forName("com.almworks.jira.structure.api.StructureComponents");
 } catch (Exception e) {
 return false;
 }
 return true;
 }

 public static ForestAccessor getForest(long structureId) {
 if (!isStructurePresent()) return null;
 StructureComponents structureComponents;
 try {
 structureComponents = ComponentAccessor.getOSGiComponentInstanceOfType(StructureComponents.class);
 } catch (Exception e) {
 return null;
 }

 try {
 return new ForestAccessor(structureComponents.getForestService().getForestSource(ForestSpec.structure
(structureId)));
 } catch (StructureException e) {
 return null;
 }
 }
}

This is also a point to make design decisions. So your code can use Structure when it's present, and can work independently when Structure is
not there. Are there any abstractions that address both of these situation? What are the concepts that are realized through Structure API and
through some other means when Structure is not avialable?

https://wiki.almworks.com/display/structure052/Controlling+Compatibility
https://wiki.almworks.com/display/structure052/Controlling+Compatibility

	Making Structure Dependency Optional

