Loading Attribute Values

You may need to load the same values that Structure shows on the Structure Board, especially if it's a total value, progress value or other Structure-
specific value. This is done via St ruct ur eAt t ri but eSer vi ce.

About Attributes

One of the core concepts in Structure is the Attribute abstraction. An attribute is something that can provide a value of specific type and meaning for any
row in a forest.

For example, a "Summary" attribute would produce the value of Summary field for issues, the name of a folder for folders and a person's full name for
users. Some attributes may be applicable only to certain item types and would provide empty value for all other items.

Besides item-based attributes, which provide values that depend only on the item in the forest, there are forest-based attributes — aggregates and
"propagates”, which are calculated based on the whole forest and items in it.

@ Forests and Attributes are two main concepts that make up the Structure grid. Looking at the Structure Board, you see Forest in the vertical
direction — rows and hierarchy are taken from Forest, and you see Attributes in the horizontal direction — all columns load Attributes from the
server and display those values.

General Approach to Loading Values

Let's assume that, after Reading Structure Content, you have St r uct ur eConponent s instance and an instance of For est Spec for a forest. We can
read a number of attributes for a number of rows by going to St r uct ur eAt t ri but eSer vi ce.

1. Figure out which Attributes do you need

The service accepts multiple attribute specs in one request. If you need several attributes calculated — it's better to do that in one request.

Li st<AttributeSpec<?>> attributeSet = new ArrayList<>();
attributeSet.add(CoreAttributeSpecs. KEY);
attributeSet.add(CoreAttributeSpecs. SUMVARY) ;
attributeSet.add(CoreAttributeSpecs. TOTAL_RENMAI NI NG_ESTI MATE) ;

Cor eAt tri but eSpecs class contains some of the most popular attributes. However, it's likely that you'll need to build you own attribute specification. For
example, to address a numeric JIRA custom field and calculate total of that field based on sub-issues, you'll need the following.

Attribut eSpec<Nunber> custonfField =
Attribut eSpecBuil der.create("custonfield", ValueFornmat.NUVBER). parans().set("fieldld", 10000). build();

Attribut eSpec<Nunber > custonfi el dTotal =
Attribut eSpecBuil der.create(CoreAttributeSpecs.|d. SUM Val ueFormat. NUVBER). parans().set Attri bute(custonField).
bui 1 d();

attributeSet.add(custonFiel dTotal);

2. Figure out which Rows do you need to calculate the Attributes for

For example, this could be all rows in that structure.

LongLi st rows = myStructureConponents. get For est Servi ce(). get For est Sour ce(forest Spec). getlLatest().getForest().
get Rows();

@ If you need to create a LongLi st manually, use LongAr r ay implementation.

3.Call StructureAttri buteService

This service calculates a matrix of values for each row and attribute you specify.


https://wiki.almworks.com/display/structure052/Reading+Structure+Content

Ver si onedRowval ues val ues = myStruct ureConponents. get AttributeService().getAttributeVal ues(forestSpec, rows,
attributeSet);

@ There is a variation of get At t ri but eVal ues() method that accepts a For est , rather than For est Spec. It is recommended to use the
variant that accepts For est Spec whenever possible, because that variant uses caching.

4. Read out the result

The returned object contains values for all pairs of requested row and requested attribute.

for (Longlterator ii : rows) {
String key = values.get(ii.value(), CoreAttributeSpecs.KEY);
Nunber total = values.get(ii.value(), custonFieldTotal);



	Loading Attribute Values

